1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
|
//===- Tiling.cpp - Implementation of tiling using TilingInterface -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the tiling using TilingInterface.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
#include "mlir/Interfaces/TilingInterface.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "tile-using-interface"
using namespace mlir;
scf::SCFTilingOptions &
scf::SCFTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
assert(!tileSizeComputationFunction && "tile sizes already set");
SmallVector<int64_t> tileSizes(ts.begin(), ts.end());
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
OpBuilder::InsertionGuard guard(b);
b.setInsertionPointToStart(
&op->getParentWithTrait<OpTrait::IsIsolatedFromAbove>()
->getRegion(0)
.front());
return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s);
return v;
}));
};
return *this;
}
/// Helper method to adjust the interchange vector to match the iteration
/// domain.
static SmallVector<int64_t>
fillInterchangeVector(ArrayRef<int64_t> interchangeVector,
size_t iterationDomainSize) {
SmallVector<int64_t> filledVector = llvm::to_vector(interchangeVector);
if (filledVector.size() < iterationDomainSize) {
auto range = llvm::seq<int64_t>(filledVector.size(), iterationDomainSize);
filledVector.append(range.begin(), range.end());
}
if (filledVector.size() > iterationDomainSize)
filledVector.resize(iterationDomainSize);
return filledVector;
}
//===----------------------------------------------------------------------===//
// tileUsingSCFForOp implementation.
//===----------------------------------------------------------------------===//
// Check if `stride` evenly divides the trip count `size - offset`.
static bool tileDividesIterationDomain(Range loopRange) {
std::optional<int64_t> offsetAsInt = getConstantIntValue(loopRange.offset);
if (!offsetAsInt)
return false;
std::optional<int64_t> sizeAsInt = getConstantIntValue(loopRange.size);
if (!sizeAsInt)
return false;
std::optional<int64_t> strideAsInt = getConstantIntValue(loopRange.stride);
if (!strideAsInt)
return false;
return ((sizeAsInt.value() - offsetAsInt.value()) % strideAsInt.value() == 0);
}
/// Returns the bounded tile size given the current `iv`, `loopRange` and
/// `tileSize`, i.e., `min(tileSize, range.end() - iv)`.
static OpFoldResult getBoundedTileSize(OpBuilder &b, Location loc,
Range loopRange, Value iv,
Value tileSize) {
std::optional<int64_t> ts = getConstantIntValue(tileSize);
if (ts && ts.value() == 1)
return getAsOpFoldResult(tileSize);
if (tileDividesIterationDomain(
Range{loopRange.offset, loopRange.size, tileSize}))
return tileSize;
// The tile size to use (to avoid out of bounds access) is minimum of
// `tileSize` and `ub - iv`, where `iv` is the induction variable of the tiled
// loop.
AffineExpr s0, s1, d0;
bindDims(b.getContext(), d0);
bindSymbols(b.getContext(), s0, s1);
AffineMap minMap = AffineMap::get(1, 2, {s0, s1 - d0}, b.getContext());
Value size = getValueOrCreateConstantIndexOp(b, loc, loopRange.size);
return affine::makeComposedFoldedAffineMin(
b, loc, minMap, SmallVector<OpFoldResult>{iv, tileSize, size});
}
/// Generate an empty loop nest that represents the tiled loop nest shell.
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
/// - `tileSizeVals` is the tile sizes to use. Zero represent untiled loops.
/// - In `offsets` and `sizes` return the multi-dimensional offset and size of
/// the
/// tile processed within the inner most loop.
static SmallVector<scf::ForOp>
generateTileLoopNest(OpBuilder &builder, Location loc,
ArrayRef<Range> loopRanges, ArrayRef<Value> tileSizeVals,
SmallVector<OpFoldResult> &offsets,
SmallVector<OpFoldResult> &sizes) {
assert(!loopRanges.empty() && "expected at least one loop range");
assert(loopRanges.size() == tileSizeVals.size() &&
"expected as many tile sizes as loop ranges");
OpBuilder::InsertionGuard guard(builder);
SmallVector<scf::ForOp> loops;
offsets.resize(loopRanges.size());
sizes.resize(loopRanges.size());
for (auto loopRange : llvm::enumerate(loopRanges)) {
Value offset =
getValueOrCreateConstantIndexOp(builder, loc, loopRange.value().offset);
Value size =
getValueOrCreateConstantIndexOp(builder, loc, loopRange.value().size);
Value tileSize = tileSizeVals[loopRange.index()];
// No loops if tile size is zero. Set offset and size to the loop
// offset and size.
if (matchPattern(tileSize, m_Zero())) {
offsets[loopRange.index()] = offset;
sizes[loopRange.index()] = size;
continue;
}
auto loop = builder.create<scf::ForOp>(
loc, offset, size, tileSize, ValueRange{},
[&](OpBuilder &bodyBuilder, Location bodyLoc, Value iv,
ValueRange /*iterArgs*/) {
sizes[loopRange.index()] = getBoundedTileSize(
bodyBuilder, bodyLoc, loopRange.value(), iv, tileSize);
builder.create<scf::YieldOp>(loc);
});
offsets[loopRange.index()] = loop.getInductionVar();
loops.push_back(loop);
builder.setInsertionPoint(loop.getBody()->getTerminator());
}
return loops;
}
/// For a value to be yielded (`yieldedValue`) from within a loop nest `loops`,
/// construct the destructive update pattern that inserts the yielded
/// value into a destination tensor provided by `initValue` at offset
/// `tileOffsets` and size `tileSizes`. For example,
///
/// ```mlir
/// scf.for %iv0 = ... {
/// %0 = tiled_op
/// }
/// ```
///
/// is transformed to
///
/// ```mlir
/// scf.for %iv0 = ... iter_args(%arg = %0) {
/// %1 = tensor.extract_slice %arg
/// %2 = tiled_op
/// %3 = tensor.insert_slice %2 into %arg
/// scf.yield %3
/// }
/// ```
/// TODO: This API can be cleaned up by using `SubsetExtractOpInterface`.
static SmallVector<Value>
yieldTiledValues(RewriterBase &rewriter, ValueRange initValues,
ValueRange yieldedValues,
ArrayRef<SmallVector<OpFoldResult>> tileOffsetsList,
ArrayRef<SmallVector<OpFoldResult>> tileSizesList,
MutableArrayRef<scf::ForOp> loops) {
NewYieldValueFn yieldValueFn =
[&](OpBuilder &b, Location loc,
ArrayRef<BlockArgument> newBBArgs) -> SmallVector<Value> {
SmallVector<Value> inserts;
for (const auto &yieldedValue : llvm::enumerate(yieldedValues)) {
ArrayRef<OpFoldResult> tileOffsets =
tileOffsetsList[yieldedValue.index()];
ArrayRef<OpFoldResult> tileSizes = tileSizesList[yieldedValue.index()];
SmallVector<OpFoldResult> tileStrides(tileOffsets.size(),
b.getIndexAttr(1));
Value insert = b.create<tensor::InsertSliceOp>(
loc, yieldedValue.value(), newBBArgs[yieldedValue.index()],
tileOffsets, tileSizes, tileStrides);
inserts.push_back(insert);
}
return inserts;
};
SmallVector<scf::ForOp> newLoops =
replaceLoopNestWithNewYields(rewriter, loops, initValues, yieldValueFn,
/*replaceIterOperandsUsesInLoop =*/false);
for (const auto &loop : llvm::enumerate(loops)) {
rewriter.eraseOp(loop.value());
loops[loop.index()] = newLoops[loop.index()];
}
return llvm::to_vector(llvm::map_range(
loops.front().getResults().take_back(yieldedValues.size()),
[](OpResult r) -> Value { return r; }));
}
/// If the tiled operation is destination passing style, update the
/// slice of the destination used (which refers to the untiled destination)
/// to use the corresponding region argument of the innermost loop.
///
/// ```mlir
/// %0 =
/// scf.for %iv0 = ... iter_args(%arg = %0) {
/// %1 = tensor.extract_slice %0
/// %2 = tiled_op
/// %3 = tensor.insert_slice %2 into %arg
/// scf.yield %3
/// }
/// ```
///
/// is transformed to
///
/// ```mlir
/// scf.for %iv0 = ... iter_args(%arg = %0) {
/// %1 = tensor.extract_slice %arg
/// %2 = tiled_op
/// %3 = tensor.insert_slice %2 into %arg
/// scf.yield %3
/// }
/// ```
static void
updateDestinationOperandsForTiledOp(OpBuilder &builder,
ValueRange tiledOpDestinationValues,
ValueRange bbArgsList) {
for (const auto &destValue : llvm::enumerate(tiledOpDestinationValues)) {
auto sliceOp = destValue.value().getDefiningOp<tensor::ExtractSliceOp>();
if (!sliceOp)
continue;
sliceOp.setOperand(0, bbArgsList[destValue.index()]);
}
}
/// Helper method to yield the values of the tiled op, as well as
/// update the destination operands of the tiled op, if it is
/// a destination passing style op.
static SmallVector<Value>
yieldTiledValues(RewriterBase &rewriter, ArrayRef<Value> initValues,
TilingResult tilingResult,
ArrayRef<SmallVector<OpFoldResult>> tileOffsetsList,
ArrayRef<SmallVector<OpFoldResult>> tileSizesList,
MutableArrayRef<scf::ForOp> loops) {
SmallVector<Value> replacements =
yieldTiledValues(rewriter, initValues, tilingResult.tiledValues,
tileOffsetsList, tileSizesList, loops);
for (auto tiledOp : tilingResult.tiledOps) {
if (auto dstOp = dyn_cast<DestinationStyleOpInterface>(tiledOp)) {
auto innerMostLoop = loops.back();
SmallVector<Value> tiledOpDestinationTensors = dstOp.getDpsInitOperands();
updateDestinationOperandsForTiledOp(rewriter, tiledOpDestinationTensors,
innerMostLoop.getRegionIterArgs());
}
}
return replacements;
}
/// Implementation of tiling transformation of `op` that implements the
/// `TilingInterface` using `scf.for` to iterate over the tiles.
FailureOr<scf::SCFTilingResult>
mlir::scf::tileUsingSCFForOp(RewriterBase &rewriter, TilingInterface op,
const scf::SCFTilingOptions &options) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointAfter(op);
if (!options.tileSizeComputationFunction) {
return rewriter.notifyMatchFailure(
op, "missing tile size computation function");
}
// 1. Get the range of the loops that are represented by the operation.
SmallVector<Range> iterationDomain = op.getIterationDomain(rewriter);
size_t numLoops = iterationDomain.size();
if (numLoops == 0) {
return rewriter.notifyMatchFailure(
op, "unable to tile op with no iteration domain");
}
// 2. Materialize the tile sizes. Enforce the convention that "tiling by zero"
// skips tiling a particular dimension. This convention is significantly
// simpler to handle instead of adjusting affine maps to account for missing
// dimensions.
SmallVector<Value> tileSizeVector =
options.tileSizeComputationFunction(rewriter, op);
if (tileSizeVector.size() < iterationDomain.size()) {
auto zero = rewriter.create<arith::ConstantIndexOp>(op.getLoc(), 0);
tileSizeVector.append(numLoops - tileSizeVector.size(), zero);
}
scf::SCFTilingResult tilingResult;
SmallVector<OpFoldResult> offsets, sizes;
{
// If there is an interchange specified, permute the iteration domain and
// the tile sizes.
SmallVector<int64_t> interchangeVector;
if (!options.interchangeVector.empty()) {
interchangeVector = fillInterchangeVector(options.interchangeVector,
iterationDomain.size());
}
if (!interchangeVector.empty()) {
if (!isPermutationVector(interchangeVector)) {
return rewriter.notifyMatchFailure(
op, "invalid intechange vector, not a permutation of the entire "
"iteration space");
}
applyPermutationToVector(iterationDomain, interchangeVector);
applyPermutationToVector(tileSizeVector, interchangeVector);
}
// 3. Materialize an empty loop nest that iterates over the tiles. These
// loops for now do not return any values even if the original operation has
// results.
tilingResult.loops = generateTileLoopNest(
rewriter, op.getLoc(), iterationDomain, tileSizeVector, offsets, sizes);
if (!interchangeVector.empty()) {
auto inversePermutation = invertPermutationVector(interchangeVector);
applyPermutationToVector(offsets, inversePermutation);
applyPermutationToVector(sizes, inversePermutation);
}
}
LLVM_DEBUG({
if (!tilingResult.loops.empty()) {
llvm::dbgs() << "LoopNest shell :\n";
tilingResult.loops.front().dump();
llvm::dbgs() << "\n";
}
});
// 4. Generate the tiled implementation within the inner most loop.
if (!tilingResult.loops.empty())
rewriter.setInsertionPoint(
tilingResult.loops.back().getBody()->getTerminator());
FailureOr<TilingResult> tiledImplementation =
op.getTiledImplementation(rewriter, offsets, sizes);
tilingResult.tiledOps.append(tiledImplementation->tiledOps);
if (op->getNumResults() == 0) {
// nothing more to do.
return tilingResult;
}
// If loops are empty, the tiled op is used as the replacement for the untiled
// op.
if (tilingResult.loops.empty()) {
tilingResult.replacements = tiledImplementation->tiledValues;
return tilingResult;
}
// 5. Yield all the results of the tiled operation. The surrounding loop
// nest is modified to insert a destructive update pattern to yield
// from the loop nest values to replace the untiled op with.
int64_t numResults = op->getNumResults();
SmallVector<SmallVector<OpFoldResult>> resultOffsetsList(numResults),
resultSizesList(numResults);
for (const auto &result : llvm::enumerate(op->getResults())) {
if (failed(op.getResultTilePosition(rewriter, result.index(), offsets,
sizes,
resultOffsetsList[result.index()],
resultSizesList[result.index()]))) {
return rewriter.notifyMatchFailure(
op, "failed to get slice of result produced");
}
}
SmallVector<Value> destinationTensors;
if (failed(tensor::getOrCreateDestinations(rewriter, op.getLoc(), op,
destinationTensors)))
return rewriter.notifyMatchFailure(op, "failed to get destinations");
tilingResult.replacements = yieldTiledValues(
rewriter, destinationTensors, tiledImplementation.value(),
resultOffsetsList, resultSizesList, tilingResult.loops);
LLVM_DEBUG({
if (!tilingResult.loops.empty()) {
llvm::dbgs() << "After tiled implementation :\n";
tilingResult.loops.front().dump();
llvm::dbgs() << "\n";
}
});
return tilingResult;
}
FailureOr<scf::SCFReductionTilingResult>
mlir::scf::tileReductionUsingScf(RewriterBase &b,
PartialReductionOpInterface op,
ArrayRef<OpFoldResult> tileSize) {
Location loc = op.getLoc();
// Ops implementing PartialReductionOpInterface are expected to implement
// TilingInterface.
auto tilingInterfaceOp = cast<TilingInterface>(op.getOperation());
SmallVector<Range> iterationDomain = tilingInterfaceOp.getIterationDomain(b);
SmallVector<Value> tileSizeVector =
getValueOrCreateConstantIndexOp(b, loc, tileSize);
if (tileSizeVector.size() < iterationDomain.size()) {
auto zero = b.create<arith::ConstantIndexOp>(loc, 0);
tileSizeVector.append(iterationDomain.size() - tileSizeVector.size(), zero);
}
if (op->getNumResults() != 1)
return b.notifyMatchFailure(
op, "don't support ops with multiple results for now");
SmallVector<utils::IteratorType> iterators =
tilingInterfaceOp.getLoopIteratorTypes();
int64_t numReductionDims = llvm::count(
tilingInterfaceOp.getLoopIteratorTypes(), utils::IteratorType::reduction);
if (numReductionDims != 1)
return b.notifyMatchFailure(
op, "only support ops with one reduction dimension.");
int reductionDim;
for (auto [idx, iteratorType] :
llvm::enumerate(tilingInterfaceOp.getLoopIteratorTypes())) {
if (iteratorType == utils::IteratorType::reduction) {
reductionDim = idx;
break;
}
}
if (static_cast<size_t>(reductionDim) >= tileSize.size())
return b.notifyMatchFailure(op, "reduction dimension must be tiled");
// 1. create the inital tensor value.
FailureOr<Operation *> identityTensor =
op.generateInitialTensorForPartialReduction(b, loc, tileSize,
reductionDim);
if (failed(identityTensor))
return b.notifyMatchFailure(op,
"cannot create a tensor of identity value.");
// 2. Create the nested loops.
SmallVector<OpFoldResult> offsets, sizes;
SmallVector<scf::ForOp> loops = generateTileLoopNest(
b, loc, iterationDomain, tileSizeVector, offsets, sizes);
// 3. Generate the tiled implementation within the inner most loop.
b.setInsertionPoint(loops.back().getBody()->getTerminator());
Operation *parallelOp = op.tileToPartialReduction(
b, loc, (*identityTensor)->getResults(), offsets, sizes, reductionDim);
SmallVector<OpFoldResult> resultSizesList;
for (size_t i = 0; i < offsets.size(); i++)
resultSizesList.push_back(
tensor::getMixedSize(b, loc, parallelOp->getResult(0), i));
SmallVector<OpFoldResult> outOffsets(offsets.size(), b.getIndexAttr(0));
SmallVector<Value> replacements = yieldTiledValues(
b, (*identityTensor)->getResults(), parallelOp->getResults(), outOffsets,
resultSizesList, loops);
auto dstOp = cast<DestinationStyleOpInterface>(parallelOp);
auto innerMostLoop = loops.back();
SmallVector<Value> destinationTensors = dstOp.getDpsInitOperands();
assert(destinationTensors.size() ==
innerMostLoop.getRegionIterArgs().size() &&
"unexpected number of outputs");
updateDestinationOperandsForTiledOp(b, destinationTensors,
innerMostLoop.getRegionIterArgs());
// 4. Apply the merge reduction to combine all the partial values.
b.setInsertionPointAfter(*loops.begin());
Operation *mergeOp = op.mergeReductions(b, loc, replacements, reductionDim);
b.replaceOp(op, mergeOp->getResults());
SCFReductionTilingResult results;
results.initialOp = *identityTensor;
results.loops = std::move(loops);
results.parallelTiledOp = parallelOp;
results.mergeOp = mergeOp;
return results;
}
//===----------------------------------------------------------------------===//
// tileConsumerAndFuseProducerGreedilyUsingSCFForOp implementation.
//===----------------------------------------------------------------------===//
/// Return the untiled producer whose slice is used in a tiled consumer. The
/// method traverses the tile loop nest (`loops`) if needed, and returns the
/// `iter_args` of the outer most that is encountered. Traversing the iter_args
/// indicates that this is a destination operand of the consumer. If there was
/// no loop traversal needed, the second value of the returned tuple is empty.
static std::tuple<OpResult, std::optional<OpOperand *>>
getUntiledProducerFromSliceSource(OpOperand *source,
ArrayRef<scf::ForOp> loops) {
std::optional<OpOperand *> destinationIterArg;
auto loopIt = loops.rbegin();
while (auto iterArg = dyn_cast<BlockArgument>(source->get())) {
scf::ForOp loop = *loopIt;
if (iterArg.getOwner()->getParentOp() != loop)
break;
source = &loop.getOpOperandForRegionIterArg(iterArg);
loopIt++;
}
if (loopIt == loops.rend())
destinationIterArg = source;
return {dyn_cast<OpResult>(source->get()), destinationIterArg};
}
/// Implementation of fusing producer of a single slice by computing the
/// slice of the producer in-place.
std::optional<scf::SCFFuseProducerOfSliceResult>
mlir::scf::tileAndFuseProducerOfSlice(RewriterBase &rewriter,
tensor::ExtractSliceOp candidateSliceOp,
MutableArrayRef<scf::ForOp> loops) {
// 1. Get the producer of the source (potentially walking through
// `iter_args` of nested `scf.for`)
auto [fusableProducer, destinationIterArg] =
getUntiledProducerFromSliceSource(&candidateSliceOp->getOpOperand(0),
loops);
if (!fusableProducer)
return std::nullopt;
// 2. Generate the tiled implementation of the producer of the source
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(candidateSliceOp);
FailureOr<TilingResult> tileAndFuseResult =
tensor::replaceExtractSliceWithTiledProducer(rewriter, candidateSliceOp,
fusableProducer);
if (failed(tileAndFuseResult))
return std::nullopt;
rewriter.replaceAllUsesWith(candidateSliceOp,
tileAndFuseResult->tiledValues[0]);
// 3. If the slice is for a destination operand, for example,
//
// ```mlir
// %0 = linalg.init
// %1 = linalg.fill .. outs(%0 : )
// %2 = scf.for .. iter_args(%arg0 = %1) {
// %3 = scf.for .. iter_args(%arg1 = %arg0) {
// %4 = tensor.extract_slice %arg1 [..]
// .. = linalg.matmul .. outs(%4 : )
// }
// }
// ```
//
// the IR is currently
//
// ```
// %0 = linalg.init
// %1 = linalg.fill
// %2 = scf.for .. iter_args(%arg0 = %1 /* incorrect value */ ) {
// %3 = scf.for .. iter_args(%arg1 = %arg0) {
// %4 = tensor.extract_slice %0 /*incorrect value */ [..]
// %5 = linalg.fill .. outs(%4 : )
// .. = linalg.matmul .. outs(%5 : )
// }
// }
// ```
//
// The untiled `linalg.fill` is still used as the `init_value` since it
// was originally a destination operand of the untiled `linalg.matmul`.
// When fusing an operand that is a destination operand.
// - Update the iter_arg of the outer most loop to use the destination
// of the untiled producer.
// - Update the destination of the slice of the tiled producer generated
// to use the same basic block argument as the slice that was used to
// generate inplace the tiled implementation of the producer.
// With this the IR will be.
//
// ```
// %0 = linalg.init
// %1 = scf.for .. iter_args(%arg0 = %0 /* corrected value */ ) {
// %2 = scf.for .. iter_args(%arg1 = %arg0) {
// %3 = tensor.extract_slice %arg1 /* corrected value */ [..]
// %4 = linalg.fill .. outs(%3 : )
// .. = linalg.matmul .. outs(%4 : )
// }
// }
// ```
// TODO: This can be modeled better if the `DestinationStyleOpInterface`.
// Update to use that when it does become available.
scf::ForOp outerMostLoop = loops.front();
std::optional<unsigned> iterArgNumber;
if (destinationIterArg) {
iterArgNumber =
outerMostLoop.getIterArgNumberForOpOperand(*destinationIterArg.value());
}
if (iterArgNumber) {
int64_t resultNumber = fusableProducer.getResultNumber();
if (auto dstOp =
dyn_cast<DestinationStyleOpInterface>(fusableProducer.getOwner())) {
outerMostLoop.setIterArg(iterArgNumber.value(),
dstOp.getTiedOpOperand(fusableProducer)->get());
}
for (auto tileAndFusedOp : tileAndFuseResult->tiledOps) {
auto dstOp = dyn_cast<DestinationStyleOpInterface>(tileAndFusedOp);
if (!dstOp)
continue;
scf::ForOp innerMostLoop = loops.back();
updateDestinationOperandsForTiledOp(
rewriter, dstOp.getDpsInitOperand(resultNumber)->get(),
innerMostLoop.getRegionIterArgs()[iterArgNumber.value()]);
}
}
return scf::SCFFuseProducerOfSliceResult{fusableProducer,
tileAndFuseResult->tiledValues[0],
tileAndFuseResult->tiledOps};
}
/// Reconstruct the fused producer from within the tiled-and-fused code.
void mlir::scf::yieldReplacementForFusedProducer(
RewriterBase &rewriter, tensor::ExtractSliceOp sliceOp,
scf::SCFFuseProducerOfSliceResult fusedProducerInfo,
MutableArrayRef<scf::ForOp> loops) {
auto [fusableProducer, fusedProducerValue, tileAndFusedOps] =
fusedProducerInfo;
SmallVector<Value> initValues;
FailureOr<Value> initValue = tensor::getOrCreateDestination(
rewriter, fusableProducer.getOwner()->getLoc(), fusableProducer);
if (succeeded(initValue)) {
SmallVector<OpFoldResult> resultOffsets = sliceOp.getMixedOffsets();
SmallVector<OpFoldResult> resultSizes = sliceOp.getMixedSizes();
SmallVector<Value> yieldedVals =
yieldTiledValues(rewriter, initValue.value(), fusedProducerValue,
resultOffsets, resultSizes, loops);
}
for (auto tileAndFusedOp : tileAndFusedOps) {
auto dstStyleProducer =
dyn_cast<DestinationStyleOpInterface>(tileAndFusedOp);
if (!dstStyleProducer)
continue;
Value dstValue =
dstStyleProducer.getDpsInitOperand(fusableProducer.getResultNumber())
->get();
updateDestinationOperandsForTiledOp(
rewriter, dstValue, loops.back().getRegionIterArgs().back());
}
}
/// Implementation of tile consumer and fuse producer greedily.
FailureOr<scf::SCFTileAndFuseResult>
mlir::scf::tileConsumerAndFuseProducerGreedilyUsingSCFForOp(
RewriterBase &rewriter, TilingInterface consumer,
const scf::SCFTileAndFuseOptions &options) {
// This transformation is only valid for ops that return values (i.e. not
// valid to use with operations that have memref operands).
if (!consumer->getNumResults()) {
return rewriter.notifyMatchFailure(
consumer, "invalid pattern for op with no results");
}
// 1. First tile the consumer.
scf::SCFTileAndFuseResult tileAndFuseResult;
llvm::SmallDenseMap<Value, int64_t> yieldedValueToResultNumber;
{
FailureOr<scf::SCFTilingResult> tilingResult =
tileUsingSCFForOp(rewriter, consumer, options.tilingOptions);
if (failed(tilingResult))
return rewriter.notifyMatchFailure(consumer, "failed to tile consumer");
for (auto *tiledOp : tilingResult->tiledOps)
tileAndFuseResult.tiledAndFusedOps.insert(tiledOp);
tileAndFuseResult.loops = std::move(tilingResult->loops);
for (const auto &result : llvm::enumerate(
llvm::zip(consumer->getResults(), tilingResult->replacements))) {
tileAndFuseResult.replacements[std::get<0>(result.value())] =
std::get<1>(result.value());
yieldedValueToResultNumber[tilingResult->tiledOps.back()->getResult(
result.index())] = result.index();
}
}
// If there are no loops generated, fusion is immaterial.
if (tileAndFuseResult.loops.empty())
return tileAndFuseResult;
// 2. Typically, the operands of the tiled operation are slices of the
// operands of the untiled operation. These are expressed in IR using
// `tensor.extract_slice` operations with source being the operands of the
// untiled operation. Create a worklist of these `tensor.extract_slice`
// operations. If the producers of the source of the `tensor.extract_slice`
// can be tiled such that the tiled value is generated in-place, that
// effectively tiles + fuses the operations.
auto addCandidateSlices = [](Operation *fusedOp,
std::deque<tensor::ExtractSliceOp> &candidates) {
for (Value operand : fusedOp->getOperands())
if (auto sliceOp = operand.getDefiningOp<tensor::ExtractSliceOp>())
candidates.push_back(sliceOp);
};
std::deque<tensor::ExtractSliceOp> candidates;
addCandidateSlices(tileAndFuseResult.tiledAndFusedOps.back(), candidates);
OpBuilder::InsertionGuard g(rewriter);
while (!candidates.empty()) {
// Traverse the slices in BFS fashion.
tensor::ExtractSliceOp candidateSliceOp = candidates.front();
candidates.pop_front();
// The operands of the fused producer might themselved be slices of
// values produced by operations that implement the `TilingInterface`.
// Add these operations to the worklist.
std::optional<scf::SCFFuseProducerOfSliceResult> fusedProducer =
tileAndFuseProducerOfSlice(rewriter, candidateSliceOp,
tileAndFuseResult.loops);
if (!fusedProducer)
continue;
if (Operation *tiledAndFusedOp =
fusedProducer->tiledAndFusedProducer.getDefiningOp()) {
tileAndFuseResult.tiledAndFusedOps.insert(tiledAndFusedOp);
addCandidateSlices(tiledAndFusedOp, candidates);
}
}
return tileAndFuseResult;
}
//===----------------------------------------------------------------------===//
// lowerToLoopsUsingSCFForOp implementation.
//===----------------------------------------------------------------------===//
FailureOr<SmallVector<scf::ForOp>>
mlir::scf::lowerToLoopsUsingSCFForOp(RewriterBase &rewriter,
TilingInterface op) {
// TODO: Handle cases where the op has results if needed.
if (op->getNumResults() > 0) {
return rewriter.notifyMatchFailure(
op, "unable to lower to loops operations with return values");
}
SmallVector<Range> domain = op.getIterationDomain(rewriter);
SmallVector<Value> ivs;
SmallVector<scf::ForOp> loops;
Location loc = op.getLoc();
for (auto loopRange : domain) {
Value offsetVal =
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.offset);
Value sizeVal =
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.size);
Value strideVal =
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.stride);
auto loop = rewriter.create<scf::ForOp>(op.getLoc(), offsetVal, sizeVal,
strideVal, ValueRange{});
loops.push_back(loop);
ivs.push_back(loop.getInductionVar());
rewriter.setInsertionPoint(loop.getBody()->getTerminator());
}
if (failed(op.generateScalarImplementation(rewriter, op.getLoc(), ivs))) {
return failure();
}
return loops;
}
|