1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
|
//===- SPIRVConversion.cpp - SPIR-V Conversion Utilities ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities used to lower to SPIR-V dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVTypes.h"
#include "mlir/Dialect/SPIRV/IR/TargetAndABI.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <functional>
#include <optional>
#define DEBUG_TYPE "mlir-spirv-conversion"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//
/// Checks that `candidates` extension requirements are possible to be satisfied
/// with the given `targetEnv`.
///
/// `candidates` is a vector of vector for extension requirements following
/// ((Extension::A OR Extension::B) AND (Extension::C OR Extension::D))
/// convention.
template <typename LabelT>
static LogicalResult checkExtensionRequirements(
LabelT label, const spirv::TargetEnv &targetEnv,
const spirv::SPIRVType::ExtensionArrayRefVector &candidates) {
for (const auto &ors : candidates) {
if (targetEnv.allows(ors))
continue;
LLVM_DEBUG({
SmallVector<StringRef> extStrings;
for (spirv::Extension ext : ors)
extStrings.push_back(spirv::stringifyExtension(ext));
llvm::dbgs() << label << " illegal: requires at least one extension in ["
<< llvm::join(extStrings, ", ")
<< "] but none allowed in target environment\n";
});
return failure();
}
return success();
}
/// Checks that `candidates`capability requirements are possible to be satisfied
/// with the given `isAllowedFn`.
///
/// `candidates` is a vector of vector for capability requirements following
/// ((Capability::A OR Capability::B) AND (Capability::C OR Capability::D))
/// convention.
template <typename LabelT>
static LogicalResult checkCapabilityRequirements(
LabelT label, const spirv::TargetEnv &targetEnv,
const spirv::SPIRVType::CapabilityArrayRefVector &candidates) {
for (const auto &ors : candidates) {
if (targetEnv.allows(ors))
continue;
LLVM_DEBUG({
SmallVector<StringRef> capStrings;
for (spirv::Capability cap : ors)
capStrings.push_back(spirv::stringifyCapability(cap));
llvm::dbgs() << label << " illegal: requires at least one capability in ["
<< llvm::join(capStrings, ", ")
<< "] but none allowed in target environment\n";
});
return failure();
}
return success();
}
/// Returns true if the given `storageClass` needs explicit layout when used in
/// Shader environments.
static bool needsExplicitLayout(spirv::StorageClass storageClass) {
switch (storageClass) {
case spirv::StorageClass::PhysicalStorageBuffer:
case spirv::StorageClass::PushConstant:
case spirv::StorageClass::StorageBuffer:
case spirv::StorageClass::Uniform:
return true;
default:
return false;
}
}
/// Wraps the given `elementType` in a struct and gets the pointer to the
/// struct. This is used to satisfy Vulkan interface requirements.
static spirv::PointerType
wrapInStructAndGetPointer(Type elementType, spirv::StorageClass storageClass) {
auto structType = needsExplicitLayout(storageClass)
? spirv::StructType::get(elementType, /*offsetInfo=*/0)
: spirv::StructType::get(elementType);
return spirv::PointerType::get(structType, storageClass);
}
//===----------------------------------------------------------------------===//
// Type Conversion
//===----------------------------------------------------------------------===//
static spirv::ScalarType getIndexType(MLIRContext *ctx,
const SPIRVConversionOptions &options) {
return cast<spirv::ScalarType>(
IntegerType::get(ctx, options.use64bitIndex ? 64 : 32));
}
Type SPIRVTypeConverter::getIndexType() const {
return ::getIndexType(getContext(), options);
}
MLIRContext *SPIRVTypeConverter::getContext() const {
return targetEnv.getAttr().getContext();
}
bool SPIRVTypeConverter::allows(spirv::Capability capability) {
return targetEnv.allows(capability);
}
// TODO: This is a utility function that should probably be exposed by the
// SPIR-V dialect. Keeping it local till the use case arises.
static std::optional<int64_t>
getTypeNumBytes(const SPIRVConversionOptions &options, Type type) {
if (isa<spirv::ScalarType>(type)) {
auto bitWidth = type.getIntOrFloatBitWidth();
// According to the SPIR-V spec:
// "There is no physical size or bit pattern defined for values with boolean
// type. If they are stored (in conjunction with OpVariable), they can only
// be used with logical addressing operations, not physical, and only with
// non-externally visible shader Storage Classes: Workgroup, CrossWorkgroup,
// Private, Function, Input, and Output."
if (bitWidth == 1)
return std::nullopt;
return bitWidth / 8;
}
if (auto complexType = dyn_cast<ComplexType>(type)) {
auto elementSize = getTypeNumBytes(options, complexType.getElementType());
if (!elementSize)
return std::nullopt;
return 2 * *elementSize;
}
if (auto vecType = dyn_cast<VectorType>(type)) {
auto elementSize = getTypeNumBytes(options, vecType.getElementType());
if (!elementSize)
return std::nullopt;
return vecType.getNumElements() * *elementSize;
}
if (auto memRefType = dyn_cast<MemRefType>(type)) {
// TODO: Layout should also be controlled by the ABI attributes. For now
// using the layout from MemRef.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (!memRefType.hasStaticShape() ||
failed(getStridesAndOffset(memRefType, strides, offset)))
return std::nullopt;
// To get the size of the memref object in memory, the total size is the
// max(stride * dimension-size) computed for all dimensions times the size
// of the element.
auto elementSize = getTypeNumBytes(options, memRefType.getElementType());
if (!elementSize)
return std::nullopt;
if (memRefType.getRank() == 0)
return elementSize;
auto dims = memRefType.getShape();
if (llvm::is_contained(dims, ShapedType::kDynamic) ||
ShapedType::isDynamic(offset) ||
llvm::is_contained(strides, ShapedType::kDynamic))
return std::nullopt;
int64_t memrefSize = -1;
for (const auto &shape : enumerate(dims))
memrefSize = std::max(memrefSize, shape.value() * strides[shape.index()]);
return (offset + memrefSize) * *elementSize;
}
if (auto tensorType = dyn_cast<TensorType>(type)) {
if (!tensorType.hasStaticShape())
return std::nullopt;
auto elementSize = getTypeNumBytes(options, tensorType.getElementType());
if (!elementSize)
return std::nullopt;
int64_t size = *elementSize;
for (auto shape : tensorType.getShape())
size *= shape;
return size;
}
// TODO: Add size computation for other types.
return std::nullopt;
}
/// Converts a scalar `type` to a suitable type under the given `targetEnv`.
static Type
convertScalarType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options, spirv::ScalarType type,
std::optional<spirv::StorageClass> storageClass = {}) {
// Get extension and capability requirements for the given type.
SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
type.getExtensions(extensions, storageClass);
type.getCapabilities(capabilities, storageClass);
// If all requirements are met, then we can accept this type as-is.
if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
return type;
// Otherwise we need to adjust the type, which really means adjusting the
// bitwidth given this is a scalar type.
if (!options.emulateLT32BitScalarTypes)
return nullptr;
// We only emulate narrower scalar types here and do not truncate results.
if (type.getIntOrFloatBitWidth() > 32) {
LLVM_DEBUG(llvm::dbgs()
<< type
<< " not converted to 32-bit for SPIR-V to avoid truncation\n");
return nullptr;
}
if (auto floatType = dyn_cast<FloatType>(type)) {
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
return Builder(targetEnv.getContext()).getF32Type();
}
auto intType = cast<IntegerType>(type);
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
return IntegerType::get(targetEnv.getContext(), /*width=*/32,
intType.getSignedness());
}
/// Converts a sub-byte integer `type` to i32 regardless of target environment.
///
/// Note that we don't recognize sub-byte types in `spirv::ScalarType` and use
/// the above given that these sub-byte types are not supported at all in
/// SPIR-V; there are no compute/storage capability for them like other
/// supported integer types.
static Type convertSubByteIntegerType(const SPIRVConversionOptions &options,
IntegerType type) {
if (options.subByteTypeStorage != SPIRVSubByteTypeStorage::Packed) {
LLVM_DEBUG(llvm::dbgs() << "unsupported sub-byte storage kind\n");
return nullptr;
}
if (!llvm::isPowerOf2_32(type.getWidth())) {
LLVM_DEBUG(llvm::dbgs()
<< "unsupported non-power-of-two bitwidth in sub-byte" << type
<< "\n");
return nullptr;
}
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
return IntegerType::get(type.getContext(), /*width=*/32,
type.getSignedness());
}
/// Returns a type with the same shape but with any index element type converted
/// to the matching integer type. This is a noop when the element type is not
/// the index type.
static ShapedType
convertIndexElementType(ShapedType type,
const SPIRVConversionOptions &options) {
Type indexType = dyn_cast<IndexType>(type.getElementType());
if (!indexType)
return type;
return type.clone(getIndexType(type.getContext(), options));
}
/// Converts a vector `type` to a suitable type under the given `targetEnv`.
static Type
convertVectorType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options, VectorType type,
std::optional<spirv::StorageClass> storageClass = {}) {
type = cast<VectorType>(convertIndexElementType(type, options));
auto scalarType = dyn_cast_or_null<spirv::ScalarType>(type.getElementType());
if (!scalarType) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot convert non-scalar element type\n");
return nullptr;
}
if (type.getRank() <= 1 && type.getNumElements() == 1)
return convertScalarType(targetEnv, options, scalarType, storageClass);
if (!spirv::CompositeType::isValid(type)) {
LLVM_DEBUG(llvm::dbgs() << type << " illegal: > 4-element unimplemented\n");
return nullptr;
}
// Get extension and capability requirements for the given type.
SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
cast<spirv::CompositeType>(type).getExtensions(extensions, storageClass);
cast<spirv::CompositeType>(type).getCapabilities(capabilities, storageClass);
// If all requirements are met, then we can accept this type as-is.
if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
return type;
auto elementType =
convertScalarType(targetEnv, options, scalarType, storageClass);
if (elementType)
return VectorType::get(type.getShape(), elementType);
return nullptr;
}
static Type
convertComplexType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options, ComplexType type,
std::optional<spirv::StorageClass> storageClass = {}) {
auto scalarType = dyn_cast_or_null<spirv::ScalarType>(type.getElementType());
if (!scalarType) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot convert non-scalar element type\n");
return nullptr;
}
auto elementType =
convertScalarType(targetEnv, options, scalarType, storageClass);
if (!elementType)
return nullptr;
if (elementType != type.getElementType()) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: complex type emulation unsupported\n");
return nullptr;
}
return VectorType::get(2, elementType);
}
/// Converts a tensor `type` to a suitable type under the given `targetEnv`.
///
/// Note that this is mainly for lowering constant tensors. In SPIR-V one can
/// create composite constants with OpConstantComposite to embed relative large
/// constant values and use OpCompositeExtract and OpCompositeInsert to
/// manipulate, like what we do for vectors.
static Type convertTensorType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options,
TensorType type) {
// TODO: Handle dynamic shapes.
if (!type.hasStaticShape()) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: dynamic shape unimplemented\n");
return nullptr;
}
type = cast<TensorType>(convertIndexElementType(type, options));
auto scalarType = dyn_cast_or_null<spirv::ScalarType>(type.getElementType());
if (!scalarType) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot convert non-scalar element type\n");
return nullptr;
}
std::optional<int64_t> scalarSize = getTypeNumBytes(options, scalarType);
std::optional<int64_t> tensorSize = getTypeNumBytes(options, type);
if (!scalarSize || !tensorSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce element count\n");
return nullptr;
}
auto arrayElemCount = *tensorSize / *scalarSize;
auto arrayElemType = convertScalarType(targetEnv, options, scalarType);
if (!arrayElemType)
return nullptr;
std::optional<int64_t> arrayElemSize =
getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
return spirv::ArrayType::get(arrayElemType, arrayElemCount);
}
static Type convertBoolMemrefType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options,
MemRefType type,
spirv::StorageClass storageClass) {
unsigned numBoolBits = options.boolNumBits;
if (numBoolBits != 8) {
LLVM_DEBUG(llvm::dbgs()
<< "using non-8-bit storage for bool types unimplemented");
return nullptr;
}
auto elementType = dyn_cast<spirv::ScalarType>(
IntegerType::get(type.getContext(), numBoolBits));
if (!elementType)
return nullptr;
Type arrayElemType =
convertScalarType(targetEnv, options, elementType, storageClass);
if (!arrayElemType)
return nullptr;
std::optional<int64_t> arrayElemSize =
getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
if (!type.hasStaticShape()) {
// For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing
// to the element.
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayElemType, storageClass);
int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0;
auto arrayType = spirv::RuntimeArrayType::get(arrayElemType, stride);
// For Vulkan we need extra wrapping struct and array to satisfy interface
// needs.
return wrapInStructAndGetPointer(arrayType, storageClass);
}
int64_t memrefSize = llvm::divideCeil(type.getNumElements() * numBoolBits, 8);
int64_t arrayElemCount = llvm::divideCeil(memrefSize, *arrayElemSize);
int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0;
auto arrayType = spirv::ArrayType::get(arrayElemType, arrayElemCount, stride);
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayType, storageClass);
return wrapInStructAndGetPointer(arrayType, storageClass);
}
static Type convertSubByteMemrefType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options,
MemRefType type,
spirv::StorageClass storageClass) {
IntegerType elementType = cast<IntegerType>(type.getElementType());
Type arrayElemType = convertSubByteIntegerType(options, elementType);
if (!arrayElemType)
return nullptr;
int64_t arrayElemSize = *getTypeNumBytes(options, arrayElemType);
if (!type.hasStaticShape()) {
// For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing
// to the element.
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayElemType, storageClass);
int64_t stride = needsExplicitLayout(storageClass) ? arrayElemSize : 0;
auto arrayType = spirv::RuntimeArrayType::get(arrayElemType, stride);
// For Vulkan we need extra wrapping struct and array to satisfy interface
// needs.
return wrapInStructAndGetPointer(arrayType, storageClass);
}
int64_t memrefSize =
llvm::divideCeil(type.getNumElements() * elementType.getWidth(), 8);
int64_t arrayElemCount = llvm::divideCeil(memrefSize, arrayElemSize);
int64_t stride = needsExplicitLayout(storageClass) ? arrayElemSize : 0;
auto arrayType = spirv::ArrayType::get(arrayElemType, arrayElemCount, stride);
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayType, storageClass);
return wrapInStructAndGetPointer(arrayType, storageClass);
}
static Type convertMemrefType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options,
MemRefType type) {
auto attr = dyn_cast_or_null<spirv::StorageClassAttr>(type.getMemorySpace());
if (!attr) {
LLVM_DEBUG(
llvm::dbgs()
<< type
<< " illegal: expected memory space to be a SPIR-V storage class "
"attribute; please use MemorySpaceToStorageClassConverter to map "
"numeric memory spaces beforehand\n");
return nullptr;
}
spirv::StorageClass storageClass = attr.getValue();
if (isa<IntegerType>(type.getElementType())) {
if (type.getElementTypeBitWidth() == 1)
return convertBoolMemrefType(targetEnv, options, type, storageClass);
if (type.getElementTypeBitWidth() < 8)
return convertSubByteMemrefType(targetEnv, options, type, storageClass);
}
Type arrayElemType;
Type elementType = type.getElementType();
if (auto vecType = dyn_cast<VectorType>(elementType)) {
arrayElemType =
convertVectorType(targetEnv, options, vecType, storageClass);
} else if (auto complexType = dyn_cast<ComplexType>(elementType)) {
arrayElemType =
convertComplexType(targetEnv, options, complexType, storageClass);
} else if (auto scalarType = dyn_cast<spirv::ScalarType>(elementType)) {
arrayElemType =
convertScalarType(targetEnv, options, scalarType, storageClass);
} else if (auto indexType = dyn_cast<IndexType>(elementType)) {
type = cast<MemRefType>(convertIndexElementType(type, options));
arrayElemType = type.getElementType();
} else {
LLVM_DEBUG(
llvm::dbgs()
<< type
<< " unhandled: can only convert scalar or vector element type\n");
return nullptr;
}
if (!arrayElemType)
return nullptr;
std::optional<int64_t> arrayElemSize =
getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
if (!type.hasStaticShape()) {
// For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing
// to the element.
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayElemType, storageClass);
int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0;
auto arrayType = spirv::RuntimeArrayType::get(arrayElemType, stride);
// For Vulkan we need extra wrapping struct and array to satisfy interface
// needs.
return wrapInStructAndGetPointer(arrayType, storageClass);
}
std::optional<int64_t> memrefSize = getTypeNumBytes(options, type);
if (!memrefSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce element count\n");
return nullptr;
}
int64_t arrayElemCount = llvm::divideCeil(*memrefSize, *arrayElemSize);
int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0;
auto arrayType = spirv::ArrayType::get(arrayElemType, arrayElemCount, stride);
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayType, storageClass);
return wrapInStructAndGetPointer(arrayType, storageClass);
}
//===----------------------------------------------------------------------===//
// Type casting materialization
//===----------------------------------------------------------------------===//
/// Converts the given `inputs` to the original source `type` considering the
/// `targetEnv`'s capabilities.
///
/// This function is meant to be used for source materialization in type
/// converters. When the type converter needs to materialize a cast op back
/// to some original source type, we need to check whether the original source
/// type is supported in the target environment. If so, we can insert legal
/// SPIR-V cast ops accordingly.
///
/// Note that in SPIR-V the capabilities for storage and compute are separate.
/// This function is meant to handle the **compute** side; so it does not
/// involve storage classes in its logic. The storage side is expected to be
/// handled by MemRef conversion logic.
std::optional<Value> castToSourceType(const spirv::TargetEnv &targetEnv,
OpBuilder &builder, Type type,
ValueRange inputs, Location loc) {
// We can only cast one value in SPIR-V.
if (inputs.size() != 1) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
Value input = inputs.front();
// Only support integer types for now. Floating point types to be implemented.
if (!isa<IntegerType>(type)) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
auto inputType = cast<IntegerType>(input.getType());
auto scalarType = dyn_cast<spirv::ScalarType>(type);
if (!scalarType) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
// Only support source type with a smaller bitwidth. This would mean we are
// truncating to go back so we don't need to worry about the signedness.
// For extension, we cannot have enough signal here to decide which op to use.
if (inputType.getIntOrFloatBitWidth() < scalarType.getIntOrFloatBitWidth()) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
// Boolean values would need to use different ops than normal integer values.
if (type.isInteger(1)) {
Value one = spirv::ConstantOp::getOne(inputType, loc, builder);
return builder.create<spirv::IEqualOp>(loc, input, one);
}
// Check that the source integer type is supported by the environment.
SmallVector<ArrayRef<spirv::Extension>, 1> exts;
SmallVector<ArrayRef<spirv::Capability>, 2> caps;
scalarType.getExtensions(exts);
scalarType.getCapabilities(caps);
if (failed(checkCapabilityRequirements(type, targetEnv, caps)) ||
failed(checkExtensionRequirements(type, targetEnv, exts))) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
// We've already made sure this is truncating previously, so we don't need to
// care about signedness here. Still try to use a corresponding op for better
// consistency though.
if (type.isSignedInteger()) {
return builder.create<spirv::SConvertOp>(loc, type, input);
}
return builder.create<spirv::UConvertOp>(loc, type, input);
}
//===----------------------------------------------------------------------===//
// SPIRVTypeConverter
//===----------------------------------------------------------------------===//
SPIRVTypeConverter::SPIRVTypeConverter(spirv::TargetEnvAttr targetAttr,
const SPIRVConversionOptions &options)
: targetEnv(targetAttr), options(options) {
// Add conversions. The order matters here: later ones will be tried earlier.
// Allow all SPIR-V dialect specific types. This assumes all builtin types
// adopted in the SPIR-V dialect (i.e., IntegerType, FloatType, VectorType)
// were tried before.
//
// TODO: This assumes that the SPIR-V types are valid to use in the given
// target environment, which should be the case if the whole pipeline is
// driven by the same target environment. Still, we probably still want to
// validate and convert to be safe.
addConversion([](spirv::SPIRVType type) { return type; });
addConversion([this](IndexType /*indexType*/) { return getIndexType(); });
addConversion([this](IntegerType intType) -> std::optional<Type> {
if (auto scalarType = dyn_cast<spirv::ScalarType>(intType))
return convertScalarType(this->targetEnv, this->options, scalarType);
if (intType.getWidth() < 8)
return convertSubByteIntegerType(this->options, intType);
return Type();
});
addConversion([this](FloatType floatType) -> std::optional<Type> {
if (auto scalarType = dyn_cast<spirv::ScalarType>(floatType))
return convertScalarType(this->targetEnv, this->options, scalarType);
return Type();
});
addConversion([this](ComplexType complexType) {
return convertComplexType(this->targetEnv, this->options, complexType);
});
addConversion([this](VectorType vectorType) {
return convertVectorType(this->targetEnv, this->options, vectorType);
});
addConversion([this](TensorType tensorType) {
return convertTensorType(this->targetEnv, this->options, tensorType);
});
addConversion([this](MemRefType memRefType) {
return convertMemrefType(this->targetEnv, this->options, memRefType);
});
// Register some last line of defense casting logic.
addSourceMaterialization(
[this](OpBuilder &builder, Type type, ValueRange inputs, Location loc) {
return castToSourceType(this->targetEnv, builder, type, inputs, loc);
});
addTargetMaterialization([](OpBuilder &builder, Type type, ValueRange inputs,
Location loc) {
auto cast = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return std::optional<Value>(cast.getResult(0));
});
}
//===----------------------------------------------------------------------===//
// func::FuncOp Conversion Patterns
//===----------------------------------------------------------------------===//
namespace {
/// A pattern for rewriting function signature to convert arguments of functions
/// to be of valid SPIR-V types.
class FuncOpConversion final : public OpConversionPattern<func::FuncOp> {
public:
using OpConversionPattern<func::FuncOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
FuncOpConversion::matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto fnType = funcOp.getFunctionType();
if (fnType.getNumResults() > 1)
return failure();
TypeConverter::SignatureConversion signatureConverter(fnType.getNumInputs());
for (const auto &argType : enumerate(fnType.getInputs())) {
auto convertedType = getTypeConverter()->convertType(argType.value());
if (!convertedType)
return failure();
signatureConverter.addInputs(argType.index(), convertedType);
}
Type resultType;
if (fnType.getNumResults() == 1) {
resultType = getTypeConverter()->convertType(fnType.getResult(0));
if (!resultType)
return failure();
}
// Create the converted spirv.func op.
auto newFuncOp = rewriter.create<spirv::FuncOp>(
funcOp.getLoc(), funcOp.getName(),
rewriter.getFunctionType(signatureConverter.getConvertedTypes(),
resultType ? TypeRange(resultType)
: TypeRange()));
// Copy over all attributes other than the function name and type.
for (const auto &namedAttr : funcOp->getAttrs()) {
if (namedAttr.getName() != funcOp.getFunctionTypeAttrName() &&
namedAttr.getName() != SymbolTable::getSymbolAttrName())
newFuncOp->setAttr(namedAttr.getName(), namedAttr.getValue());
}
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
if (failed(rewriter.convertRegionTypes(
&newFuncOp.getBody(), *getTypeConverter(), &signatureConverter)))
return failure();
rewriter.eraseOp(funcOp);
return success();
}
void mlir::populateBuiltinFuncToSPIRVPatterns(SPIRVTypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns.add<FuncOpConversion>(typeConverter, patterns.getContext());
}
//===----------------------------------------------------------------------===//
// Builtin Variables
//===----------------------------------------------------------------------===//
static spirv::GlobalVariableOp getBuiltinVariable(Block &body,
spirv::BuiltIn builtin) {
// Look through all global variables in the given `body` block and check if
// there is a spirv.GlobalVariable that has the same `builtin` attribute.
for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) {
if (auto builtinAttr = varOp->getAttrOfType<StringAttr>(
spirv::SPIRVDialect::getAttributeName(
spirv::Decoration::BuiltIn))) {
auto varBuiltIn = spirv::symbolizeBuiltIn(builtinAttr.getValue());
if (varBuiltIn && *varBuiltIn == builtin) {
return varOp;
}
}
}
return nullptr;
}
/// Gets name of global variable for a builtin.
static std::string getBuiltinVarName(spirv::BuiltIn builtin, StringRef prefix,
StringRef suffix) {
return Twine(prefix).concat(stringifyBuiltIn(builtin)).concat(suffix).str();
}
/// Gets or inserts a global variable for a builtin within `body` block.
static spirv::GlobalVariableOp
getOrInsertBuiltinVariable(Block &body, Location loc, spirv::BuiltIn builtin,
Type integerType, OpBuilder &builder,
StringRef prefix, StringRef suffix) {
if (auto varOp = getBuiltinVariable(body, builtin))
return varOp;
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&body);
spirv::GlobalVariableOp newVarOp;
switch (builtin) {
case spirv::BuiltIn::NumWorkgroups:
case spirv::BuiltIn::WorkgroupSize:
case spirv::BuiltIn::WorkgroupId:
case spirv::BuiltIn::LocalInvocationId:
case spirv::BuiltIn::GlobalInvocationId: {
auto ptrType = spirv::PointerType::get(VectorType::get({3}, integerType),
spirv::StorageClass::Input);
std::string name = getBuiltinVarName(builtin, prefix, suffix);
newVarOp =
builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
break;
}
case spirv::BuiltIn::SubgroupId:
case spirv::BuiltIn::NumSubgroups:
case spirv::BuiltIn::SubgroupSize: {
auto ptrType =
spirv::PointerType::get(integerType, spirv::StorageClass::Input);
std::string name = getBuiltinVarName(builtin, prefix, suffix);
newVarOp =
builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
break;
}
default:
emitError(loc, "unimplemented builtin variable generation for ")
<< stringifyBuiltIn(builtin);
}
return newVarOp;
}
Value mlir::spirv::getBuiltinVariableValue(Operation *op,
spirv::BuiltIn builtin,
Type integerType, OpBuilder &builder,
StringRef prefix, StringRef suffix) {
Operation *parent = SymbolTable::getNearestSymbolTable(op->getParentOp());
if (!parent) {
op->emitError("expected operation to be within a module-like op");
return nullptr;
}
spirv::GlobalVariableOp varOp =
getOrInsertBuiltinVariable(*parent->getRegion(0).begin(), op->getLoc(),
builtin, integerType, builder, prefix, suffix);
Value ptr = builder.create<spirv::AddressOfOp>(op->getLoc(), varOp);
return builder.create<spirv::LoadOp>(op->getLoc(), ptr);
}
//===----------------------------------------------------------------------===//
// Push constant storage
//===----------------------------------------------------------------------===//
/// Returns the pointer type for the push constant storage containing
/// `elementCount` 32-bit integer values.
static spirv::PointerType getPushConstantStorageType(unsigned elementCount,
Builder &builder,
Type indexType) {
auto arrayType = spirv::ArrayType::get(indexType, elementCount,
/*stride=*/4);
auto structType = spirv::StructType::get({arrayType}, /*offsetInfo=*/0);
return spirv::PointerType::get(structType, spirv::StorageClass::PushConstant);
}
/// Returns the push constant varible containing `elementCount` 32-bit integer
/// values in `body`. Returns null op if such an op does not exit.
static spirv::GlobalVariableOp getPushConstantVariable(Block &body,
unsigned elementCount) {
for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) {
auto ptrType = dyn_cast<spirv::PointerType>(varOp.getType());
if (!ptrType)
continue;
// Note that Vulkan requires "There must be no more than one push constant
// block statically used per shader entry point." So we should always reuse
// the existing one.
if (ptrType.getStorageClass() == spirv::StorageClass::PushConstant) {
auto numElements = cast<spirv::ArrayType>(
cast<spirv::StructType>(ptrType.getPointeeType())
.getElementType(0))
.getNumElements();
if (numElements == elementCount)
return varOp;
}
}
return nullptr;
}
/// Gets or inserts a global variable for push constant storage containing
/// `elementCount` 32-bit integer values in `block`.
static spirv::GlobalVariableOp
getOrInsertPushConstantVariable(Location loc, Block &block,
unsigned elementCount, OpBuilder &b,
Type indexType) {
if (auto varOp = getPushConstantVariable(block, elementCount))
return varOp;
auto builder = OpBuilder::atBlockBegin(&block, b.getListener());
auto type = getPushConstantStorageType(elementCount, builder, indexType);
const char *name = "__push_constant_var__";
return builder.create<spirv::GlobalVariableOp>(loc, type, name,
/*initializer=*/nullptr);
}
Value spirv::getPushConstantValue(Operation *op, unsigned elementCount,
unsigned offset, Type integerType,
OpBuilder &builder) {
Location loc = op->getLoc();
Operation *parent = SymbolTable::getNearestSymbolTable(op->getParentOp());
if (!parent) {
op->emitError("expected operation to be within a module-like op");
return nullptr;
}
spirv::GlobalVariableOp varOp = getOrInsertPushConstantVariable(
loc, parent->getRegion(0).front(), elementCount, builder, integerType);
Value zeroOp = spirv::ConstantOp::getZero(integerType, loc, builder);
Value offsetOp = builder.create<spirv::ConstantOp>(
loc, integerType, builder.getI32IntegerAttr(offset));
auto addrOp = builder.create<spirv::AddressOfOp>(loc, varOp);
auto acOp = builder.create<spirv::AccessChainOp>(
loc, addrOp, llvm::ArrayRef({zeroOp, offsetOp}));
return builder.create<spirv::LoadOp>(loc, acOp);
}
//===----------------------------------------------------------------------===//
// Index calculation
//===----------------------------------------------------------------------===//
Value mlir::spirv::linearizeIndex(ValueRange indices, ArrayRef<int64_t> strides,
int64_t offset, Type integerType,
Location loc, OpBuilder &builder) {
assert(indices.size() == strides.size() &&
"must provide indices for all dimensions");
// TODO: Consider moving to use affine.apply and patterns converting
// affine.apply to standard ops. This needs converting to SPIR-V passes to be
// broken down into progressive small steps so we can have intermediate steps
// using other dialects. At the moment SPIR-V is the final sink.
Value linearizedIndex = builder.create<spirv::ConstantOp>(
loc, integerType, IntegerAttr::get(integerType, offset));
for (const auto &index : llvm::enumerate(indices)) {
Value strideVal = builder.create<spirv::ConstantOp>(
loc, integerType,
IntegerAttr::get(integerType, strides[index.index()]));
Value update = builder.create<spirv::IMulOp>(loc, strideVal, index.value());
linearizedIndex =
builder.create<spirv::IAddOp>(loc, linearizedIndex, update);
}
return linearizedIndex;
}
Value mlir::spirv::getVulkanElementPtr(SPIRVTypeConverter &typeConverter,
MemRefType baseType, Value basePtr,
ValueRange indices, Location loc,
OpBuilder &builder) {
// Get base and offset of the MemRefType and verify they are static.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(baseType, strides, offset)) ||
llvm::is_contained(strides, ShapedType::kDynamic) ||
ShapedType::isDynamic(offset)) {
return nullptr;
}
auto indexType = typeConverter.getIndexType();
SmallVector<Value, 2> linearizedIndices;
auto zero = spirv::ConstantOp::getZero(indexType, loc, builder);
// Add a '0' at the start to index into the struct.
linearizedIndices.push_back(zero);
if (baseType.getRank() == 0) {
linearizedIndices.push_back(zero);
} else {
linearizedIndices.push_back(
linearizeIndex(indices, strides, offset, indexType, loc, builder));
}
return builder.create<spirv::AccessChainOp>(loc, basePtr, linearizedIndices);
}
Value mlir::spirv::getOpenCLElementPtr(SPIRVTypeConverter &typeConverter,
MemRefType baseType, Value basePtr,
ValueRange indices, Location loc,
OpBuilder &builder) {
// Get base and offset of the MemRefType and verify they are static.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(baseType, strides, offset)) ||
llvm::is_contained(strides, ShapedType::kDynamic) ||
ShapedType::isDynamic(offset)) {
return nullptr;
}
auto indexType = typeConverter.getIndexType();
SmallVector<Value, 2> linearizedIndices;
Value linearIndex;
if (baseType.getRank() == 0) {
linearIndex = spirv::ConstantOp::getZero(indexType, loc, builder);
} else {
linearIndex =
linearizeIndex(indices, strides, offset, indexType, loc, builder);
}
Type pointeeType =
cast<spirv::PointerType>(basePtr.getType()).getPointeeType();
if (isa<spirv::ArrayType>(pointeeType)) {
linearizedIndices.push_back(linearIndex);
return builder.create<spirv::AccessChainOp>(loc, basePtr,
linearizedIndices);
}
return builder.create<spirv::PtrAccessChainOp>(loc, basePtr, linearIndex,
linearizedIndices);
}
Value mlir::spirv::getElementPtr(SPIRVTypeConverter &typeConverter,
MemRefType baseType, Value basePtr,
ValueRange indices, Location loc,
OpBuilder &builder) {
if (typeConverter.allows(spirv::Capability::Kernel)) {
return getOpenCLElementPtr(typeConverter, baseType, basePtr, indices, loc,
builder);
}
return getVulkanElementPtr(typeConverter, baseType, basePtr, indices, loc,
builder);
}
//===----------------------------------------------------------------------===//
// SPIR-V ConversionTarget
//===----------------------------------------------------------------------===//
std::unique_ptr<SPIRVConversionTarget>
SPIRVConversionTarget::get(spirv::TargetEnvAttr targetAttr) {
std::unique_ptr<SPIRVConversionTarget> target(
// std::make_unique does not work here because the constructor is private.
new SPIRVConversionTarget(targetAttr));
SPIRVConversionTarget *targetPtr = target.get();
target->addDynamicallyLegalDialect<spirv::SPIRVDialect>(
// We need to capture the raw pointer here because it is stable:
// target will be destroyed once this function is returned.
[targetPtr](Operation *op) { return targetPtr->isLegalOp(op); });
return target;
}
SPIRVConversionTarget::SPIRVConversionTarget(spirv::TargetEnvAttr targetAttr)
: ConversionTarget(*targetAttr.getContext()), targetEnv(targetAttr) {}
bool SPIRVConversionTarget::isLegalOp(Operation *op) {
// Make sure this op is available at the given version. Ops not implementing
// QueryMinVersionInterface/QueryMaxVersionInterface are available to all
// SPIR-V versions.
if (auto minVersionIfx = dyn_cast<spirv::QueryMinVersionInterface>(op)) {
std::optional<spirv::Version> minVersion = minVersionIfx.getMinVersion();
if (minVersion && *minVersion > this->targetEnv.getVersion()) {
LLVM_DEBUG(llvm::dbgs()
<< op->getName() << " illegal: requiring min version "
<< spirv::stringifyVersion(*minVersion) << "\n");
return false;
}
}
if (auto maxVersionIfx = dyn_cast<spirv::QueryMaxVersionInterface>(op)) {
std::optional<spirv::Version> maxVersion = maxVersionIfx.getMaxVersion();
if (maxVersion && *maxVersion < this->targetEnv.getVersion()) {
LLVM_DEBUG(llvm::dbgs()
<< op->getName() << " illegal: requiring max version "
<< spirv::stringifyVersion(*maxVersion) << "\n");
return false;
}
}
// Make sure this op's required extensions are allowed to use. Ops not
// implementing QueryExtensionInterface do not require extensions to be
// available.
if (auto extensions = dyn_cast<spirv::QueryExtensionInterface>(op))
if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
extensions.getExtensions())))
return false;
// Make sure this op's required extensions are allowed to use. Ops not
// implementing QueryCapabilityInterface do not require capabilities to be
// available.
if (auto capabilities = dyn_cast<spirv::QueryCapabilityInterface>(op))
if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
capabilities.getCapabilities())))
return false;
SmallVector<Type, 4> valueTypes;
valueTypes.append(op->operand_type_begin(), op->operand_type_end());
valueTypes.append(op->result_type_begin(), op->result_type_end());
// Ensure that all types have been converted to SPIRV types.
if (llvm::any_of(valueTypes,
[](Type t) { return !isa<spirv::SPIRVType>(t); }))
return false;
// Special treatment for global variables, whose type requirements are
// conveyed by type attributes.
if (auto globalVar = dyn_cast<spirv::GlobalVariableOp>(op))
valueTypes.push_back(globalVar.getType());
// Make sure the op's operands/results use types that are allowed by the
// target environment.
SmallVector<ArrayRef<spirv::Extension>, 4> typeExtensions;
SmallVector<ArrayRef<spirv::Capability>, 8> typeCapabilities;
for (Type valueType : valueTypes) {
typeExtensions.clear();
cast<spirv::SPIRVType>(valueType).getExtensions(typeExtensions);
if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
typeExtensions)))
return false;
typeCapabilities.clear();
cast<spirv::SPIRVType>(valueType).getCapabilities(typeCapabilities);
if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
typeCapabilities)))
return false;
}
return true;
}
|