1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
//===- CodegenUtils.h - Utilities for generating MLIR -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This header file defines utilities for generating MLIR.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENUTILS_H_
#define MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENUTILS_H_
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/IR/Builders.h"
namespace mlir {
class Location;
class Type;
class Value;
namespace sparse_tensor {
/// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
/// `createFuncCall()`, and `replaceOpWithFuncCall()`.
enum class EmitCInterface : bool { Off = false, On = true };
//===----------------------------------------------------------------------===//
// ExecutionEngine/SparseTensorUtils helper functions.
//===----------------------------------------------------------------------===//
/// Converts an overhead storage bitwidth to its internal type-encoding.
OverheadType overheadTypeEncoding(unsigned width);
/// Converts an overhead storage type to its internal type-encoding.
OverheadType overheadTypeEncoding(Type tp);
/// Converts the internal type-encoding for overhead storage to an mlir::Type.
Type getOverheadType(Builder &builder, OverheadType ot);
/// Returns the OverheadType for position overhead storage.
OverheadType posTypeEncoding(SparseTensorEncodingAttr enc);
/// Returns the OverheadType for coordinate overhead storage.
OverheadType crdTypeEncoding(SparseTensorEncodingAttr enc);
/// Convert OverheadType to its function-name suffix.
StringRef overheadTypeFunctionSuffix(OverheadType ot);
/// Converts an overhead storage type to its function-name suffix.
StringRef overheadTypeFunctionSuffix(Type overheadTp);
/// Converts a primary storage type to its internal type-encoding.
PrimaryType primaryTypeEncoding(Type elemTp);
/// Convert PrimaryType to its function-name suffix.
StringRef primaryTypeFunctionSuffix(PrimaryType pt);
/// Converts a primary storage type to its function-name suffix.
StringRef primaryTypeFunctionSuffix(Type elemTp);
//===----------------------------------------------------------------------===//
// Misc code generators and utilities.
//===----------------------------------------------------------------------===//
/// A helper class to simplify lowering operations with/without function calls.
template <class SubClass>
class FuncCallOrInlineGenerator {
public:
FuncCallOrInlineGenerator(TypeRange retTypes, ValueRange params, bool genCall)
: retTypes(retTypes), params(params), genCall(genCall) {}
// The main API invoked by clients, which abstracts away the details of
// creating function calls from clients.
SmallVector<Value> genCallOrInline(OpBuilder &builder, Location loc) {
if (!genCall)
return genImplementation(retTypes, params, builder, loc);
// Looks up the function.
std::string funcName = getMangledFuncName();
ModuleOp module = getParentOpOf<ModuleOp>(builder);
MLIRContext *context = module.getContext();
auto result = SymbolRefAttr::get(context, funcName);
auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
if (!func) {
// Create the function if not already exist.
OpBuilder::InsertionGuard insertionGuard(builder);
builder.setInsertionPoint(getParentOpOf<func::FuncOp>(builder));
func = builder.create<func::FuncOp>(
loc, funcName,
FunctionType::get(context, params.getTypes(), retTypes));
func.setPrivate();
// Set the insertion point to the body of the function.
Block *entryBB = func.addEntryBlock();
builder.setInsertionPointToStart(entryBB);
ValueRange args = entryBB->getArguments();
// Delegates to user to generate the actually implementation.
SmallVector<Value> result =
genImplementation(retTypes, args, builder, loc);
builder.create<func::ReturnOp>(loc, result);
}
// Returns the CallOp result.
func::CallOp call = builder.create<func::CallOp>(loc, func, params);
return call.getResults();
}
private:
template <class OpTp>
OpTp getParentOpOf(OpBuilder &builder) {
return builder.getInsertionBlock()->getParent()->getParentOfType<OpTp>();
}
// CRTP: get the mangled function name (only called when genCall=true).
std::string getMangledFuncName() {
return static_cast<SubClass *>(this)->getMangledFuncName();
}
// CRTP: Client implementation.
SmallVector<Value> genImplementation(TypeRange retTypes, ValueRange params,
OpBuilder &builder, Location loc) {
return static_cast<SubClass *>(this)->genImplementation(retTypes, params,
builder, loc);
}
private:
TypeRange retTypes; // The types of all returned results
ValueRange params; // The values of all input parameters
bool genCall; // Should the implemetantion be wrapped in a function
};
/// Add type casting between arith and index types when needed.
Value genCast(OpBuilder &builder, Location loc, Value value, Type dstTy);
/// Generates a pointer/index load from the sparse storage scheme. Narrower
/// data types need to be zero extended before casting the value into the
/// index type used for looping and indexing.
Value genIndexLoad(OpBuilder &builder, Location loc, Value mem, Value s);
/// Generates a 1-valued attribute of the given type. This supports
/// all the same types as `getZeroAttr`; however, unlike `getZeroAttr`,
/// for unsupported types we raise `llvm_unreachable` rather than
/// returning a null attribute.
TypedAttr getOneAttr(Builder &builder, Type tp);
/// Generates the comparison `v != 0` where `v` is of numeric type.
/// For floating types, we use the "unordered" comparator (i.e., returns
/// true if `v` is NaN).
Value genIsNonzero(OpBuilder &builder, Location loc, Value v);
/// Computes the shape of destination tensor of a reshape operator. This is only
/// used when operands have dynamic shape. The shape of the destination is
/// stored into dstShape.
void genReshapeDstShape(OpBuilder &builder, Location loc,
SmallVectorImpl<Value> &dstShape,
ArrayRef<Value> srcShape,
ArrayRef<StaticSize> staticDstShape,
ArrayRef<ReassociationIndices> reassociation);
/// Reshape coordinates during a reshaping operation.
void reshapeCvs(OpBuilder &builder, Location loc,
ArrayRef<ReassociationIndices> reassociation,
ValueRange srcSizes, ValueRange srcCvs, // NOLINT
ValueRange dstSizes, SmallVectorImpl<Value> &dstCvs);
/// Returns a function reference (first hit also inserts into module). Sets
/// the "_emit_c_interface" on the function declaration when requested,
/// so that LLVM lowering generates a wrapper function that takes care
/// of ABI complications with passing in and returning MemRefs to C functions.
FlatSymbolRefAttr getFunc(ModuleOp module, StringRef name, TypeRange resultType,
ValueRange operands, EmitCInterface emitCInterface);
/// Creates a `CallOp` to the function reference returned by `getFunc()` in
/// the builder's module.
func::CallOp createFuncCall(OpBuilder &builder, Location loc, StringRef name,
TypeRange resultType, ValueRange operands,
EmitCInterface emitCInterface);
/// Returns the equivalent of `void*` for opaque arguments to the
/// execution engine.
Type getOpaquePointerType(MLIRContext *ctx);
Type getOpaquePointerType(Builder &builder);
/// Generates an uninitialized temporary buffer of the given size and
/// type, but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`).
Value genAlloca(OpBuilder &builder, Location loc, Value sz, Type tp);
/// Generates an uninitialized temporary buffer of the given size and
/// type, and returns it as type `memref<? x $tp>` (staticShape=false) or
/// `memref<$sz x $tp>` (staticShape=true).
Value genAlloca(OpBuilder &builder, Location loc, unsigned sz, Type tp,
bool staticShape = false);
/// Generates an uninitialized temporary buffer with room for one value
/// of the given type, and returns the `memref<$tp>`.
Value genAllocaScalar(OpBuilder &builder, Location loc, Type tp);
/// Generates a temporary buffer, initializes it with the given contents,
/// and returns it as type `memref<? x $tp>` (rather than specifying the
/// size of the buffer).
Value allocaBuffer(OpBuilder &builder, Location loc, ValueRange values);
/// Generates code to allocate a buffer of the given type, and zero
/// initialize it. If the buffer type has any dynamic sizes, then the
/// `sizes` parameter should be as filled by sizesFromPtr(); that way
/// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
Value allocDenseTensor(OpBuilder &builder, Location loc,
RankedTensorType tensorTp, ValueRange sizes);
/// Generates code to deallocate a dense buffer.
void deallocDenseTensor(OpBuilder &builder, Location loc, Value buffer);
/// Generates code to read the value from `tensor[ivs]`. The generated code
/// looks like the following and the insertion point after this routine is
/// inside the then-branch.
/// if (tensor[ivs] != 0)
/// insert_point
Value genValueForDense(OpBuilder &builder, Location loc, Value tensor,
ValueRange ivs);
/// Generates the loop structure to iterate over a dense tensor or a sparse
/// tensor constant to support the lowering of dense-to-sparse convert operator.
//
// The loop to iterate a dense tensor:
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// loop-body
//
// The loop to iterate a sparse tensor constant:
// for i in range(NNZ)
// val = values[i]
// [i1,..,ik] = coordinates[i]
// loop-body
void genDenseTensorOrSparseConstantIterLoop(
OpBuilder &builder, Location loc, Value src, unsigned rank,
function_ref<void(OpBuilder &, Location, Value, ValueRange)> bodyBuilder);
/// Populates given sizes array from dense tensor or sparse tensor constant.
void sizesFromSrc(OpBuilder &builder, SmallVectorImpl<Value> &sizes,
Location loc, Value src);
/// Generates a 1D MemRefType with a dynamic size. When withLayout is set, the
/// returned memref has a layout has unknown strides and offsets. Otherwise,
/// a memref with a standard unit stride zero offset layout is returned.
inline MemRefType get1DMemRefType(Type etp, bool withLayout) {
auto layout = withLayout ? StridedLayoutAttr::StridedLayoutAttr::get(
etp.getContext(), ShapedType::kDynamic,
{ShapedType::kDynamic})
: StridedLayoutAttr();
return MemRefType::get(ShapedType::kDynamic, etp, layout);
}
/// Scans to top of generated loop.
Operation *getTop(Operation *op);
/// Iterate over a sparse constant, generates constantOp for value
/// and coordinates. E.g.,
/// sparse<[ [0], [28], [31] ],
/// [ (-5.13, 2.0), (3.0, 4.0), (5.0, 6.0) ] >
/// =>
/// %c1 = arith.constant 0
/// %v1 = complex.constant (5.13, 2.0)
/// callback({%c1}, %v1)
///
/// %c2 = arith.constant 28
/// %v2 = complex.constant (3.0, 4.0)
/// callback({%c2}, %v2)
///
/// %c3 = arith.constant 31
/// %v3 = complex.constant (5.0, 6.0)
/// callback({%c3}, %v3)
void foreachInSparseConstant(
OpBuilder &builder, Location loc, SparseElementsAttr attr, AffineMap order,
function_ref<void(ArrayRef<Value>, Value)> callback);
/// Loads `size`-many values from the memref, which must have rank-1 and
/// size greater-or-equal to `size`. If the optional `(offsetIdx,offsetVal)`
/// arguments are provided, then the `offsetVal` will be added to the
/// `offsetIdx`-th value after loading.
SmallVector<Value> loadAll(OpBuilder &builder, Location loc, size_t size,
Value mem, size_t offsetIdx = 0,
Value offsetVal = Value());
/// Stores all the values of `vs` into the memref `mem`, which must have
/// rank-1 and size greater-or-equal to `vs.size()`. If the optional
/// `(offsetIdx,offsetVal)` arguments are provided, then the `offsetVal`
/// will be added to the `offsetIdx`-th value before storing.
void storeAll(OpBuilder &builder, Location loc, Value mem, ValueRange vs,
size_t offsetIdx = 0, Value offsetVal = Value());
/// Reshapes the linear values buffer for an annotated all dense sparse tensor
/// to match the shape of the corresponding dense tensor to support direct
/// access of the buffer through `lvlCoords`.
Value reshapeValuesToLevels(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr enc, ValueRange dimSizes,
Value valuesBuffer, Value lvlCoords);
//===----------------------------------------------------------------------===//
// Inlined constant generators.
//
// All these functions are just wrappers to improve code legibility;
// therefore, we mark them as `inline` to avoid introducing any additional
// overhead due to the legibility.
//
// TODO: Ideally these should move upstream, so that we don't
// develop a design island. However, doing so will involve
// substantial design work. For related prior discussion, see
// <https://llvm.discourse.group/t/evolving-builder-apis-based-on-lessons-learned-from-edsc/879>
//===----------------------------------------------------------------------===//
/// Generates a 0-valued constant of the given type. In addition to
/// the scalar types (`ComplexType`, `FloatType`, `IndexType`,
/// `IntegerType`), this also works for `RankedTensorType` and `VectorType`
/// (for which it generates a constant `DenseElementsAttr` of zeros).
inline Value constantZero(OpBuilder &builder, Location loc, Type tp) {
if (auto ctp = dyn_cast<ComplexType>(tp)) {
auto zeroe = builder.getZeroAttr(ctp.getElementType());
auto zeroa = builder.getArrayAttr({zeroe, zeroe});
return builder.create<complex::ConstantOp>(loc, tp, zeroa);
}
return builder.create<arith::ConstantOp>(loc, tp, builder.getZeroAttr(tp));
}
/// Generates a 1-valued constant of the given type. This supports all
/// the same types as `constantZero`.
inline Value constantOne(OpBuilder &builder, Location loc, Type tp) {
if (auto ctp = dyn_cast<ComplexType>(tp)) {
auto zeroe = builder.getZeroAttr(ctp.getElementType());
auto onee = getOneAttr(builder, ctp.getElementType());
auto zeroa = builder.getArrayAttr({onee, zeroe});
return builder.create<complex::ConstantOp>(loc, tp, zeroa);
}
return builder.create<arith::ConstantOp>(loc, tp, getOneAttr(builder, tp));
}
/// Generates a constant of `index` type.
inline Value constantIndex(OpBuilder &builder, Location loc, int64_t i) {
return builder.create<arith::ConstantIndexOp>(loc, i);
}
/// Generates a constant of `i64` type.
inline Value constantI64(OpBuilder &builder, Location loc, int64_t i) {
return builder.create<arith::ConstantIntOp>(loc, i, 64);
}
/// Generates a constant of `i32` type.
inline Value constantI32(OpBuilder &builder, Location loc, int32_t i) {
return builder.create<arith::ConstantIntOp>(loc, i, 32);
}
/// Generates a constant of `i16` type.
inline Value constantI16(OpBuilder &builder, Location loc, int16_t i) {
return builder.create<arith::ConstantIntOp>(loc, i, 16);
}
/// Generates a constant of `i8` type.
inline Value constantI8(OpBuilder &builder, Location loc, int8_t i) {
return builder.create<arith::ConstantIntOp>(loc, i, 8);
}
/// Generates a constant of `i1` type.
inline Value constantI1(OpBuilder &builder, Location loc, bool b) {
return builder.create<arith::ConstantIntOp>(loc, b, 1);
}
/// Generates a constant of the given `Action`.
inline Value constantAction(OpBuilder &builder, Location loc, Action action) {
return constantI32(builder, loc, static_cast<uint32_t>(action));
}
/// Generates a constant of the internal type-encoding for overhead storage.
inline Value constantOverheadTypeEncoding(OpBuilder &builder, Location loc,
unsigned width) {
return constantI32(builder, loc,
static_cast<uint32_t>(overheadTypeEncoding(width)));
}
/// Generates a constant of the internal type-encoding for position
/// overhead storage.
inline Value constantPosTypeEncoding(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr enc) {
return constantOverheadTypeEncoding(builder, loc, enc.getPosWidth());
}
/// Generates a constant of the internal type-encoding for coordinate
/// overhead storage.
inline Value constantCrdTypeEncoding(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr enc) {
return constantOverheadTypeEncoding(builder, loc, enc.getCrdWidth());
}
/// Generates a constant of the internal type-encoding for primary storage.
inline Value constantPrimaryTypeEncoding(OpBuilder &builder, Location loc,
Type elemTp) {
return constantI32(builder, loc,
static_cast<uint32_t>(primaryTypeEncoding(elemTp)));
}
/// Generates a constant of the internal dimension level type encoding.
inline Value constantDimLevelTypeEncoding(OpBuilder &builder, Location loc,
DimLevelType dlt) {
return constantI8(builder, loc, static_cast<uint8_t>(dlt));
}
inline bool isZeroRankedTensorOrScalar(Type type) {
auto rtp = dyn_cast<RankedTensorType>(type);
return !rtp || rtp.getRank() == 0;
}
/// Infers the result type and generates `ToPositionsOp`.
Value genToPositions(OpBuilder &builder, Location loc, Value tensor, Level lvl);
/// Infers the result type and generates `ToCoordinatesOp`. If the
/// level is within a COO region, the result type is a memref with unknown
/// stride and offset. Otherwise, the result type is a memref without
/// any specified layout.
Value genToCoordinates(OpBuilder &builder, Location loc, Value tensor,
Level lvl, Level cooStart);
/// Infers the result type and generates `ToCoordinatesBufferOp`.
Value genToCoordinatesBuffer(OpBuilder &builder, Location loc, Value tensor);
/// Infers the result type and generates `ToValuesOp`.
Value genToValues(OpBuilder &builder, Location loc, Value tensor);
/// Generates code to retrieve the values size for the sparse tensor.
Value genValMemSize(OpBuilder &builder, Location loc, Value tensor);
/// Generates code to retrieve the slice offset for the sparse tensor slice,
/// return a constant if the offset is statically known.
Value createOrFoldSliceOffsetOp(OpBuilder &builder, Location loc, Value tensor,
Dimension dim);
/// Generates code to retrieve the slice slice for the sparse tensor slice,
/// return a constant if the offset is statically known.
Value createOrFoldSliceStrideOp(OpBuilder &builder, Location loc, Value tensor,
Dimension dim);
} // namespace sparse_tensor
} // namespace mlir
#endif // MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENUTILS_H_
|