1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
|
//===- SparseTensorDialect.cpp - Sparse tensor dialect implementation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "Detail/DimLvlMapParser.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorStorageLayout.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrEnums.cpp.inc"
#define GET_TYPEDEF_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// Additional convenience methods.
//===----------------------------------------------------------------------===//
static constexpr bool acceptBitWidth(unsigned bitWidth) {
switch (bitWidth) {
case 0:
case 8:
case 16:
case 32:
case 64:
return true;
default:
return false;
}
}
//===----------------------------------------------------------------------===//
// StorageLayout
//===----------------------------------------------------------------------===//
static constexpr Level kInvalidLevel = -1u;
static constexpr Level kInvalidFieldIndex = -1u;
static constexpr FieldIndex kDataFieldStartingIdx = 0;
void StorageLayout::foreachField(
llvm::function_ref<bool(FieldIndex, SparseTensorFieldKind, Level,
DimLevelType)>
callback) const {
#define RETURN_ON_FALSE(fidx, kind, lvl, dlt) \
if (!(callback(fidx, kind, lvl, dlt))) \
return;
const auto lvlTypes = enc.getLvlTypes();
const Level lvlRank = enc.getLvlRank();
const Level cooStart = getCOOStart(enc);
const Level end = cooStart == lvlRank ? cooStart : cooStart + 1;
FieldIndex fieldIdx = kDataFieldStartingIdx;
// Per-level storage.
for (Level l = 0; l < end; l++) {
const auto dlt = lvlTypes[l];
if (isDLTWithPos(dlt)) {
RETURN_ON_FALSE(fieldIdx++, SparseTensorFieldKind::PosMemRef, l, dlt);
}
if (isDLTWithCrd(dlt)) {
RETURN_ON_FALSE(fieldIdx++, SparseTensorFieldKind::CrdMemRef, l, dlt);
}
}
// The values array.
RETURN_ON_FALSE(fieldIdx++, SparseTensorFieldKind::ValMemRef, kInvalidLevel,
DimLevelType::Undef);
// Put metadata at the end.
RETURN_ON_FALSE(fieldIdx++, SparseTensorFieldKind::StorageSpec, kInvalidLevel,
DimLevelType::Undef);
#undef RETURN_ON_FALSE
}
void sparse_tensor::foreachFieldAndTypeInSparseTensor(
SparseTensorType stt,
llvm::function_ref<bool(Type, FieldIndex, SparseTensorFieldKind, Level,
DimLevelType)>
callback) {
assert(stt.hasEncoding());
// Construct the basic types.
const Type crdType = stt.getCrdType();
const Type posType = stt.getPosType();
const Type eltType = stt.getElementType();
const Type specType = StorageSpecifierType::get(stt.getEncoding());
// memref<? x pos> positions
const Type posMemType = MemRefType::get({ShapedType::kDynamic}, posType);
// memref<? x crd> coordinates
const Type crdMemType = MemRefType::get({ShapedType::kDynamic}, crdType);
// memref<? x eltType> values
const Type valMemType = MemRefType::get({ShapedType::kDynamic}, eltType);
StorageLayout(stt).foreachField(
[specType, posMemType, crdMemType, valMemType,
callback](FieldIndex fieldIdx, SparseTensorFieldKind fieldKind,
Level lvl, DimLevelType dlt) -> bool {
switch (fieldKind) {
case SparseTensorFieldKind::StorageSpec:
return callback(specType, fieldIdx, fieldKind, lvl, dlt);
case SparseTensorFieldKind::PosMemRef:
return callback(posMemType, fieldIdx, fieldKind, lvl, dlt);
case SparseTensorFieldKind::CrdMemRef:
return callback(crdMemType, fieldIdx, fieldKind, lvl, dlt);
case SparseTensorFieldKind::ValMemRef:
return callback(valMemType, fieldIdx, fieldKind, lvl, dlt);
};
llvm_unreachable("unrecognized field kind");
});
}
unsigned StorageLayout::getNumFields() const {
unsigned numFields = 0;
foreachField([&numFields](FieldIndex, SparseTensorFieldKind, Level,
DimLevelType) -> bool {
numFields++;
return true;
});
return numFields;
}
unsigned StorageLayout::getNumDataFields() const {
unsigned numFields = 0; // one value memref
foreachField([&numFields](FieldIndex fidx, SparseTensorFieldKind, Level,
DimLevelType) -> bool {
if (fidx >= kDataFieldStartingIdx)
numFields++;
return true;
});
numFields -= 1; // the last field is StorageSpecifier
assert(numFields == getNumFields() - kDataFieldStartingIdx - 1);
return numFields;
}
std::pair<FieldIndex, unsigned>
StorageLayout::getFieldIndexAndStride(SparseTensorFieldKind kind,
std::optional<Level> lvl) const {
FieldIndex fieldIdx = kInvalidFieldIndex;
unsigned stride = 1;
if (kind == SparseTensorFieldKind::CrdMemRef) {
assert(lvl.has_value());
const Level cooStart = getCOOStart(enc);
const Level lvlRank = enc.getLvlRank();
if (lvl.value() >= cooStart && lvl.value() < lvlRank) {
lvl = cooStart;
stride = lvlRank - cooStart;
}
}
foreachField([lvl, kind, &fieldIdx](FieldIndex fIdx,
SparseTensorFieldKind fKind, Level fLvl,
DimLevelType dlt) -> bool {
if ((lvl && fLvl == lvl.value() && kind == fKind) ||
(kind == fKind && fKind == SparseTensorFieldKind::ValMemRef)) {
fieldIdx = fIdx;
// Returns false to break the iteration.
return false;
}
return true;
});
assert(fieldIdx != kInvalidFieldIndex);
return std::pair<FieldIndex, unsigned>(fieldIdx, stride);
}
//===----------------------------------------------------------------------===//
// TensorDialect Attribute Methods.
//===----------------------------------------------------------------------===//
std::optional<uint64_t> SparseTensorDimSliceAttr::getStatic(int64_t v) {
return isDynamic(v) ? std::nullopt
: std::make_optional(static_cast<uint64_t>(v));
}
std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticOffset() const {
return getStatic(getOffset());
}
std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticStride() const {
return getStatic(getStride());
}
std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticSize() const {
return getStatic(getSize());
}
bool SparseTensorDimSliceAttr::isCompletelyDynamic() const {
return isDynamic(getOffset()) && isDynamic(getStride()) &&
isDynamic(getSize());
}
std::string SparseTensorDimSliceAttr::getStaticString(int64_t v) {
return isDynamic(v) ? "?" : std::to_string(v);
}
void SparseTensorDimSliceAttr::print(llvm::raw_ostream &os) const {
os << '(';
os << getStaticString(getOffset());
os << ", ";
os << getStaticString(getSize());
os << ", ";
os << getStaticString(getStride());
os << ')';
}
void SparseTensorDimSliceAttr::print(AsmPrinter &printer) const {
print(printer.getStream());
}
static ParseResult parseOptionalStaticSlice(int64_t &result,
AsmParser &parser) {
auto parseResult = parser.parseOptionalInteger(result);
if (parseResult.has_value()) {
if (parseResult.value().succeeded() && result < 0) {
parser.emitError(
parser.getCurrentLocation(),
"expect positive value or ? for slice offset/size/stride");
return failure();
}
return parseResult.value();
}
// Else, and '?' which represented dynamic slice
result = SparseTensorDimSliceAttr::kDynamic;
return parser.parseQuestion();
}
Attribute SparseTensorDimSliceAttr::parse(AsmParser &parser, Type type) {
int64_t offset = kDynamic, size = kDynamic, stride = kDynamic;
if (failed(parser.parseLParen()) ||
failed(parseOptionalStaticSlice(offset, parser)) ||
failed(parser.parseComma()) ||
failed(parseOptionalStaticSlice(size, parser)) ||
failed(parser.parseComma()) ||
failed(parseOptionalStaticSlice(stride, parser)) ||
failed(parser.parseRParen()))
return {};
return parser.getChecked<SparseTensorDimSliceAttr>(parser.getContext(),
offset, size, stride);
}
LogicalResult
SparseTensorDimSliceAttr::verify(function_ref<InFlightDiagnostic()> emitError,
int64_t offset, int64_t size, int64_t stride) {
if (!isDynamic(offset) && offset < 0)
return emitError() << "expect non-negative value or ? for slice offset";
if (!isDynamic(size) && size <= 0)
return emitError() << "expect positive value or ? for slice size";
if (!isDynamic(stride) && stride <= 0)
return emitError() << "expect positive value or ? for slice stride";
return success();
}
Type mlir::sparse_tensor::detail::getIntegerOrIndexType(MLIRContext *ctx,
unsigned bitwidth) {
if (bitwidth)
return IntegerType::get(ctx, bitwidth);
return IndexType::get(ctx);
}
Type SparseTensorEncodingAttr::getPosType() const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
return detail::getIntegerOrIndexType(getContext(), getPosWidth());
}
Type SparseTensorEncodingAttr::getCrdType() const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
return detail::getIntegerOrIndexType(getContext(), getCrdWidth());
}
SparseTensorEncodingAttr
SparseTensorEncodingAttr::withDimToLvl(AffineMap dimToLvl) const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
return SparseTensorEncodingAttr::get(getContext(), getLvlTypes(), dimToLvl,
getPosWidth(), getCrdWidth());
}
SparseTensorEncodingAttr
SparseTensorEncodingAttr::withDimToLvl(SparseTensorEncodingAttr enc) const {
return withDimToLvl(enc ? enc.getDimToLvl() : AffineMap());
}
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutDimToLvl() const {
return withDimToLvl(AffineMap());
}
SparseTensorEncodingAttr
SparseTensorEncodingAttr::withBitWidths(unsigned posWidth,
unsigned crdWidth) const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
return SparseTensorEncodingAttr::get(getContext(), getLvlTypes(),
getDimToLvl(), posWidth, crdWidth);
}
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutBitWidths() const {
return withBitWidths(0, 0);
}
SparseTensorEncodingAttr SparseTensorEncodingAttr::withDimSlices(
ArrayRef<SparseTensorDimSliceAttr> dimSlices) const {
return SparseTensorEncodingAttr::get(getContext(), getLvlTypes(),
getDimToLvl(), getPosWidth(),
getCrdWidth(), dimSlices);
}
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutDimSlices() const {
return withDimSlices(ArrayRef<SparseTensorDimSliceAttr>{});
}
bool SparseTensorEncodingAttr::isAllDense() const {
return !getImpl() || llvm::all_of(getLvlTypes(), isDenseDLT);
}
bool SparseTensorEncodingAttr::isAllOrdered() const {
return !getImpl() || llvm::all_of(getLvlTypes(), isOrderedDLT);
}
bool SparseTensorEncodingAttr::isIdentity() const {
return !getImpl() || !getDimToLvl() || getDimToLvl().isIdentity();
}
bool SparseTensorEncodingAttr::isPermutation() const {
return !getImpl() || !getDimToLvl() || getDimToLvl().isPermutation();
}
Dimension SparseTensorEncodingAttr::getDimRank() const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
const auto dimToLvl = getDimToLvl();
return dimToLvl ? dimToLvl.getNumDims() : getLvlRank();
}
Level SparseTensorEncodingAttr::getLvlRank() const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
return getLvlTypes().size();
}
DimLevelType SparseTensorEncodingAttr::getLvlType(Level l) const {
if (!getImpl())
return DimLevelType::Dense;
assert(l < getLvlRank() && "Level is out of bounds");
return getLvlTypes()[l];
}
bool SparseTensorEncodingAttr::isSlice() const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
return !getDimSlices().empty();
}
SparseTensorDimSliceAttr
SparseTensorEncodingAttr::getDimSlice(Dimension dim) const {
assert(isSlice() && "Is not a slice");
const auto dimSlices = getDimSlices();
assert(dim < dimSlices.size() && "Dimension is out of bounds");
return dimSlices[dim];
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticDimSliceOffset(Dimension dim) const {
return getDimSlice(dim).getStaticOffset();
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticDimSliceSize(Dimension dim) const {
return getDimSlice(dim).getStaticSize();
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticDimSliceStride(Dimension dim) const {
return getDimSlice(dim).getStaticStride();
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticLvlSliceOffset(Level lvl) const {
// FIXME: `toOrigDim` is deprecated.
return getStaticDimSliceOffset(toOrigDim(*this, lvl));
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticLvlSliceSize(Level lvl) const {
// FIXME: `toOrigDim` is deprecated.
return getStaticDimSliceSize(toOrigDim(*this, lvl));
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticLvlSliceStride(Level lvl) const {
// FIXME: `toOrigDim` is deprecated.
return getStaticDimSliceStride(toOrigDim(*this, lvl));
}
const static DimLevelType validDLTs[] = {DimLevelType::Dense,
DimLevelType::TwoOutOfFour,
DimLevelType::Compressed,
DimLevelType::CompressedNu,
DimLevelType::CompressedNo,
DimLevelType::CompressedNuNo,
DimLevelType::Singleton,
DimLevelType::SingletonNu,
DimLevelType::SingletonNo,
DimLevelType::SingletonNuNo,
DimLevelType::CompressedWithHi,
DimLevelType::CompressedWithHiNu,
DimLevelType::CompressedWithHiNo,
DimLevelType::CompressedWithHiNuNo};
static std::optional<DimLevelType> parseDLT(StringRef str) {
for (DimLevelType dlt : validDLTs)
if (str == toMLIRString(dlt))
return dlt;
return std::nullopt;
}
Attribute SparseTensorEncodingAttr::parse(AsmParser &parser, Type type) {
#define RETURN_ON_FAIL(stmt) \
if (failed(stmt)) { \
return {}; \
}
#define ERROR_IF(COND, MSG) \
if (COND) { \
parser.emitError(parser.getNameLoc(), MSG); \
return {}; \
}
RETURN_ON_FAIL(parser.parseLess())
RETURN_ON_FAIL(parser.parseLBrace())
// Process the data from the parsed dictionary value into struct-like data.
SmallVector<DimLevelType> lvlTypes;
SmallVector<SparseTensorDimSliceAttr> dimSlices;
AffineMap dimToLvl = {};
unsigned posWidth = 0;
unsigned crdWidth = 0;
StringRef attrName;
// Exactly 6 keys.
SmallVector<StringRef, 6> keys = {"lvlTypes", "dimToLvl", "posWidth",
"crdWidth", "dimSlices", "NEW_SYNTAX"};
while (succeeded(parser.parseOptionalKeyword(&attrName))) {
if (!llvm::is_contained(keys, attrName)) {
parser.emitError(parser.getNameLoc(), "unexpected key: ") << attrName;
return {};
}
// Consume the `=` after keys
RETURN_ON_FAIL(parser.parseEqual())
// FIXME: using `operator==` below duplicates the string comparison
// cost of the `is_contained` check above. Should instead use some
// "find" function that returns the index into `keys` so that we can
// dispatch on that instead.
if (attrName == "lvlTypes") {
Attribute attr;
RETURN_ON_FAIL(parser.parseAttribute(attr));
auto arrayAttr = llvm::dyn_cast<ArrayAttr>(attr);
ERROR_IF(!arrayAttr, "expected an array for lvlTypes")
for (auto i : arrayAttr) {
auto strAttr = llvm::dyn_cast<StringAttr>(i);
ERROR_IF(!strAttr, "expected a string value in lvlTypes")
auto strVal = strAttr.getValue();
if (auto optDLT = parseDLT(strVal)) {
lvlTypes.push_back(optDLT.value());
} else {
parser.emitError(parser.getNameLoc(), "unexpected level-type: ")
<< strVal;
return {};
}
}
} else if (attrName == "dimToLvl") {
Attribute attr;
RETURN_ON_FAIL(parser.parseAttribute(attr))
auto affineAttr = llvm::dyn_cast<AffineMapAttr>(attr);
ERROR_IF(!affineAttr, "expected an affine map for dimToLvl")
dimToLvl = affineAttr.getValue();
} else if (attrName == "posWidth") {
Attribute attr;
RETURN_ON_FAIL(parser.parseAttribute(attr))
auto intAttr = llvm::dyn_cast<IntegerAttr>(attr);
ERROR_IF(!intAttr, "expected an integral position bitwidth")
posWidth = intAttr.getInt();
} else if (attrName == "crdWidth") {
Attribute attr;
RETURN_ON_FAIL(parser.parseAttribute(attr))
auto intAttr = llvm::dyn_cast<IntegerAttr>(attr);
ERROR_IF(!intAttr, "expected an integral index bitwidth")
crdWidth = intAttr.getInt();
} else if (attrName == "dimSlices") {
RETURN_ON_FAIL(parser.parseLSquare())
// Dispatches to DimSliceAttr to skip mnemonic
bool finished = false;
while (auto attr = SparseTensorDimSliceAttr::parse(parser, nullptr)) {
auto sliceAttr = llvm::cast<SparseTensorDimSliceAttr>(attr);
dimSlices.push_back(sliceAttr);
if (parser.parseOptionalComma().failed()) {
finished = true;
break;
}
}
// Wrong when parsing slices
if (!finished)
return {};
RETURN_ON_FAIL(parser.parseRSquare())
} else if (attrName == "NEW_SYNTAX") {
// Note that we are in the process of migrating to a new STEA surface
// syntax. While this is ongoing we use the temporary "NEW_SYNTAX = ...."
// to switch to the new parser. This allows us to gradually migrate
// examples over to the new surface syntax before making the complete
// switch once work is completed.
// TODO: replace everything here with new STEA surface syntax parser
ir_detail::DimLvlMapParser cParser(parser);
auto res = cParser.parseDimLvlMap();
RETURN_ON_FAIL(res);
// Proof of concept result.
// TODO: use DimLvlMap directly as storage representation
for (unsigned i = 0, e = res->getLvlRank(); i < e; i++)
lvlTypes.push_back(res->getDimLevelType(i));
}
// Only the last item can omit the comma
if (parser.parseOptionalComma().failed())
break;
}
RETURN_ON_FAIL(parser.parseRBrace())
RETURN_ON_FAIL(parser.parseGreater())
#undef ERROR_IF
#undef RETURN_ON_FAIL
// Construct struct-like storage for attribute.
return parser.getChecked<SparseTensorEncodingAttr>(
parser.getContext(), lvlTypes, dimToLvl, posWidth, crdWidth, dimSlices);
}
void SparseTensorEncodingAttr::print(AsmPrinter &printer) const {
// Print the struct-like storage in dictionary fashion.
printer << "<{ lvlTypes = [ ";
llvm::interleaveComma(getLvlTypes(), printer, [&](DimLevelType dlt) {
printer << "\"" << toMLIRString(dlt) << "\"";
});
printer << " ]";
// Print remaining members only for non-default values.
if (!isIdentity())
printer << ", dimToLvl = affine_map<" << getDimToLvl() << ">";
if (getPosWidth())
printer << ", posWidth = " << getPosWidth();
if (getCrdWidth())
printer << ", crdWidth = " << getCrdWidth();
if (!getDimSlices().empty()) {
printer << ", dimSlices = [ ";
llvm::interleaveComma(getDimSlices(), printer,
[&](SparseTensorDimSliceAttr attr) {
// Calls SparseTensorDimSliceAttr::print directly to
// skip mnemonic.
attr.print(printer);
});
printer << " ]";
}
printer << " }>";
}
LogicalResult SparseTensorEncodingAttr::verify(
function_ref<InFlightDiagnostic()> emitError,
ArrayRef<DimLevelType> lvlTypes, AffineMap dimToLvl, unsigned posWidth,
unsigned crdWidth, ArrayRef<SparseTensorDimSliceAttr> dimSlices) {
if (!acceptBitWidth(posWidth))
return emitError() << "unexpected position bitwidth: " << posWidth;
if (!acceptBitWidth(crdWidth))
return emitError() << "unexpected coordinate bitwidth: " << crdWidth;
// Before we can check that the level-rank is consistent/coherent
// across all fields, we need to define it. The source-of-truth for
// the `getLvlRank` method is the length of the level-types array,
// since it must always be provided and have full rank; therefore we
// use that same source-of-truth here.
const Level lvlRank = lvlTypes.size();
if (lvlRank == 0)
return emitError() << "expected a non-empty array for lvlTypes";
// We save `dimRank` here because we'll also need it to verify `dimSlices`.
const Dimension dimRank = dimToLvl ? dimToLvl.getNumDims() : lvlRank;
if (dimToLvl) {
if (dimToLvl.getNumResults() != lvlRank)
return emitError()
<< "level-rank mismatch between dimToLvl and lvlTypes: "
<< dimToLvl.getNumResults() << " != " << lvlRank;
// TODO: The following is attempting to match the old error-conditions
// from prior to merging dimOrdering and higherOrdering into dimToLvl.
// That is, we currently require `dimToLvl` to be either a permutation
// (as when higherOrdering is the identity) or expansive (as per the
// constraints on higherOrdering). However, those constraints do
// not match the intended semantics of `dimToLvl`. As we improve the
// compiler to actually handle non-permutations, we need to update these
// checks to match what is actually supported. In particular, this is
// where we'll have to check that when `lvlToDim` is provided then it
// is indeed an inverse of `dimToLvl`, and when it isn't provided then
// it can be automatically inferred.
if (dimRank == lvlRank && !dimToLvl.isPermutation())
return emitError() << "expected a permutation affine map for dimToLvl";
if (dimRank > lvlRank)
return emitError() << "unexpected dimToLvl mapping from " << dimRank
<< " to " << lvlRank;
}
if (!dimSlices.empty()) {
if (dimSlices.size() != dimRank)
return emitError()
<< "dimension-rank mismatch between dimSlices and dimToLvl: "
<< dimSlices.size() << " != " << dimRank;
// Compiler support for `dimSlices` currently requires that the two
// ranks agree. (However, it does allow `dimToLvl` to be a permutation.)
if (dimRank != lvlRank)
return emitError()
<< "dimSlices expected dimension-rank to match level-rank: "
<< dimRank << " != " << lvlRank;
}
return success();
}
#define RETURN_FAILURE_IF_FAILED(X) \
if (failed(X)) { \
return failure(); \
}
LogicalResult SparseTensorEncodingAttr::verifyEncoding(
ArrayRef<DynSize> dimShape, Type elementType,
function_ref<InFlightDiagnostic()> emitError) const {
// Check structural integrity. In particular, this ensures that the
// level-rank is coherent across all the fields.
RETURN_FAILURE_IF_FAILED(verify(emitError, getLvlTypes(), getDimToLvl(),
getPosWidth(), getCrdWidth(), getDimSlices()))
// Check integrity with tensor type specifics. In particular, we
// need only check that the dimension-rank of the tensor agrees with
// the dimension-rank of the encoding.
const Dimension dimRank = dimShape.size();
if (dimRank == 0)
return emitError() << "expected non-scalar sparse tensor";
if (getDimRank() != dimRank)
return emitError()
<< "dimension-rank mismatch between encoding and tensor shape: "
<< getDimRank() << " != " << dimRank;
return success();
}
//===----------------------------------------------------------------------===//
// Convenience Methods.
//===----------------------------------------------------------------------===//
SparseTensorEncodingAttr
mlir::sparse_tensor::getSparseTensorEncoding(Type type) {
if (auto ttp = llvm::dyn_cast<RankedTensorType>(type))
return llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(ttp.getEncoding());
if (auto mdtp = llvm::dyn_cast<StorageSpecifierType>(type))
return mdtp.getEncoding();
return nullptr;
}
bool mlir::sparse_tensor::isCOOType(SparseTensorEncodingAttr enc,
Level startLvl, bool isUnique) {
if (!enc ||
!(enc.isCompressedLvl(startLvl) || enc.isCompressedWithHiLvl(startLvl)))
return false;
const Level lvlRank = enc.getLvlRank();
for (Level l = startLvl + 1; l < lvlRank; ++l)
if (!enc.isSingletonLvl(l))
return false;
// If isUnique is true, then make sure that the last level is unique,
// that is, lvlRank == 1 (unique the only compressed) and lvlRank > 1
// (unique on the last singleton).
return !isUnique || enc.isUniqueLvl(lvlRank - 1);
}
bool mlir::sparse_tensor::isUniqueCOOType(Type tp) {
return isCOOType(getSparseTensorEncoding(tp), 0, /*isUnique=*/true);
}
Level mlir::sparse_tensor::getCOOStart(SparseTensorEncodingAttr enc) {
// We only consider COO region with at least two levels for the purpose
// of AOS storage optimization.
const Level lvlRank = enc.getLvlRank();
if (lvlRank > 1)
for (Level l = 0; l < lvlRank - 1; l++)
if (isCOOType(enc, l, /*isUnique=*/false))
return l;
return lvlRank;
}
// Helpers to setup a COO type.
RankedTensorType sparse_tensor::getCOOFromTypeWithOrdering(RankedTensorType rtt,
AffineMap lvlPerm,
bool ordered) {
const SparseTensorType src(rtt);
// TODO: This assertion is to match the behavior from before we merged
// dimOrdering and higherOrdering into dimToLvl. However, there's no
// in-principle reason to require this. (wrengr has a commit in the
// wings to fix this.)
assert(src.isPermutation());
const Level lvlRank = src.getLvlRank();
SmallVector<DimLevelType> lvlTypes;
lvlTypes.reserve(lvlRank);
// An unordered and non-unique compressed level at beginning.
// If this is also the last level, then it is unique.
lvlTypes.push_back(
*buildLevelType(LevelFormat::Compressed, ordered, lvlRank == 1));
if (lvlRank > 1) {
// TODO: it is actually ordered at the level for ordered input.
// Followed by unordered non-unique n-2 singleton levels.
std::fill_n(std::back_inserter(lvlTypes), lvlRank - 2,
*buildLevelType(LevelFormat::Singleton, ordered, false));
// Ends by a unique singleton level unless the lvlRank is 1.
lvlTypes.push_back(*buildLevelType(LevelFormat::Singleton, ordered, true));
}
// TODO: Maybe pick the bitwidth based on input/output tensors (probably the
// largest one among them) in the original operation instead of using the
// default value.
unsigned posWidth = src.getPosWidth();
unsigned crdWidth = src.getCrdWidth();
auto enc = SparseTensorEncodingAttr::get(src.getContext(), lvlTypes, lvlPerm,
posWidth, crdWidth);
return RankedTensorType::get(src.getDimShape(), src.getElementType(), enc);
}
RankedTensorType sparse_tensor::getCOOFromType(RankedTensorType src,
bool ordered) {
return getCOOFromTypeWithOrdering(
src, AffineMap::getMultiDimIdentityMap(src.getRank(), src.getContext()),
ordered);
}
// TODO: Remove this definition once all use-sites have been fixed to
// properly handle non-permutations.
Dimension mlir::sparse_tensor::toOrigDim(SparseTensorEncodingAttr enc,
Level l) {
if (enc) {
if (const auto dimToLvl = enc.getDimToLvl()) {
assert(enc.isPermutation());
return dimToLvl.getDimPosition(l);
}
}
return l;
}
// TODO: Remove this definition once all use-sites have been fixed to
// properly handle non-permutations.
Level mlir::sparse_tensor::toStoredDim(SparseTensorEncodingAttr enc,
Dimension d) {
if (enc) {
if (const auto dimToLvl = enc.getDimToLvl()) {
assert(enc.isPermutation());
auto maybePos =
dimToLvl.getResultPosition(getAffineDimExpr(d, enc.getContext()));
assert(maybePos.has_value());
return *maybePos;
}
}
return d;
}
// TODO: Remove this definition once all use-sites have been fixed to
// properly handle non-permutations.
Dimension mlir::sparse_tensor::toOrigDim(RankedTensorType type, Level l) {
const auto enc = getSparseTensorEncoding(type);
assert(l < enc.getLvlRank());
return toOrigDim(enc, l);
}
// TODO: Remove this definition once all use-sites have been fixed to
// properly handle non-permutations.
Level mlir::sparse_tensor::toStoredDim(RankedTensorType type, Dimension d) {
assert(d < static_cast<Dimension>(type.getRank()));
return toStoredDim(getSparseTensorEncoding(type), d);
}
//===----------------------------------------------------------------------===//
// SparseTensorDialect Types.
//===----------------------------------------------------------------------===//
/// We normalized sparse tensor encoding attribute by always using
/// ordered/unique DLT such that "compressed-nu-no" and "compressed-nu" (as well
/// as other variants) lead to the same storage specifier type, and stripping
/// irrelevant fields that do not alter the sparse tensor memory layout.
static SparseTensorEncodingAttr
getNormalizedEncodingForSpecifier(SparseTensorEncodingAttr enc) {
SmallVector<DimLevelType> dlts;
for (auto dlt : enc.getLvlTypes())
dlts.push_back(*buildLevelType(*getLevelFormat(dlt), true, true));
return SparseTensorEncodingAttr::get(
enc.getContext(), dlts,
AffineMap(), // dimToLvl (irrelevant to storage specifier)
// Always use `index` for memSize and lvlSize instead of reusing
// `getPosWidth` and `getCrdWidth`. It allows us to reuse the same SSA
// value for different bitwidth, it also avoids casting between index and
// integer (returned by DimOp)
0, 0, enc.getDimSlices());
}
StorageSpecifierType
StorageSpecifierType::get(MLIRContext *ctx, SparseTensorEncodingAttr encoding) {
return Base::get(ctx, getNormalizedEncodingForSpecifier(encoding));
}
//===----------------------------------------------------------------------===//
// SparseTensorDialect Operations.
//===----------------------------------------------------------------------===//
static LogicalResult lvlIsInBounds(Level lvl, Value tensor) {
return success(lvl < getSparseTensorType(tensor).getLvlRank());
}
static LogicalResult isMatchingWidth(Value mem, unsigned width) {
const Type etp = getMemRefType(mem).getElementType();
return success(width == 0 ? etp.isIndex() : etp.isInteger(width));
}
static LogicalResult verifySparsifierGetterSetter(
StorageSpecifierKind mdKind, std::optional<Level> lvl,
TypedValue<StorageSpecifierType> md, Operation *op) {
if (mdKind == StorageSpecifierKind::ValMemSize && lvl) {
return op->emitError(
"redundant level argument for querying value memory size");
}
const auto enc = md.getType().getEncoding();
const Level lvlRank = enc.getLvlRank();
if (mdKind == StorageSpecifierKind::DimOffset ||
mdKind == StorageSpecifierKind::DimStride)
if (!enc.isSlice())
return op->emitError("requested slice data on non-slice tensor");
if (mdKind != StorageSpecifierKind::ValMemSize) {
if (!lvl)
return op->emitError("missing level argument");
const Level l = lvl.value();
if (l >= lvlRank)
return op->emitError("requested level is out of bounds");
if (mdKind == StorageSpecifierKind::PosMemSize && enc.isSingletonLvl(l))
return op->emitError(
"requested position memory size on a singleton level");
}
return success();
}
static Type getFieldElemType(SparseTensorType stt, SparseTensorFieldKind kind) {
switch (kind) {
case SparseTensorFieldKind::CrdMemRef:
return stt.getCrdType();
case SparseTensorFieldKind::PosMemRef:
return stt.getPosType();
case SparseTensorFieldKind::ValMemRef:
return stt.getElementType();
case SparseTensorFieldKind::StorageSpec:
return nullptr;
}
llvm_unreachable("Unrecognizable FieldKind");
}
static LogicalResult verifyPackUnPack(Operation *op, bool requiresStaticShape,
SparseTensorType stt,
RankedTensorType valTp,
TypeRange lvlTps) {
if (requiresStaticShape && !stt.hasStaticDimShape())
return op->emitError("the sparse-tensor must have static shape");
if (!stt.hasEncoding())
return op->emitError("the sparse-tensor must have an encoding attribute");
if (!stt.isIdentity())
return op->emitError("the sparse-tensor must have the identity mapping");
// Verifies the trailing COO.
Level cooStartLvl = getCOOStart(stt.getEncoding());
if (cooStartLvl < stt.getLvlRank()) {
// We only supports trailing COO for now, must be the last input.
auto cooTp = llvm::cast<ShapedType>(lvlTps.back());
// The coordinates should be in shape of <? x rank>
unsigned expCOORank = stt.getLvlRank() - cooStartLvl;
if (cooTp.getRank() != 2 || expCOORank != cooTp.getShape().back()) {
op->emitError("input/output trailing COO level-ranks don't match");
}
}
// Verifies that all types match.
StorageLayout layout(stt.getEncoding());
if (layout.getNumDataFields() != lvlTps.size() + 1) // plus one value memref
return op->emitError("inconsistent number of fields between input/output");
unsigned idx = 0;
bool misMatch = false;
layout.foreachField([&idx, &misMatch, stt, valTp,
lvlTps](FieldIndex fid, SparseTensorFieldKind fKind,
Level lvl, DimLevelType dlt) -> bool {
if (fKind == SparseTensorFieldKind::StorageSpec)
return true;
Type inputTp = nullptr;
if (fKind == SparseTensorFieldKind::ValMemRef) {
inputTp = valTp;
} else {
assert(fid == idx && stt.getLvlType(lvl) == dlt);
inputTp = lvlTps[idx++];
}
// The input element type and expected element type should match.
Type inpElemTp = llvm::cast<TensorType>(inputTp).getElementType();
Type expElemTp = getFieldElemType(stt, fKind);
if (inpElemTp != expElemTp) {
misMatch = true;
return false; // to terminate the iteration
}
return true;
});
if (misMatch)
return op->emitError("input/output element-types don't match");
return success();
}
LogicalResult PackOp::verify() {
const auto valuesTp = getRankedTensorType(getValues());
const auto lvlsTp = getLevels().getTypes();
const auto resTp = getSparseTensorType(getResult());
return verifyPackUnPack(*this, true, resTp, valuesTp, lvlsTp);
}
LogicalResult UnpackOp::verify() {
if (getOutValues().getType() != getRetValues().getType())
return emitError("output values and return value type mismatch");
for (auto [ot, rt] : llvm::zip_equal(getOutLevels(), getRetLevels()))
if (ot.getType() != rt.getType())
return emitError("output levels and return levels type mismatch");
const auto valuesTp = getRankedTensorType(getRetValues());
const auto lvlsTp = getRetLevels().getTypes();
const auto srcTp = getSparseTensorType(getTensor());
return verifyPackUnPack(*this, false, srcTp, valuesTp, lvlsTp);
}
LogicalResult ConvertOp::verify() {
if (auto tp1 = llvm::dyn_cast<RankedTensorType>(getSource().getType())) {
if (auto tp2 = llvm::dyn_cast<RankedTensorType>(getDest().getType())) {
if (tp1.getRank() != tp2.getRank())
return emitError("unexpected conversion mismatch in rank");
auto dstEnc =
llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(tp2.getEncoding());
if (dstEnc && dstEnc.isSlice())
return emitError("cannot convert to a sparse tensor slice");
auto shape1 = tp1.getShape();
auto shape2 = tp2.getShape();
// Accept size matches between the source and the destination type
// (e.g. 10 vs. 10, 10 vs. ?, or ? vs. ?), but reject direct mismatches or
// matches that would need a runtime assert (e.g. 10 vs. 20 or ? vs. 10).
for (Dimension d = 0, dimRank = tp1.getRank(); d < dimRank; d++)
if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamic)
return emitError("unexpected conversion mismatch in dimension ") << d;
return success();
}
}
return emitError("unexpected type in convert");
}
OpFoldResult ConvertOp::fold(FoldAdaptor adaptor) {
Type dstType = getType();
// Fold trivial dense-to-dense convert and leave trivial sparse-to-sparse
// convert for codegen to remove. This is because we use trivial
// sparse-to-sparse convert to tell bufferization that the sparse codegen
// will expand the tensor buffer into sparse tensor storage.
if (!getSparseTensorEncoding(dstType) && dstType == getSource().getType())
return getSource();
return {};
}
LogicalResult ToPositionsOp::verify() {
auto e = getSparseTensorEncoding(getTensor().getType());
if (failed(lvlIsInBounds(getLevel(), getTensor())))
return emitError("requested level is out of bounds");
if (failed(isMatchingWidth(getResult(), e.getPosWidth())))
return emitError("unexpected type for positions");
return success();
}
LogicalResult ToCoordinatesOp::verify() {
auto e = getSparseTensorEncoding(getTensor().getType());
if (failed(lvlIsInBounds(getLevel(), getTensor())))
return emitError("requested level is out of bounds");
if (failed(isMatchingWidth(getResult(), e.getCrdWidth())))
return emitError("unexpected type for coordinates");
return success();
}
LogicalResult ToCoordinatesBufferOp::verify() {
auto e = getSparseTensorEncoding(getTensor().getType());
if (getCOOStart(e) >= e.getLvlRank())
return emitError("expected sparse tensor with a COO region");
return success();
}
LogicalResult ToValuesOp::verify() {
auto ttp = getRankedTensorType(getTensor());
auto mtp = getMemRefType(getResult());
if (ttp.getElementType() != mtp.getElementType())
return emitError("unexpected mismatch in element types");
return success();
}
LogicalResult ToSliceOffsetOp::verify() {
auto rank = getRankedTensorType(getSlice()).getRank();
if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
return emitError("requested dimension out of bound");
return success();
}
LogicalResult ToSliceStrideOp::verify() {
auto rank = getRankedTensorType(getSlice()).getRank();
if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
return emitError("requested dimension out of bound");
return success();
}
LogicalResult GetStorageSpecifierOp::verify() {
RETURN_FAILURE_IF_FAILED(verifySparsifierGetterSetter(
getSpecifierKind(), getLevel(), getSpecifier(), getOperation()))
return success();
}
template <typename SpecifierOp>
static SetStorageSpecifierOp getSpecifierSetDef(SpecifierOp op) {
return op.getSpecifier().template getDefiningOp<SetStorageSpecifierOp>();
}
OpFoldResult GetStorageSpecifierOp::fold(FoldAdaptor adaptor) {
const StorageSpecifierKind kind = getSpecifierKind();
const auto lvl = getLevel();
for (auto op = getSpecifierSetDef(*this); op; op = getSpecifierSetDef(op))
if (kind == op.getSpecifierKind() && lvl == op.getLevel())
return op.getValue();
return {};
}
LogicalResult SetStorageSpecifierOp::verify() {
RETURN_FAILURE_IF_FAILED(verifySparsifierGetterSetter(
getSpecifierKind(), getLevel(), getSpecifier(), getOperation()))
return success();
}
//===----------------------------------------------------------------------===//
// TensorDialect Linalg.Generic Operations.
//===----------------------------------------------------------------------===//
template <class T>
static LogicalResult verifyNumBlockArgs(T *op, Region ®ion,
const char *regionName,
TypeRange inputTypes, Type outputType) {
unsigned numArgs = region.getNumArguments();
unsigned expectedNum = inputTypes.size();
if (numArgs != expectedNum)
return op->emitError() << regionName << " region must have exactly "
<< expectedNum << " arguments";
for (unsigned i = 0; i < numArgs; i++) {
Type typ = region.getArgument(i).getType();
if (typ != inputTypes[i])
return op->emitError() << regionName << " region argument " << (i + 1)
<< " type mismatch";
}
Operation *term = region.front().getTerminator();
YieldOp yield = dyn_cast<YieldOp>(term);
if (!yield)
return op->emitError() << regionName
<< " region must end with sparse_tensor.yield";
if (!yield.getResult() || yield.getResult().getType() != outputType)
return op->emitError() << regionName << " region yield type mismatch";
return success();
}
LogicalResult BinaryOp::verify() {
NamedAttrList attrs = (*this)->getAttrs();
Type leftType = getX().getType();
Type rightType = getY().getType();
Type outputType = getOutput().getType();
Region &overlap = getOverlapRegion();
Region &left = getLeftRegion();
Region &right = getRightRegion();
// Check correct number of block arguments and return type for each
// non-empty region.
if (!overlap.empty()) {
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
this, overlap, "overlap", TypeRange{leftType, rightType}, outputType))
}
if (!left.empty()) {
RETURN_FAILURE_IF_FAILED(
verifyNumBlockArgs(this, left, "left", TypeRange{leftType}, outputType))
} else if (getLeftIdentity()) {
if (leftType != outputType)
return emitError("left=identity requires first argument to have the same "
"type as the output");
}
if (!right.empty()) {
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
this, right, "right", TypeRange{rightType}, outputType))
} else if (getRightIdentity()) {
if (rightType != outputType)
return emitError("right=identity requires second argument to have the "
"same type as the output");
}
return success();
}
LogicalResult UnaryOp::verify() {
Type inputType = getX().getType();
Type outputType = getOutput().getType();
// Check correct number of block arguments and return type for each
// non-empty region.
Region &present = getPresentRegion();
if (!present.empty()) {
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
this, present, "present", TypeRange{inputType}, outputType))
}
Region &absent = getAbsentRegion();
if (!absent.empty()) {
RETURN_FAILURE_IF_FAILED(
verifyNumBlockArgs(this, absent, "absent", TypeRange{}, outputType))
}
return success();
}
LogicalResult ConcatenateOp::verify() {
const auto dstTp = getSparseTensorType(*this);
const Dimension concatDim = getDimension();
const Dimension dimRank = dstTp.getDimRank();
if (getInputs().size() <= 1)
return emitError("Need at least two tensors to concatenate.");
if (concatDim >= dimRank)
return emitError(llvm::formatv(
"Concat-dimension is out of bounds for dimension-rank ({0} >= {1})",
concatDim, dimRank));
for (const auto &it : llvm::enumerate(getInputs())) {
const auto i = it.index();
const auto srcTp = getSparseTensorType(it.value());
if (srcTp.hasDynamicDimShape())
return emitError(llvm::formatv("Input tensor ${0} has dynamic shape", i));
const Dimension srcDimRank = srcTp.getDimRank();
if (srcDimRank != dimRank)
return emitError(
llvm::formatv("Input tensor ${0} has a different rank (rank={1}) "
"from the output tensor (rank={2}).",
i, srcDimRank, dimRank));
}
for (Dimension d = 0; d < dimRank; d++) {
const DynSize dstSh = dstTp.getDimShape()[d];
if (d == concatDim) {
if (!ShapedType::isDynamic(dstSh)) {
// If we reach here, then all inputs have static shapes. So we
// can use `getDimShape()[d]` instead of `*getDynamicDimSize(d)`
// to avoid redundant assertions in the loop.
StaticSize sumSz = 0;
for (const auto src : getInputs())
sumSz += getSparseTensorType(src).getDimShape()[d];
// If all dimension are statically known, the sum of all the input
// dimensions should be equal to the output dimension.
if (sumSz != dstSh)
return emitError(
"The concatenation dimension of the output tensor should be the "
"sum of all the concatenation dimensions of the input tensors.");
}
} else {
DynSize prev = dstSh;
for (const auto src : getInputs()) {
const auto sh = getSparseTensorType(src).getDimShape()[d];
if (!ShapedType::isDynamic(prev) && sh != prev)
return emitError("All dimensions (expect for the concatenating one) "
"should be equal.");
prev = sh;
}
}
}
return success();
}
LogicalResult InsertOp::verify() {
const auto stt = getSparseTensorType(getTensor());
if (stt.getLvlRank() != static_cast<Level>(getLvlCoords().size()))
return emitOpError("incorrect number of coordinates");
return success();
}
void PushBackOp::build(OpBuilder &builder, OperationState &result,
Value curSize, Value inBuffer, Value value) {
build(builder, result, curSize, inBuffer, value, Value());
}
LogicalResult PushBackOp::verify() {
if (Value n = getN()) {
std::optional<int64_t> nValue = getConstantIntValue(n);
if (nValue && nValue.value() < 1)
return emitOpError("n must be not less than 1");
}
return success();
}
LogicalResult CompressOp::verify() {
const auto stt = getSparseTensorType(getTensor());
if (stt.getLvlRank() != 1 + static_cast<Level>(getLvlCoords().size()))
return emitOpError("incorrect number of coordinates");
return success();
}
void ForeachOp::build(
OpBuilder &builder, OperationState &result, Value tensor,
ValueRange initArgs, AffineMapAttr order,
function_ref<void(OpBuilder &, Location, ValueRange, Value, ValueRange)>
bodyBuilder) {
build(builder, result, initArgs.getTypes(), tensor, initArgs, order);
// Builds foreach body.
if (!bodyBuilder)
return;
const auto stt = getSparseTensorType(tensor);
const Dimension dimRank = stt.getDimRank();
// Starts with `dimRank`-many coordinates.
SmallVector<Type> blockArgTypes(dimRank, builder.getIndexType());
// Followed by one value.
blockArgTypes.push_back(stt.getElementType());
// Followed by the reduction variables.
blockArgTypes.append(initArgs.getTypes().begin(), initArgs.getTypes().end());
SmallVector<Location> blockArgLocs(blockArgTypes.size(), tensor.getLoc());
OpBuilder::InsertionGuard guard(builder);
auto ®ion = *result.regions.front();
Block *bodyBlock =
builder.createBlock(®ion, region.end(), blockArgTypes, blockArgLocs);
bodyBuilder(builder, result.location,
bodyBlock->getArguments().slice(0, dimRank),
bodyBlock->getArguments()[dimRank],
bodyBlock->getArguments().drop_front(dimRank + 1));
}
LogicalResult ForeachOp::verify() {
const auto t = getSparseTensorType(getTensor());
const Dimension dimRank = t.getDimRank();
const auto args = getBody()->getArguments();
if (getOrder().has_value() &&
(t.getEncoding() || !getOrder()->isPermutation()))
return emitError("Only support permuted order on non encoded dense tensor");
if (static_cast<size_t>(dimRank) + 1 + getInitArgs().size() != args.size())
return emitError("Unmatched number of arguments in the block");
if (getNumResults() != getInitArgs().size())
return emitError("Mismatch in number of init arguments and results");
if (getResultTypes() != getInitArgs().getTypes())
return emitError("Mismatch in types of init arguments and results");
// Cannot mark this const, because the getters aren't.
auto yield = cast<YieldOp>(getBody()->getTerminator());
if (yield.getNumOperands() != getNumResults() ||
yield.getOperands().getTypes() != getResultTypes())
return emitError("Mismatch in types of yield values and results");
const auto iTp = IndexType::get(getContext());
for (Dimension d = 0; d < dimRank; d++)
if (args[d].getType() != iTp)
emitError(
llvm::formatv("Expecting Index type for argument at index {0}", d));
const auto elemTp = t.getElementType();
const auto valueTp = args[dimRank].getType();
if (elemTp != valueTp)
emitError(llvm::formatv("Unmatched element type between input tensor and "
"block argument, expected:{0}, got: {1}",
elemTp, valueTp));
return success();
}
LogicalResult ReduceOp::verify() {
Type inputType = getX().getType();
// Check correct number of block arguments and return type.
Region &formula = getRegion();
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
this, formula, "reduce", TypeRange{inputType, inputType}, inputType))
return success();
}
LogicalResult SelectOp::verify() {
Builder b(getContext());
Type inputType = getX().getType();
Type boolType = b.getI1Type();
// Check correct number of block arguments and return type.
Region &formula = getRegion();
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(this, formula, "select",
TypeRange{inputType}, boolType))
return success();
}
LogicalResult SortOp::verify() {
if (getXs().empty())
return emitError("need at least one xs buffer.");
std::optional<int64_t> n = getConstantIntValue(getN());
Type xtp = getMemRefType(getXs().front()).getElementType();
auto checkTypes = [&](ValueRange operands,
bool checkEleType = true) -> LogicalResult {
for (Value opnd : operands) {
auto mtp = getMemRefType(opnd);
const DynSize sh = mtp.getShape()[0];
// We can't check the size of dynamic dimension at compile-time, but all
// xs and ys should have a dimension not less than n at runtime.
if (n && !ShapedType::isDynamic(sh) && sh < n.value())
return emitError(llvm::formatv("xs and ys need to have a dimension >= n"
": {0} < {1}",
sh, n.value()));
if (checkEleType && xtp != mtp.getElementType())
return emitError("mismatch xs element types");
}
return success();
};
RETURN_FAILURE_IF_FAILED(checkTypes(getXs()))
return n ? checkTypes(getYs(), false) : success();
}
LogicalResult SortCooOp::verify() {
std::optional<int64_t> cn = getConstantIntValue(getN());
// We can't check the size of the buffers when n or buffer dimensions aren't
// compile-time constants.
if (!cn)
return success();
uint64_t n = cn.value();
uint64_t nx = 1;
if (auto nxAttr = getNxAttr()) {
nx = nxAttr.getInt();
if (nx < 1)
emitError(llvm::formatv("Expected nx > 1, got {0}", nx));
}
uint64_t ny = 0;
if (auto nyAttr = getNyAttr()) {
ny = nyAttr.getInt();
}
// FIXME: update the types of variables used in expressions bassed as
// the `minSize` argument, to avoid implicit casting at the callsites
// of this lambda.
const auto checkDim = [&](Value v, StaticSize minSize, const char *message) {
const DynSize sh = getMemRefType(v).getShape()[0];
if (!ShapedType::isDynamic(sh) && sh < minSize)
emitError(llvm::formatv("{0} got {1} < {2}", message, sh, minSize));
};
checkDim(getXy(), n * (nx + ny), "Expected dimension(xy) >= n * (nx + ny)");
for (Value opnd : getYs()) {
checkDim(opnd, n, "Expected dimension(y) >= n");
}
return success();
}
LogicalResult YieldOp::verify() {
// Check for compatible parent.
auto *parentOp = (*this)->getParentOp();
if (isa<BinaryOp>(parentOp) || isa<UnaryOp>(parentOp) ||
isa<ReduceOp>(parentOp) || isa<SelectOp>(parentOp) ||
isa<ForeachOp>(parentOp))
return success();
return emitOpError("expected parent op to be sparse_tensor unary, binary, "
"reduce, select or foreach");
}
#undef RETURN_FAILURE_IF_FAILED
//===----------------------------------------------------------------------===//
// TensorDialect Methods.
//===----------------------------------------------------------------------===//
void SparseTensorDialect::initialize() {
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
>();
addTypes<
#define GET_TYPEDEF_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
>();
}
#define GET_OP_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc"
|