1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
//===- CodegenEnv.h - Code generation environment class ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This header file defines the code generation environment class.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENENV_H_
#define MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENENV_H_
#include "CodegenUtils.h"
#include "LoopEmitter.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
#include <optional>
namespace mlir {
namespace sparse_tensor {
/// The code generation environment class aggregates a number of data
/// structures that are needed during the code generation phase of
/// sparsification. This environment simplifies passing around such
/// data during sparsification (rather than passing around all the
/// individual compoments where needed). Furthermore, it provides
/// convience methods that keep implementation details transparent
/// to sparsification while asserting on internal consistency.
class CodegenEnv {
public:
/// Constructs a code generation environment which can be
/// passed around during sparsification for bookkeeping
/// together with some consistency asserts.
CodegenEnv(linalg::GenericOp linop, SparsificationOptions opts,
unsigned numTensors, unsigned numLoops, unsigned numFilterLoops,
unsigned maxRank);
//
// General methods.
//
LogicalResult initTensorExp();
ExprId getExprId() const { return tensorExp; }
linalg::GenericOp op() const { return linalgOp; }
const SparsificationOptions &options() const { return sparseOptions; }
Merger &merger() { return latticeMerger; }
LoopEmitter &emitter() { return loopEmitter; }
void startEmit();
/// Generates loop boundary statements (entering/exiting loops). The function
/// passes and updates the passed-in parameters.
std::optional<Operation *>
genLoopBoundary(function_ref<
std::optional<Operation *>(MutableArrayRef<Value> parameters)>
callback);
//
// Merger delegates.
//
constexpr TensorId makeTensorId(unsigned t) const {
return latticeMerger.makeTensorId(t);
}
constexpr LoopId makeLoopId(unsigned i) const {
return latticeMerger.makeLoopId(i);
}
constexpr TensorLoopId makeTensorLoopId(unsigned t, unsigned i) const {
return latticeMerger.makeTensorLoopId(t, i);
}
const TensorExp &exp(ExprId e) const { return latticeMerger.exp(e); }
const LatPoint &lat(LatPointId l) const { return latticeMerger.lat(l); }
ArrayRef<LatPointId> set(LatSetId s) const { return latticeMerger.set(s); }
DimLevelType dlt(TensorId t, LoopId i) const {
return latticeMerger.getLvlType(t, i);
}
DimLevelType dlt(TensorLoopId b) const { return latticeMerger.getLvlType(b); }
//
// LoopEmitter delegates.
//
TensorLevel makeTensorLevel(TensorId t, Level l) const {
// Make sure LoopEmitter, GenericOp, and Merger agree on the number of
// tensors.
assert(loopEmitter.getNumManifestTensors() == linalgOp->getNumOperands() &&
loopEmitter.getNumTensors() == latticeMerger.getNumTensors() &&
loopEmitter.getOutTensorId() == latticeMerger.getOutTensorID() &&
loopEmitter.getSynTensorId() == latticeMerger.getSynTensorID());
return loopEmitter.makeTensorLevel(t, l);
}
std::pair<TensorId, Level> unpackTensorLevel(TensorLevel tl) const {
return loopEmitter.unpackTensorLevel(tl);
}
template <class ContainerTy>
auto unpackTensorLevelRange(ContainerTy &&c) const {
return loopEmitter.unpackTensorLevelRange(std::forward<ContainerTy>(c));
}
//
// Code generation environment verify functions.
//
/// Whether the tensor expression is admissible for codegen.
/// It also sets the sparseOut if the output tensor is sparse.
bool isAdmissibleTensorExp(ExprId e);
/// Whether the iteration graph is sorted in admissible topoOrder.
/// Sets outerParNest on success with sparse output
bool isAdmissibleTopoOrder();
//
// Topological delegate and sort methods.
//
LoopOrd topSortSize() const { return topSort.size(); }
LoopId topSortAt(LoopOrd n) const { return topSort.at(n); }
void topSortPushBack(LoopId i) { topSort.push_back(i); }
void topSortClear(size_t capacity = 0) {
topSort.clear();
topSort.reserve(capacity);
}
ArrayRef<LoopId> getTopSortSlice(LoopOrd n, LoopOrd m) const;
ArrayRef<LoopId> getLoopStackUpTo(LoopOrd n) const;
ArrayRef<LoopId> getCurrentLoopStack() const;
/// Returns the induction-variable for the loop identified by the given
/// `LoopId`. This method handles application of the topological sort
/// in order to convert the `LoopId` into the corresponding `LoopOrd`.
Value getLoopVar(LoopId i) const;
//
// Sparse tensor output and expansion methods.
//
bool hasSparseOutput() const { return sparseOut != nullptr; }
bool isSparseOutput(OpOperand *o) const { return sparseOut == o; }
Value getInsertionChain() const { return insChain; }
void updateInsertionChain(Value chain);
// FIXME: clarify what this "rank" is really supposed to mean/be.
bool atExpandLevel(OpOperand *o, unsigned rank, LoopOrd n) const;
void startExpand(Value values, Value filled, Value added, Value count);
bool isExpand() const { return expValues != nullptr; }
void updateExpandCount(Value count);
Value getExpandValues() const { return expValues; }
Value getExpandFilled() const { return expFilled; }
Value getExpandAdded() const { return expAdded; }
Value getExpandCount() const { return expCount; }
void endExpand();
//
// Reduction methods.
//
void startReduc(ExprId exp, Value val);
bool isReduc() const { return redExp != detail::kInvalidId; }
void updateReduc(Value val);
Value getReduc() const { return redVal; }
Value endReduc();
void setValidLexInsert(Value val);
void clearValidLexInsert();
Value getValidLexInsert() const { return redValidLexInsert; }
void startCustomReduc(ExprId exp);
bool isCustomReduc() const { return redCustom != detail::kInvalidId; }
Value getCustomRedId();
void endCustomReduc();
private:
// Linalg operation.
linalg::GenericOp linalgOp;
// Sparsification options.
SparsificationOptions sparseOptions;
// Merger helper class.
Merger latticeMerger;
// Loop emitter helper class.
LoopEmitter loopEmitter;
// Topological sort. This serves as a mapping from `LoopOrd` to `LoopId`
// (cf., `getLoopVar` and `topSortAt`).
std::vector<LoopId> topSort;
// Sparse tensor as output. Implemented either through direct injective
// insertion in lexicographic index order or through access pattern
// expansion in the innermost loop nest (`expValues` through `expCount`).
OpOperand *sparseOut;
// The count of outer non-filter loops, as defined by `isAdmissibleTopoOrder`.
LoopOrd outerParNest;
Value insChain;
Value expValues;
Value expFilled;
Value expAdded;
Value expCount;
// Bookkeeping for reductions (up-to-date value of the reduction, and indices
// into the merger's expression tree. When the indices of a tensor reduction
// expression are exhausted, all inner loops can use a scalarized reduction.
Value redVal;
ExprId redExp;
ExprId redCustom;
// Bookkeeping for lex insertion during reductions. Holds the runtime boolean
// value of whether any reduction occurred. This is only set during a
// reduction and cleared once the reduction is finished.
Value redValidLexInsert;
// The root tensor expression of the kernel.
ExprId tensorExp;
};
} // namespace sparse_tensor
} // namespace mlir
#endif // MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENENV_H_
|