1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
|
//===- LoopEmitter.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LoopEmitter.h"
#include "CodegenUtils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// File local shorthand macros
//===----------------------------------------------------------------------===//
#define CMPI(p, l, r) \
(builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::p, (l), (r)) \
.getResult())
#define C_IDX(v) (constantIndex(builder, loc, (v)))
#define YIELD(vs) (builder.create<scf::YieldOp>(loc, (vs)))
#define ADDI(lhs, rhs) (builder.create<arith::AddIOp>(loc, (lhs), (rhs)))
#define ANDI(lhs, rhs) (builder.create<arith::AndIOp>(loc, (lhs), (rhs)))
#define SUBI(lhs, rhs) (builder.create<arith::SubIOp>(loc, (lhs), (rhs)))
#define MULI(lhs, rhs) (builder.create<arith::MulIOp>(loc, (lhs), (rhs)))
#define SELECT(c, l, r) (builder.create<arith::SelectOp>(loc, (c), (l), (r)))
//===----------------------------------------------------------------------===//
// Debugging utils
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
LLVM_ATTRIBUTE_UNUSED static void dumpIndexMemRef(OpBuilder &builder,
Location loc, Value memref) {
memref = builder.create<memref::CastOp>(
loc, UnrankedMemRefType::get(builder.getIndexType(), 0), memref);
createFuncCall(builder, loc, "printMemrefInd", TypeRange{},
ValueRange{memref}, EmitCInterface::On);
}
#endif
//===----------------------------------------------------------------------===//
// File local helper functions.
//===----------------------------------------------------------------------===//
// For index reduction loops, since the tensor are sliced into non-continuous
// fragments, we need a triple [pLo, pHi, pPtr], in which the pair (pLo, pHi)
// specifies the range of the fragment, and pPtr specifies the index of the
// corresponding fragment in the child level (i.e., a pointer to the sliced
// position array).
static constexpr unsigned kSliceIterWidth = 3;
static Value genSliceOffset(OpBuilder &builder, Location loc, Value tensor,
Level lvl) {
auto enc = getSparseTensorEncoding(tensor.getType());
// FIXME: `toOrigDim` is deprecated
return createOrFoldSliceOffsetOp(builder, loc, tensor, toOrigDim(enc, lvl));
}
static Value genSliceStride(OpBuilder &builder, Location loc, Value tensor,
Level lvl) {
auto enc = getSparseTensorEncoding(tensor.getType());
// FIXME: `toOrigDim` is deprecated
return createOrFoldSliceStrideOp(builder, loc, tensor, toOrigDim(enc, lvl));
}
/// Converts a coordinate relative to the slice to the coordinate relative
/// to the underlying tensor.
// FIXME: that description says "sliceCrd -> tensorCrd"; but the function
// name suggests it should be "tensorCrd -> sliceCrd".
static Value toSliceCrd(OpBuilder &builder, Location loc, Value crd,
Value offset, Value stride, Value tensor, Level lvl) {
// tensorCrd = sliceCrd * stride + offset
return ADDI(MULI(crd, stride), offset);
}
/// Generates code to compute the *absolute* offset of the slice based on the
/// provide minimum coordinates in the slice.
/// E.g., when reducing d0 + d1 + d2, we need two slices to fully reduced the
/// expression, i,e, s1 = slice(T, d0), s2 = slice(s1, d1). The *absolute*
/// offset is the offset computed relative to the initial tensors T.
///
/// When isNonEmpty == true, the computed offset is meaningless and should not
/// be used during runtime, the method generates code to return 0 currently in
/// that case.
///
/// offset = isNonEmpty && minCrd >= size ? minCrd - size + 1 : 0;
static Value offsetFromMinCoord(OpBuilder &builder, Location loc, Value minCrd,
Value size, Value isNonEmpty) {
Value geSize = CMPI(uge, minCrd, size);
Value pred = ANDI(isNonEmpty, geSize);
// Computes minCrd - size + 1
Value mms = SUBI(ADDI(minCrd, C_IDX(1)), size);
// This is the absolute offset related to the underly tensor.
return SELECT(pred, mms, C_IDX(0));
}
/// Converts a coordinate relative to the underlying tensor to the coordinate
/// relative to the slice, returns a extra reminder value
// FIXME: that description says "tensorCrd -> sliceCrd"; but the function
// name suggests it should be "sliceCrd -> tensorCrd".
static std::pair<Value, Value> fromSliceCrd(OpBuilder &builder, Location loc,
Value crd, Value offset,
Value stride, Value tensor,
Level lvl) {
// sliceCrd = (tensorCrd - offset) / stride
crd = SUBI(crd, offset);
Value rem = builder.create<arith::RemUIOp>(loc, crd, stride);
crd = builder.create<arith::DivUIOp>(loc, crd, stride);
return std::make_pair(crd, rem);
}
// Generates a bool value for while loop condition that tries to iterate over a
// fully reduced level with affine index expression.
static Value genSparseReducedAffineCond(OpBuilder &builder, Location loc,
Value crdBuf, Value crdHi, Value posit,
Value posHi) {
Value inBound = CMPI(ult, posit, posHi);
auto ifOp =
builder.create<scf::IfOp>(loc, builder.getI1Type(), inBound, true);
// if (inbound)
// yield coord < crdHi
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
Value crd = genIndexLoad(builder, loc, crdBuf, posit);
YIELD(CMPI(ult, crd, crdHi));
// else
// yield false
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
YIELD(constantI1(builder, loc, false));
builder.setInsertionPointAfter(ifOp);
return ifOp.getResult(0);
}
// Helper functions that load/store into the position buffer for slice-driven
// loops.
// The sliced pointer buffer is orgnized as:
// [size, curPtr] (two metadata) + [[pLo, pHi, pNext], ...] (list of tuples)
static Value loadSlicePosPtr(OpBuilder &builder, Location loc, Value sPosBuf) {
// Load curPtr.
// TODO: We should use SSA value for it.
return genIndexLoad(builder, loc, sPosBuf, C_IDX(1));
}
static void updateSlicePosPtr(OpBuilder &builder, Location loc, Value sPosBuf,
Value pPtr) {
// Set curPtr.
// TODO: We should use SSA value for it.
builder.create<memref::StoreOp>(loc, pPtr, sPosBuf, C_IDX(1));
}
static Value loadSliceNextPosPtrStart(OpBuilder &builder, Location loc,
Value sPosBuf, Value tupleIdx) {
// load the pNext in the current tuple specified by `tupleIdx`.
// 4 = 2 (two metadata) + 2 (pNext == tuple[2])
return genIndexLoad(builder, loc, sPosBuf, ADDI(tupleIdx, C_IDX(4)));
}
std::pair<Value, Value>
LoopEmitter::genSliceLegitPredicate(OpBuilder &builder, Location loc, Value crd,
TensorId tid, Level lvl) {
assert(isSparseSlices[tid]);
Value slice = tensors[tid];
Value offset = sliceOffsets[tid][lvl];
Value stride = sliceStrides[tid][lvl];
auto enc = getSparseTensorEncoding(slice.getType());
const auto [newCrd, crdRem] =
fromSliceCrd(builder, loc, crd, offset, stride, slice, lvl);
SmallVector<Value, 3> conds; // at most 3 conditions
// First, coord >= offset (skip the check if offset is known to be 0).
if (auto staticOffset = enc.getStaticLvlSliceOffset(lvl);
!(staticOffset.has_value() && *staticOffset == 0)) {
auto geOffset = CMPI(uge, crd, offset);
conds.push_back(geOffset);
}
// Second, coord_in_slice < length
auto ltLength = CMPI(ult, newCrd, lvlSizes[tid][lvl]);
conds.push_back(ltLength);
// Third, rem == 0 (skip the check if stride is known to be 1).
if (auto staticStride = enc.getStaticLvlSliceStride(lvl);
!(staticStride.has_value() && *staticStride == 1)) {
auto fitStride = CMPI(eq, crdRem, C_IDX(0));
conds.push_back(fitStride);
}
// Must meet all condition to be a valid coordinate in slice.
auto pred = conds.front();
for (auto cond : ValueRange(conds).drop_front())
pred = ANDI(pred, cond);
return {newCrd, pred};
}
//===----------------------------------------------------------------------===//
// Sparse tensor loop emitter class implementations
//===----------------------------------------------------------------------===//
Value LoopEmitter::genAddress(OpBuilder &builder, Location loc, TensorId tid,
Level lvl, Value crd) {
Value pos = lvl == 0 ? C_IDX(0) : posits[tid][lvl - 1];
Value mul = MULI(highs[tid][lvl], pos);
if (isSparseSlices[tid])
crd = toSliceCrd(builder, loc, crd, sliceOffsets[tid][lvl],
sliceStrides[tid][lvl], tensors[tid], lvl);
Value add = ADDI(mul, crd);
return add;
}
Value LoopEmitter::genSegmentHigh(OpBuilder &builder, Location loc,
TensorId tid, Level lvl, Value pLo,
Value pHi) {
const auto coordinates = coordinatesBuffers[tid][lvl];
const auto sameCrd = genIndexLoad(builder, loc, coordinates, pLo);
auto whileOp = builder.create<scf::WhileOp>(
loc, builder.getIndexType(), pLo,
/*beforeBuilder=*/
[pHi, coordinates, sameCrd](OpBuilder &builder, Location loc,
ValueRange ivs) {
const auto pos = ivs[0];
Value inBound = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ult, pos, pHi);
auto ifInBound =
builder.create<scf::IfOp>(loc, builder.getI1Type(), inBound, true);
{
OpBuilder::InsertionGuard guard(builder);
// Load the next coordinates only when inbound (to avoid OOB
// acccesses).
builder.setInsertionPointToStart(ifInBound.thenBlock());
Value crd = genIndexLoad(builder, loc, coordinates, pos);
Value isSameCrd = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, crd, sameCrd);
YIELD(isSameCrd);
// Else, the position is out of bound, yield false to terminate the
// loop.
builder.setInsertionPointToStart(ifInBound.elseBlock());
YIELD(constantI1(builder, loc, false));
}
builder.create<scf::ConditionOp>(loc, ifInBound.getResults()[0], ivs);
},
/*afterBuilder=*/
[](OpBuilder &builder, Location loc, ValueRange ivs) {
// pos ++
Value nextPos = ADDI(ivs[0], C_IDX(1));
YIELD(nextPos);
});
// Return the segment high.
return whileOp.getResult(0);
}
Value LoopEmitter::genSparseCrd(OpBuilder &builder, Location loc, TensorId tid,
Level dstLvl) {
Value crd = C_IDX(0);
const auto reassoc = getCollapseReassociation(tid, dstLvl);
const unsigned reassocSize = reassoc.size();
for (unsigned i = 0; i < reassocSize; i++) {
const Level srcLvl = reassoc[i];
// A load on the coordinates array yields the coordinate.
const Value mem = coordinatesBuffers[tid][srcLvl];
/// FIXME: See the [CLARIFY_POSITS_LVL] note in the header.
const Value pos = posits[tid][dstLvl];
const Value off = genIndexLoad(builder, loc, mem, pos);
// Linearized the coordinates within the same collapse reassociation.
crd = ADDI(crd, off);
if (i != reassocSize - 1) {
crd = MULI(crd, this->lvlSizes[tid][reassoc[i + 1]]);
}
}
return crd;
}
LoopEmitter::LoopEmitter(ValueRange tensors, StringAttr loopTag, bool hasOutput,
bool isSparseOut, ArrayRef<LoopId> topSort,
DependentLvlGetter dimGetter) {
initialize(tensors, loopTag, hasOutput, isSparseOut, topSort, dimGetter);
}
void LoopEmitter::initialize(ValueRange ts, StringAttr loopTag, bool hasOutput,
bool isSparseOut, ArrayRef<LoopId> topSort,
DependentLvlGetter dimGetter) {
// First initialize the top-level type of the fields.
this->loopTag = loopTag;
this->hasOutput = hasOutput;
this->isSparseOut = isSparseOut;
const unsigned numManifestTensors = ts.size();
const unsigned synTensorId = numManifestTensors;
const unsigned numTensors = numManifestTensors + 1;
// tensors array (len == numManifestTensor).
this->tensors.assign(ts.begin(), ts.end());
// Arrays with len == numTensor.
this->lvlTypes.assign(numTensors, std::vector<DimLevelType>());
this->lvlSizes.assign(numTensors, std::vector<Value>());
this->highs.assign(numTensors, std::vector<Value>());
this->segHi.assign(numTensors, std::vector<Value>());
this->posits.assign(numTensors, std::vector<Value>());
this->coords.assign(numTensors, std::vector<Value>());
this->positionsBuffers.assign(numTensors, std::vector<Value>());
this->coordinatesBuffers.assign(numTensors, std::vector<Value>());
this->valBuffer.assign(numTensors, nullptr);
this->collapseReassoc.assign(numTensors, nullptr);
this->isSparseSlices.assign(numTensors, false);
this->sliceOffsets.assign(numTensors, std::vector<Value>());
this->sliceStrides.assign(numTensors, std::vector<Value>());
const LoopOrd numLoops = topSort.size();
// These zeros will be overwritten below, but we need to initialize
// them to something since we'll need random-access assignment.
this->loopIdToOrd.assign(numLoops, 0);
this->loopStack.reserve(numLoops);
this->loopSeqStack.reserve(numLoops);
// Index-reduction related fields.
this->dependentLvlMap.assign(
numTensors, std::vector<std::vector<std::pair<TensorId, Level>>>());
this->slicePosBuffer.assign(numTensors, std::vector<std::vector<Value>>());
this->sliceSizes.assign(numTensors, std::vector<std::vector<Value>>());
this->sliceStack.assign(numTensors, std::vector<SliceInfo>());
this->levelReducedDep.assign(numTensors, std::vector<unsigned>());
// Initialize nested types of `TensorId`-indexed fields.
for (TensorId tid = 0; tid < numTensors; tid++) {
Level lvlRank;
if (tid == synTensorId) {
// Synthetic tensor (conceptually) is an all-dense tensor with rank equal
// to the total number of loops (each level can potentially be mapped to
// one of the loop being generated).
lvlRank = numLoops;
lvlTypes[tid].assign(lvlRank, DimLevelType::Dense);
} else {
const Value t = tensors[tid];
// a scalar or 0-dimension tensors
if (isZeroRankedTensorOrScalar(t.getType()))
continue;
auto rtp = getRankedTensorType(t);
if (auto reshape = t.getDefiningOp<tensor::CollapseShapeOp>();
isUniqueCOOType(rtp) && reshape) {
// TODO: Supports more kinds of sparse tensors.
// FIXME: We should instead lower reshape operations on sparse tensors
// to view change.
collapseReassoc[tid] = reshape.getReassociation();
rtp = reshape.getSrcType();
// Overwrites the tensor to the source tensor of reshape operations.
tensors[tid] = reshape.getSrc();
}
const SparseTensorType stt(rtp);
lvlRank = stt.getLvlRank();
// We always treat sparse output tensor as dense so that we always iterate
// it based on lvl size.
if (stt.hasEncoding() && !(isOutputTensor(tid) && isSparseOut)) {
const auto enc = stt.getEncoding();
isSparseSlices[tid] = enc.isSlice();
for (auto lvlTp : enc.getLvlTypes())
lvlTypes[tid].push_back(lvlTp);
} else {
lvlTypes[tid].assign(lvlRank, DimLevelType::Dense);
}
}
// Initialize using empty value.
lvlSizes[tid].assign(lvlRank, Value());
highs[tid].assign(lvlRank, Value());
segHi[tid].assign(lvlRank, Value());
posits[tid].assign(lvlRank, Value());
coords[tid].assign(lvlRank, Value());
positionsBuffers[tid].assign(lvlRank, Value());
coordinatesBuffers[tid].assign(lvlRank, Value());
sliceOffsets[tid].assign(lvlRank, Value());
sliceStrides[tid].assign(lvlRank, Value());
// Slice-driven loops related initialization.
levelReducedDep[tid].assign(lvlRank, 0);
dependentLvlMap[tid].assign(lvlRank,
std::vector<std::pair<TensorId, Level>>());
slicePosBuffer[tid].assign(lvlRank, std::vector<Value>());
sliceSizes[tid].assign(lvlRank, std::vector<Value>());
sliceStack[tid].emplace_back(/*minCrd=*/Value(),
/*offset=*/Value(), /*isNonEmpty*/ Value(),
std::nullopt, 0);
if (dimGetter && !isSynTensor(tid)) {
auto reassoc = collapseReassoc[tid];
Level dstRank = reassoc ? reassoc.size() : lvlRank;
for (Level l = 0; l < dstRank; l++) {
dependentLvlMap[tid][l] = dimGetter(tid, l);
unsigned depends = dependentLvlMap[tid][l].size();
if (depends == 0)
continue;
// TODO: View-base collapse and dependent index reduction are not
// compatible right now.
assert(!reassoc);
// We need `depends - 1` slices to fully the affine expression.
sliceSizes[tid][l].assign(depends - 1, nullptr);
slicePosBuffer[tid][l].assign(depends - 1, nullptr);
}
}
}
// Construct the inverse of the `topSort` from the sparsifier.
// This is needed to map `AffineDimExpr`s back to the `LoopOrd`
// used in loop emitter.
// FIXME: This map should be maintained outside loop emitter.
for (LoopOrd n = 0; n < numLoops; n++)
loopIdToOrd[topSort[n]] = n;
}
void LoopEmitter::initializeLoopEmit(
OpBuilder &builder, Location loc, LoopEmitter::OutputUpdater updater,
LoopEmitter::SynTensorBoundSetter synSetter) {
// For every synthetic tensor, set the high bound by calling the callback.
if (synSetter)
for (unsigned i = 0, e = highs[getSynTensorId()].size(); i < e; i++)
highs[getSynTensorId()][i] = synSetter(builder, loc, i);
// For every manifest tensor:
// * get the values buffer.
// * For every level:
// * get the positions and coordinates buffers
// * get/compute the level-size, which is also used as the upper-bound
// on positions.
for (TensorId t = 0, numTensors = getNumManifestTensors(); t < numTensors;
t++) {
const Value tensor = tensors[t];
const auto rtp = dyn_cast<RankedTensorType>(tensor.getType());
if (!rtp)
// Skips only scalar, zero ranked tensor still need to be bufferized and
// (probably) filled with zeros by users.
continue;
// FIXME: the definition of `lvlRank` looks more like a dim-rank;
// but the variable is used as a level everywhere below, which
// suggests there may be some dim/lvl confusion going on here.
const Level lvlRank = rtp.getRank();
const auto shape = rtp.getShape();
const auto enc = getSparseTensorEncoding(rtp);
const Level cooStart = enc ? getCOOStart(enc) : lvlRank;
// Scan all levels of current tensor.
for (Level l = 0; l < lvlRank; l++) {
// This should be called only once at beginning.
assert(!positionsBuffers[t][l] && !coordinatesBuffers[t][l] &&
!highs[t][l]);
const auto lvlTp = lvlTypes[t][l];
// Handle sparse storage schemes.
if (isCompressedDLT(lvlTp) || isCompressedWithHiDLT(lvlTp)) {
// Generate sparse primitives to obtain positions and coordinates.
positionsBuffers[t][l] = genToPositions(builder, loc, tensor, l);
coordinatesBuffers[t][l] =
genToCoordinates(builder, loc, tensor, l, cooStart);
} else if (isSingletonDLT(lvlTp)) {
// Singleton level, fetch coordinates.
coordinatesBuffers[t][l] =
genToCoordinates(builder, loc, tensor, l, cooStart);
} else {
// Dense level, nothing to fetch.
assert(isDenseDLT(lvlTp));
}
// FIXME: `toOrigDim` is deprecated. For now this relies on the
// 1:1 mapping between levels and dimensions, since nowhere else
// in the code supports non-permutations yet either.
Value lvlSz = mlir::linalg::createOrFoldDimOp(builder, loc, tensor,
toOrigDim(enc, l));
// Find upper bound in current dimension.
highs[t][l] = lvlSizes[t][l] = lvlSz;
if (isSparseSlices[t]) {
sliceOffsets[t][l] = genSliceOffset(builder, loc, tensors[t], l);
sliceStrides[t][l] = genSliceStride(builder, loc, tensors[t], l);
}
}
// Perform the required bufferization. Dense inputs materialize
// from the input tensors. Sparse inputs use sparse primitives to obtain the
// values.
// Delegates extra output initialization to clients.
bool isOutput = isOutputTensor(t);
Type elementType = rtp.getElementType();
if (!enc) {
// Non-annotated dense tensors.
BaseMemRefType denseTp = MemRefType::get(shape, elementType);
// TODO: if we unconditionally use fully dynamic layout here, it breaks
// some vectorization passes which requires static stride = 1.
// Is it possible to call vectorization pass after bufferization?
if (llvm::isa_and_nonnull<tensor::ExtractSliceOp>(tensor.getDefiningOp()))
denseTp = bufferization::getMemRefTypeWithFullyDynamicLayout(rtp);
Value denseVal =
builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
// Dense outputs need special handling.
if (isOutput && updater)
denseVal = updater(builder, loc, denseVal, tensor);
valBuffer[t] = denseVal;
} else {
// Annotated sparse tensors.
// We also need the value buffer for all-dense annotated "sparse" tensors.
valBuffer[t] = genToValues(builder, loc, tensor);
}
// NOTE: we can also prepare for 0 lvl here in advance, this will hoist
// some loop preparation from tensor iteration, but will also (undesirably)
// hoist the code ouside if-conditions.
}
Type indexType = builder.getIndexType();
Value c0 = constantZero(builder, loc, indexType);
for (TensorId t = 0, e = tensors.size(); t < e; t++) {
auto rtp = dyn_cast<RankedTensorType>(tensors[t].getType());
if (!rtp)
continue;
Level lvlRank = SparseTensorType(rtp).getLvlRank();
for (Level lvl = 0; lvl < lvlRank; lvl++) {
if (!dependentLvlMap[t][lvl].empty()) {
ArrayRef<std::pair<TensorId, Level>> depLvls = dependentLvlMap[t][lvl];
// Needs at least two operands to form a non-trivial affine expression.
assert(depLvls.size() > 1);
Value size = c0;
for (unsigned e = depLvls.size() - 1; e >= 1; e--) {
auto [dt, dd] = depLvls[e];
size = ADDI(size, lvlSizes[dt][dd]);
sliceSizes[t][lvl][e - 1] = size;
}
}
}
}
localInsertPos = builder.getInsertionPoint()->getPrevNode();
}
void LoopEmitter::categorizeLoopCondition(
ArrayRef<TensorLevel> tidLvls, SmallVectorImpl<TensorLvlCond> &dnConds,
SmallVectorImpl<TensorLvlCond> &spConds) {
// Finds out the tensor level that we should use to generate loops. Amongs all
// the tensor levels, there is at most one sparse tensor level.
for (auto [t, l] : unpackTensorLevelRange(tidLvls)) {
assert(lvlTypes[t].size() > l); // Must be a valid tid, dim pair
auto lvlType = lvlTypes[t][l];
// Must be a recognizable DLT.
assert(isDenseDLT(lvlType) || isCompressedDLT(lvlType) ||
isCompressedWithHiDLT(lvlType) || isSingletonDLT(lvlType));
bool isSparse = !isDenseDLT(lvlType);
bool isSlice = isSparseSlices[t];
bool isAffine = !dependentLvlMap[t][l].empty();
bool isUnRedu = false;
// TODO: Supports affine index expression on sparse tensor slices.
assert(!isSlice || !isAffine);
// Whether the affine index expression has been fully reduced or not.
if (!dependentLvlMap[t][l].empty())
isUnRedu = !depFullyReduced(t, l);
auto &dstVec = isSparse ? spConds : dnConds;
dstVec.emplace_back(
makeTensorLevel(t, l),
makeLoopCondKind(isSparse, isSlice, isAffine, isUnRedu));
}
std::stable_sort(spConds.begin(), spConds.end(), [](auto lhs, auto rhs) {
// AffineUnRed > Affine > Slice > Trivial
return static_cast<uint8_t>(lhs.second) > static_cast<uint8_t>(rhs.second);
});
}
void LoopEmitter::enterNewLoopSeq(OpBuilder &builder, Location loc,
ArrayRef<TensorLevel> tidLvls) {
// TODO: sort
assert(loopSeqStack.size() == loopStack.size());
// Prepares for all the tensors used in the current loop sequence.
std::vector<std::tuple<TensorId, Level, bool>> slicedTids;
for (auto [tid, lvl] : unpackTensorLevelRange(tidLvls)) {
if (!dependentLvlMap[tid][lvl].empty()) {
bool fullyRed = genSliceBegin(builder, loc, tid, lvl);
slicedTids.emplace_back(tid, lvl, fullyRed);
} else if (!isSynTensor(tid)) {
prepareLoopOverTensorAtLvl(builder, loc, tid, lvl);
}
}
// Universal Index starts from 0.
loopSeqStack.emplace_back(C_IDX(0), std::move(slicedTids));
}
void LoopEmitter::exitCurrentLoopSeq(OpBuilder &builder, Location loc) {
assert(loopSeqStack.size() == loopStack.size() + 1);
const auto &slicedTids = loopSeqStack.back().second;
// Depending on whether the slice is resolved or not at current loop sequence,
// end them in different ways.
for (auto [tid, lvl, res] : slicedTids) {
if (!res) {
// If this is a unresolved-slice-driven loop, pops out the slice.
assert(sliceStack[tid].back().slicedOnLvl == lvl);
sliceStack[tid].pop_back();
}
}
loopSeqStack.pop_back();
}
Value LoopEmitter::genAffine(OpBuilder &builder, Location loc, AffineExpr a) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
// FIXME: since the one callsite in Sparsification passes in a
// level-expression, the `getPosition` must in fact be a `Dimension`.
// However, elsewhere we have been lead to expect that `loopIdToOrd`
// should be indexed by `LoopId`...
const auto loopId = a.cast<AffineDimExpr>().getPosition();
assert(loopId < loopIdToOrd.size());
return loopStack[loopIdToOrd[loopId]].iv;
}
case AffineExprKind::Add: {
auto binOp = a.cast<AffineBinaryOpExpr>();
return ADDI(genAffine(builder, loc, binOp.getLHS()),
genAffine(builder, loc, binOp.getRHS()));
}
case AffineExprKind::Mul: {
auto binOp = a.cast<AffineBinaryOpExpr>();
return MULI(genAffine(builder, loc, binOp.getLHS()),
genAffine(builder, loc, binOp.getRHS()));
}
case AffineExprKind::Constant: {
int64_t c = a.cast<AffineConstantExpr>().getValue();
return C_IDX(c);
}
default:
llvm_unreachable("unexpected affine subscript");
}
}
std::pair<Operation *, Value> LoopEmitter::emitForLoopOverTensorAtLvl(
OpBuilder &builder, Location loc, TensorId tid, Level dstLvl, Value lo,
Value hi, MutableArrayRef<Value> reduc, bool isParallel) {
bool isSparseCond = isCompressedDLT(lvlTypes[tid][dstLvl]) ||
isCompressedWithHiDLT(lvlTypes[tid][dstLvl]) ||
isSingletonDLT(lvlTypes[tid][dstLvl]);
const auto reassoc = getCollapseReassociation(tid, dstLvl);
// TODO: support dynamic slices.
// Uses the first dimension here to build the loop bound (which is also the
// biggest range).
const Level srcLvl = reassoc.front();
Value step = C_IDX(1);
Operation *loop = nullptr;
Value iv;
if (isParallel) {
assert(collapseReassoc[tid] == nullptr);
scf::ParallelOp parOp =
builder.create<scf::ParallelOp>(loc, lo, hi, step, reduc);
builder.setInsertionPointToStart(parOp.getBody());
assert(parOp.getNumReductions() == reduc.size());
iv = parOp.getInductionVars()[0];
// In-place update on the reduction variable vector.
// Note that the init vals is not the actual reduction variables but instead
// used as a "special handle" to (temporarily) represent them. The
// expression on init vals will be moved into scf.reduce and replaced with
// the block arguments when exiting the loop (see exitForLoop). This is
// needed as we can not build the actual reduction block and get the actual
// reduction varaible before users fill parallel loop body.
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = parOp.getInitVals()[i];
loop = parOp;
} else {
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
builder.setInsertionPointToStart(forOp.getBody());
iv = forOp.getInductionVar();
// In-place update on the reduction variable vector.
assert(forOp.getNumRegionIterArgs() == reduc.size());
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = forOp.getRegionIterArg(i);
loop = forOp;
}
assert(loop && iv);
Value crd;
if (isSparseCond) {
assert(reassoc.size() == 1 || isUniqueCOOType(tensors[tid].getType()));
// For COO, the position is the same across consecutive levels.
/// FIXME: See the [CLARIFY_POSITS_LVL] note in the header.
llvm::for_each(reassoc,
[this, tid, iv](Level srcLvl) { posits[tid][srcLvl] = iv; });
crd = genSparseCrd(builder, loc, tid, dstLvl);
} else {
// Dense tensor, the coordinate is the inducation variable.
crd = iv;
}
if (isSparseSlices[tid] && isSparseCond) {
// For sparse level slices, we need to filter out invalid coordinates that
// are not included in the slice.
SmallVector<Type> types;
for (Value red : reduc)
types.push_back(red.getType());
auto [trans, pred] = genSliceLegitPredicate(builder, loc, crd, tid, srcLvl);
bool hasReduc = !types.empty();
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, pred,
/*else*/ hasReduc);
if (hasReduc) {
// scf.for (a) -> v
// %s = scf.if (a) -> v
// user-generated code.
// else
// yield a
// yield %s
YIELD(ifOp.getResults());
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
// On mismatch.
YIELD(reduc);
}
// Set the insertion point to matched branch.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
crd = trans;
}
assert(crd);
coords[tid][dstLvl] = crd;
return {loop, crd};
}
Value LoopEmitter::genWhileLoopConditions(OpBuilder &builder, Location loc,
ValueRange ivs, TensorLvlCond cond) {
auto [tid, lvl] = unpackTensorLevel(cond.first);
switch (cond.second) {
case LoopCondKind::SparseCond: {
const auto reassoc = getCollapseReassociation(tid, lvl);
assert(reassoc.size() == ivs.size());
assert(reassoc.size() == 1 || isUniqueCOOType(tensors[tid].getType()));
// We used the first level bound as the bound the collapsed set of levels.
return CMPI(ult, ivs.back(), highs[tid][reassoc.front()]);
}
case LoopCondKind::SparseSliceCond: {
assert(ivs.size() == 1);
return CMPI(ult, ivs.back(), highs[tid][lvl]);
}
case LoopCondKind::SparseAffineCond: {
assert(ivs.size() == 1);
Value crdHi; // loop upper bound
{
OpBuilder::InsertionGuard guard(builder);
Operation *loop = builder.getInsertionBlock()->getParentOp();
// crdHi is a loop invariant, hosit the computation outside the loop.
if (llvm::isa_and_nonnull<scf::WhileOp>(loop))
builder.setInsertionPoint(loop);
crdHi = ADDI(getMostRecentSliceOnLvl(tid, lvl).offset,
sliceSizes[tid][lvl].back());
}
assert(crdHi);
return genSparseReducedAffineCond(builder, loc,
coordinatesBuffers[tid][lvl], crdHi,
ivs[0], highs[tid][lvl]);
}
case LoopCondKind::SparseAffineUnRedCond: {
assert(ivs.size() == 3);
return ivs.front(); // isNonEmpty
}
default:
llvm_unreachable("Unhandled LoopCondKind");
}
llvm_unreachable("Unhandled LoopCondKind");
}
std::optional<Value> LoopEmitter::genWhileLoopBody(OpBuilder &builder,
Location loc, ValueRange ivs,
TensorLvlCond cond) {
auto [tid, lvl] = unpackTensorLevel(cond.first);
switch (cond.second) {
case LoopCondKind::SparseCond: {
const auto reassoc = getCollapseReassociation(tid, lvl);
assert(reassoc.size() == 1 || isUniqueCOOType(tensors[tid].getType()));
// Links the SSA chain for segHi.
for (unsigned i = 0, e = reassoc.size() - 1; i < e; i++)
if (!isUniqueDLT(lvlTypes[tid][reassoc[i]]))
segHi[tid][reassoc[i]] = ivs[i];
// Updates position. For collapsed COO, the position is the same across
// consecutive levels.
for (auto srcLvl : reassoc)
posits[tid][srcLvl] = ivs.back();
// Update coordinates.
coords[tid][lvl] = genSparseCrd(builder, loc, tid, lvl);
return std::nullopt;
}
case LoopCondKind::SparseSliceCond: {
assert(ivs.size() == 1);
posits[tid][lvl] = ivs.front();
Value sCrd = genSparseCrd(builder, loc, tid, lvl);
// Converts the coordinate loaded from the actual sparse tensor to the
// coordinates in the sparse slice.
auto [dCrd, pred] = genSliceLegitPredicate(builder, loc, sCrd, tid, lvl);
coords[tid][lvl] = dCrd;
return pred;
}
case LoopCondKind::SparseAffineCond: {
assert(ivs.size() == 1);
// Coord is the relative offset related to its parents.
assert(sliceStack[tid].back().depth == 1 && "TODO: not yet implement");
// Update c = absOffset[lvl][depth] - absOffset[lvl][depth - 1]
Value posit = ivs[0];
Value crdBuf = coordinatesBuffers[tid][lvl];
// We need to substract the offset to get relative coordinates.
// TODO: Maybe assert relC >=0 during runtime in debug build?
Value absC = genIndexLoad(builder, loc, crdBuf, posit);
auto relC = SUBI(absC, getFinalSliceOnLvl(tid, lvl).offset);
posits[tid][lvl] = posit;
coords[tid][lvl] = relC;
return std::nullopt;
}
case LoopCondKind::SparseAffineUnRedCond: {
assert(ivs.size() == 3);
// Coord is the relative offset related to its parents.
// Update c = absOffset[lvl][depth] - absOffset[lvl][depth - 1]
assert(sliceStack[tid].back().depth == 1 && "TODO: not yet implement");
// Updates the current slice info
SliceInfo &sliceInfo = sliceStack[tid].back();
sliceInfo.isNonEmpty = ivs[0];
sliceInfo.minCrd = ivs[1];
sliceInfo.offset = ivs[2];
coords[tid][lvl] = sliceInfo.offset;
// No extra check is needed before accessing the tensor level.
return std::nullopt;
}
default:
llvm_unreachable("Unhandled LoopCondKind");
}
llvm_unreachable("Unhandled LoopCondKind");
}
ValueRange LoopEmitter::genCheckedValue(OpBuilder &builder, Location loc,
Value pred, ValueRange curArgs,
TensorLvlCond cond) {
// Currently only sparse slice condition need extra check.
assert(isSliceCond(cond.second) && isSparseCond(cond.second));
assert(curArgs.size() == 1);
Value nextPos = ADDI(curArgs.front(), C_IDX(1));
return SELECT(pred, curArgs.front(), nextPos)->getResults();
}
std::pair<Operation *, Value> LoopEmitter::emitWhileLoopOverTensorsAtLvls(
OpBuilder &builder, Location loc, ArrayRef<TensorLvlCond> spConds,
MutableArrayRef<Value> reduc, bool needsUniv) {
// NOTE: the slice driven tensor-related reduction variable must
// appear before normal tensors.
assert(!spConds.empty());
// The set of induction variables for the while loop.
SmallVector<Value> ivs;
// Segement sizes for induction variables used for different kinds of loop
// conditions.
SmallVector<unsigned> opSegSize;
// Construct the while-loop with a parameter for each coordinate.
for (auto [tl, cKind] : spConds) {
auto [tid, lvl] = unpackTensorLevel(tl);
const auto lvlTp = lvlTypes[tid][lvl];
// Dense level are handled by the shared univeral index.
assert(!isDenseCond(cKind));
// Must be a recognizable sparse level.
assert(isCompressedDLT(lvlTp) || isCompressedWithHiDLT(lvlTp) ||
isSingletonDLT(lvlTp));
(void)lvlTp;
unsigned prevSz = ivs.size();
const auto reassoc = getCollapseReassociation(tid, lvl);
if (isAffineIdxCond(cKind)) {
// TODO: Support view-based reshape on sparse levels with affine index
// expressions.
assert(reassoc.size() == 1);
if (isAffineIdxUnRedCond(cKind)) {
SliceInfo &sliceInfo = sliceStack[tid].back();
// The order matters!
ivs.push_back(sliceInfo.isNonEmpty);
ivs.push_back(sliceInfo.minCrd);
ivs.push_back(sliceInfo.offset);
} else {
ivs.push_back(posits[tid][lvl]); // loop lower bound (pos low).
}
// We reduced one more dependency after entering the loop.
levelReducedDep[tid][lvl]++;
} else {
assert(dependentLvlMap[tid][lvl].empty());
for (unsigned i = 0, e = reassoc.size() - 1; i < e; i++) {
// This is the segment high for each non-unique levels.
if (!isUniqueDLT(lvlTypes[tid][reassoc[i]]))
ivs.push_back(C_IDX(0));
}
const Value pos = posits[tid][reassoc.front()];
ivs.push_back(pos);
}
opSegSize.push_back(ivs.size() - prevSz);
}
// The position where user-supplied reduction variable starts.
ivs.append(reduc.begin(), reduc.end());
// Update universal index.
if (needsUniv)
ivs.push_back(loopSeqStack.back().first);
// Ensures all operands are valid.
assert(llvm::all_of(ivs, [](Value v) { return v != nullptr; }));
TypeRange types = ValueRange(ivs).getTypes();
auto whileOp = builder.create<scf::WhileOp>(loc, types, ivs);
SmallVector<Location> locs(types.size(), loc);
Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
// Generates loop conditions.
builder.setInsertionPointToStart(before);
ValueRange bArgs = before->getArguments();
Value whileCond = nullptr; // bool values for loop condition.
for (auto [c, segSz] : llvm::zip_equal(spConds, opSegSize)) {
Value cv = genWhileLoopConditions(builder, loc, bArgs.take_front(segSz), c);
bArgs = bArgs.drop_front(segSz);
whileCond = !whileCond ? cv : ANDI(whileCond, cv);
}
// The remaining block arguments are user-provided reduction values and an
// optional universal index. Make sure their sizes match.
assert(bArgs.size() == reduc.size() + needsUniv ? 1 : 0);
builder.create<scf::ConditionOp>(loc, whileCond, before->getArguments());
// Generates loop body.
builder.setInsertionPointToStart(after);
ValueRange aArgs = after->getArguments();
// Since some LoopCondKind might need extra checks to filter out invalid
// iterations, we maintains another array to hold the iteration arguments to
// yield if the checks fails.
SmallVector<Value> nextArgs(aArgs.begin(), aArgs.end());
// A mutable alias for convenient slicing.
MutableArrayRef<Value> nextArgsRef = nextArgs;
Value extraPred = nullptr;
for (auto [c, segSz] : llvm::zip_equal(spConds, opSegSize)) {
ValueRange condArgs = aArgs.take_front(segSz);
auto pred = genWhileLoopBody(builder, loc, condArgs, c);
assert(pred.has_value() == isCondWithExtraCheck(c.second));
if (pred.has_value()) {
// We need all extra checks to pass.
extraPred = extraPred == nullptr ? *pred : ANDI(*pred, extraPred);
ValueRange nxArgs = genCheckedValue(builder, loc, *pred, condArgs, c);
assert(nxArgs.size() == segSz);
// Update the value for cases when some check fails.
for (unsigned i = 0; i < segSz; i++) {
nextArgsRef[i] = nxArgs[i];
}
}
aArgs = aArgs.drop_front(segSz);
nextArgsRef = nextArgsRef.drop_front(segSz);
}
if (extraPred) {
auto ifOp = builder.create<scf::IfOp>(loc, types, extraPred, /*else*/ true);
// Marks this special IfOp so that Sparsification does not finalizing it.
ifOp->setAttr(getLoopEmitterLoopAttrName(),
StringAttr::get(builder.getContext(), "slice"));
// Links the SSA chain outside the if statement.
YIELD(ifOp->getResults());
// If not all slices are legit, yield the updated value.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
YIELD(nextArgs);
// If all slices are legit, start the user generated code.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
for (auto [tid, dstLvl] : unpackTensorLevelFromCondRange(spConds)) {
const auto reassoc = getCollapseReassociation(tid, dstLvl);
assert(reassoc.size() == 1 || isUniqueCOOType(tensors[tid].getType()));
// TODO: Refactors this into smaller functions.
// NOTE: For all the collapsed level (except for the last one, that is why
// the loop ends with `reassoc.size() - 1`), as each iteration is advanced
// by the segment size of the last level, which does not always invalidate
// the segment size for the previous levels, thus we need to propagate the
// segment sizes across loop iterations and only forward if needed.
//
// E.g., for a COO tensor with the following coordinates array.
// (0, 0, 1),
// (0, 0, 2),
// (1, 1, 1),
// segHi[lvl=0] = segHi[lvl=1] = 2
// segHi[lvl=2] = 1,
// the first iteration does not invalidate segHi[0] and segHi[1]
for (unsigned i = 0, e = reassoc.size() - 1; i < e; i++) {
const Level srcLvl = reassoc[i];
if (!isUniqueDLT(lvlTypes[tid][srcLvl])) {
const Value pos = posits[tid][srcLvl];
const auto oldSegHi = segHi[tid][srcLvl];
assert(oldSegHi);
Value newSegHi = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::uge, pos, oldSegHi);
auto ifNewSegHi = builder.create<scf::IfOp>(loc, builder.getIndexType(),
newSegHi, true);
{
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(ifNewSegHi.thenBlock());
YIELD(genSegmentHigh(builder, loc, tid, srcLvl, pos,
highs[tid][srcLvl]));
// Else, resues the same segment high.
builder.setInsertionPointToStart(ifNewSegHi.elseBlock());
YIELD(oldSegHi);
}
highs[tid][srcLvl + 1] = segHi[tid][srcLvl] = ifNewSegHi.getResult(0);
}
};
const auto srcLvl = reassoc.back();
if (!isUniqueDLT(lvlTypes[tid][srcLvl])) {
segHi[tid][srcLvl] = genSegmentHigh(
builder, loc, tid, srcLvl, posits[tid][srcLvl], highs[tid][srcLvl]);
}
}
// In-place update on reduction variable.
assert(aArgs.size() == reduc.size() + needsUniv ? 1 : 0);
for (unsigned i = 0, e = reduc.size(); i < e; i++)
reduc[i] = aArgs[i];
Value min;
// Finds the minimum coordinate
if (!needsUniv) {
for (auto [tid, lvl] : unpackTensorLevelFromCondRange(spConds)) {
const auto lvlTp = lvlTypes[tid][lvl];
if (isCompressedDLT(lvlTp) || isSingletonDLT(lvlTp) ||
isCompressedWithHiDLT(lvlTp)) {
const auto crd = coords[tid][lvl];
if (min) {
Value cmp = CMPI(ult, coords[tid][lvl], min);
min = SELECT(cmp, coords[tid][lvl], min);
} else {
min = crd;
}
}
}
} else {
assert(!min);
// Otherwise, universal index is the minimal pos.
min = whileOp.getAfterArguments().back();
}
return {whileOp, min};
}
bool LoopEmitter::shouldIteratedByForLoop(ArrayRef<TensorLvlCond> sparseConds,
bool genDedup) {
assert(llvm::all_of(sparseConds,
[](TensorLvlCond c) { return isSparseCond(c.second); }));
// If we need to co-iterate over two sparse tensors, we need a while loop
if (sparseConds.size() > 1)
return false;
// We also need a while loop for levels with affine index expression for
// non-unique levels when deduplication is required.
if (sparseConds.size() == 1) {
auto [tid, lvl] = unpackTensorLevel(sparseConds.back().first);
auto reassoc = getCollapseReassociation(tid, lvl);
return !isAffineIdxCond(sparseConds.back().second) &&
!(genDedup && !isUniqueDLT(lvlTypes[tid][reassoc.back()]));
}
return true;
}
Operation *LoopEmitter::enterCoIterationOverTensorsAtLvls(
OpBuilder &builder, Location loc, ArrayRef<TensorLevel> tidLvls,
MutableArrayRef<Value> reduc, bool tryParallel, bool genDedup,
bool needsUniv) {
#ifndef NDEBUG
// Sanity checks.
assert(!tidLvls.empty());
for (auto [t, l] : unpackTensorLevelRange(tidLvls)) {
assert(!coords[t][l] || // We cannot re-enter the same level
!dependentLvlMap[t][l].empty()); // unless it is a slice-driver loop
}
#endif
// TODO: support multiple return on parallel for?
tryParallel = tryParallel && reduc.size() <= 1;
SmallVector<TensorLvlCond> spConds;
SmallVector<TensorLvlCond> dnConds;
categorizeLoopCondition(tidLvls, dnConds, spConds);
// Only when there is at least one sparse conditions, do we really need the
// universal index.
// TODO: Maybe we should instead requires merger to pass in a valid value at
// the first place instead of adjusting it in LoopEmitter?
needsUniv = !spConds.empty() && needsUniv;
// The TensorLevel used for loop conditions.
// If there is any sparse level, we need to use the sparse condition.
// If all levels are dense, we can pick arbitary one (dense slice-driven loop
// can be generated using a simple ForOp as well).
Operation *l = nullptr;
Value iv = nullptr;
SmallVector<SliceLoopInfo> sliceDrivenInfo;
SmallVector<TensorLevel> trivialLvls;
// Generates loops differently depending on whether we need a slice-driven
// loop or a simple level traversal loop.
if (shouldIteratedByForLoop(spConds, genDedup) && !needsUniv) {
assert(spConds.size() <= 1);
TensorLvlCond tlCond = spConds.empty() ? dnConds.front() : spConds.front();
auto loopCondKind = tlCond.second;
auto [tid, lvl] = unpackTensorLevel(tlCond.first);
Value lo = isSparseCond(loopCondKind)
? posits[tid][lvl] // current offset
: loopSeqStack.back().first; // universal index
Value hi = highs[tid][lvl];
if (isDenseCond(loopCondKind) && isAffineIdxCond(loopCondKind)) {
bool unReduc = isAffineIdxUnRedCond(loopCondKind);
assert(unReduc == !depFullyReduced(tid, lvl));
hi = sliceSizes[tid][lvl][sliceStack[tid].back().depth - 1];
if (unReduc) {
// Adjust for loop hi for dense slice-driven loop.
hi = SUBI(lvlSizes[tid][lvl], hi);
hi = ADDI(hi, C_IDX(1));
}
}
std::tie(l, iv) = emitForLoopOverTensorAtLvl(builder, loc, tid, lvl, lo, hi,
reduc, tryParallel);
// For loop condition must be a trivial condition (levels without affine
// index expression).
trivialLvls.push_back(tlCond.first);
} else {
for (auto [tl, cKind] : spConds) {
if (isAffineIdxCond(cKind)) {
auto [tid, lvl] = unpackTensorLevel(tl);
bool unReduc = isAffineIdxUnRedCond(cKind);
assert(unReduc == !depFullyReduced(tid, lvl));
sliceDrivenInfo.emplace_back(tid, lvl, /*fullyReduced=*/!unReduc);
} else {
trivialLvls.push_back(tl);
}
}
std::tie(l, iv) =
emitWhileLoopOverTensorsAtLvls(builder, loc, spConds, reduc, needsUniv);
}
// Enter dense tensor levels.
enterTensorsAtDenseLvls(builder, loc, dnConds, iv, sliceDrivenInfo);
// NOTE: we can also prepare for next dim here in advance
// Pushes the loop into stack.
loopStack.emplace_back(trivialLvls, sliceDrivenInfo, l,
builder.getInsertionBlock(), iv, loopTag);
return l;
}
Operation *LoopEmitter::enterFilterLoopOverTensorAtLvl(
OpBuilder &builder, Location loc, TensorId tid, Level lvl,
AffineExpr affine, MutableArrayRef<Value> reduc) {
assert(isValidLevel(tid, lvl));
assert(!affine.isa<AffineDimExpr>() && !isDenseDLT(lvlTypes[tid][lvl]));
// We can not re-enter the same level.
assert(!coords[tid][lvl]);
// TODO: We should instead use a whileOp for filter loop to allow early
// break when exceeding (for ordered levels).
// TODO: There are many other potiential opportunities that we might apply in
// the future. E.g., we could use binary search to locate positions.
const Value step = C_IDX(1);
const Value pLo = posits[tid][lvl];
const Value pHi = highs[tid][lvl];
scf::ForOp forOp = builder.create<scf::ForOp>(loc, pLo, pHi, step, reduc);
// In-place update on the reduction variable vector.
assert(forOp.getNumRegionIterArgs() == reduc.size());
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = forOp.getRegionIterArg(i);
builder.setInsertionPointToStart(forOp.getBody());
// The induction variable gives the position.
const Value pos = forOp.getInductionVar();
posits[tid][lvl] = pos;
// Generating a load on the coordinates array yields the crd.
const Value mem = coordinatesBuffers[tid][lvl];
const Value crd = genIndexLoad(builder, loc, mem, pos);
coords[tid][lvl] = crd;
// Generate an if-condition to filter out coordinates that are not
// equal to the result of the affine expression.
Value expected = genAffine(builder, loc, affine);
auto pred = CMPI(eq, crd, expected);
SmallVector<Type> types;
for (Value red : reduc) {
types.push_back(red.getType());
}
bool hasReduc = !types.empty();
scf::IfOp ifOp =
builder.create<scf::IfOp>(loc, types, pred, /*else*/ hasReduc);
if (hasReduc) {
// scf.for (a) -> v
// %s = scf.if (a) -> v
// user-generated code.
// else
// yield a
// yield %s
YIELD(ifOp.getResults());
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
// On mismatch.
YIELD(reduc);
}
// Set the insert point to matched branch.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
// NOTE: we can also prepare for next lvl here in advance
// Push the loop into stack
loopStack.emplace_back(ArrayRef<TensorLevel>(makeTensorLevel(tid, lvl)),
ArrayRef<SliceLoopInfo>(), forOp,
builder.getInsertionBlock(), coords[tid][lvl],
nullptr);
return forOp;
}
void LoopEmitter::genDenseAffineAddress(OpBuilder &builder, Location loc,
TensorLevel tidLvl,
AffineExpr lvlExpr) {
auto [tid, lvl] = unpackTensorLevel(tidLvl);
assert(isDenseDLT(lvlTypes[tid][lvl]));
// For dense levels, the vel-coordinate also serves as the position.
Value lvlCrd = genAffine(builder, loc, lvlExpr);
posits[tid][lvl] = genAddress(builder, loc, tid, lvl, lvlCrd);
}
void LoopEmitter::prepareLoopOverTensorAtLvl(OpBuilder &builder, Location loc,
TensorId tid, Level dstLvl) {
assert(isValidLevel(tid, dstLvl));
const auto lvlTp = lvlTypes[tid][dstLvl];
if (isDenseDLT(lvlTp))
return;
const Value c0 = C_IDX(0);
const Value c1 = C_IDX(1);
for (const Level srcLvl : getCollapseReassociation(tid, dstLvl)) {
// Either the first level, or the previous level has been set.
/// FIXME: See the [CLARIFY_POSITS_LVL] note in the header.
assert(srcLvl == 0 || posits[tid][srcLvl - 1]);
if (isDenseDLT(lvlTp))
continue;
if (isCompressedDLT(lvlTp) || isCompressedWithHiDLT(lvlTp)) {
const Value mem = positionsBuffers[tid][srcLvl];
Value pLo = srcLvl == 0 ? c0 : posits[tid][srcLvl - 1];
if (isCompressedWithHiDLT(lvlTp))
pLo = builder.create<arith::MulIOp>(loc, pLo, C_IDX(2));
posits[tid][srcLvl] = genIndexLoad(builder, loc, mem, pLo);
const Value pHi = ADDI(pLo, c1);
highs[tid][srcLvl] = genIndexLoad(builder, loc, mem, pHi);
return;
}
if (isSingletonDLT(lvlTp)) {
const Value pLo = srcLvl == 0 ? c0 : posits[tid][srcLvl - 1];
posits[tid][srcLvl] = pLo;
// If we are coiterating non-unique levels, then use pHi=segHi;
// otherwise use pHi=pLo+1.
// NOTE: Just because the level is non-unique, that does not
// guarantee that segHi is defined: because we only generate segHi
// whenever coiterating, in order to improve code quality for the
// non-coiterating cases.
const auto parentSegHi = segHi[tid][srcLvl - 1];
highs[tid][srcLvl] =
(!isUniqueDLT(lvlTypes[tid][srcLvl - 1]) && parentSegHi)
? parentSegHi
: ADDI(pLo, c1);
return;
}
}
llvm_unreachable("Unrecognized level-type!");
}
void LoopEmitter::enterTensorsAtDenseLvls(
OpBuilder &builder, Location loc, ArrayRef<TensorLvlCond> dnConds, Value iv,
SmallVectorImpl<SliceLoopInfo> &sliceInfo) {
for (auto [dnTidLvl, denseLoopCond] : dnConds) {
auto [tid, lvl] = unpackTensorLevel(dnTidLvl);
assert(isDenseDLT(lvlTypes[tid][lvl]));
if (isAffineIdxCond(denseLoopCond)) {
// Pushes sliced levels to build correct LoopInfo.
bool unReduc = isAffineIdxUnRedCond(denseLoopCond);
SliceInfo &info = sliceStack[tid].back();
// Pushes sliced dense loop info to tell LoopEmitter how to exit it.
sliceInfo.emplace_back(tid, lvl, /*fullyReduced=*/!unReduc);
if (unReduc) {
assert(*info.slicedOnLvl == lvl);
// Update the slice information as we enter the new loop.
info.minCrd = info.offset = iv;
info.isNonEmpty = constantI1(builder, loc, true);
levelReducedDep[tid][lvl]++;
} else {
posits[tid][lvl] =
genAddress(builder, loc, tid, lvl, ADDI(info.offset, iv));
}
} else {
// Skips the synthetic tensor
if (isSynTensor(tid))
continue;
// A dense level with trivial index expression.
assert(dependentLvlMap[tid][lvl].empty());
auto enc = getSparseTensorEncoding(tensors[tid].getType());
if (enc && !isSparseOutput(tid)) {
bool validPos = lvl == 0 || posits[tid][lvl - 1];
if (!validPos) {
// We might not find the pos for the sparse output tensor as it is
// unconditionally required by the sparsification.
assert(isOutputTensor(tid));
continue;
}
posits[tid][lvl] = genAddress(builder, loc, tid, lvl, iv);
// NOTE: we can also prepare for next lvl here in advance
}
}
}
}
void LoopEmitter::exitForLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc) {
const LoopInfo &loopInfo = loopStack.back();
for (auto [tid, lvl, reduced] : loopInfo.sliceDrivenInfo) {
if (!reduced) {
SliceInfo &info = sliceStack[tid].back();
assert(isDenseDLT(lvlTypes[tid][lvl]));
assert(*info.slicedOnLvl == lvl);
(void)reduced;
// Resets slices pointers as the resolved slices are invalidated after we
// moves forward to the next slice.
invalidateSliceIterIdx(rewriter, loc, tid, lvl);
info.minCrd = info.offset = info.isNonEmpty = Value();
levelReducedDep[tid][lvl]--;
} else {
forwardsReducedSliceLevelTreeIt(rewriter, loc, tid, lvl,
constantIndex(rewriter, loc, 1));
}
}
if (auto forOp = llvm::dyn_cast<scf::ForOp>(loopInfo.loop)) {
if (!reduc.empty()) {
assert(reduc.size() == forOp.getNumResults());
rewriter.create<scf::YieldOp>(loc, reduc);
}
// Exit the loop.
rewriter.setInsertionPointAfter(forOp);
// In-place update reduction variables.
for (unsigned i = 0, e = forOp.getResults().size(); i < e; i++)
reduc[i] = forOp.getResult(i);
} else {
auto parOp = llvm::cast<scf::ParallelOp>(loopInfo.loop);
if (!reduc.empty()) {
assert(reduc.size() == parOp.getInitVals().size() && reduc.size() == 1);
Operation *redExp = reduc.front().getDefiningOp();
// Reduction expression should have no use.
assert(redExp->getUses().empty());
// This must be a binary operation.
// NOTE: This is users' responsibilty to ensure the operation are
// commutative.
assert(redExp->getNumOperands() == 2 && redExp->getNumResults() == 1);
Value redVal = parOp.getInitVals().front();
Value curVal;
if (redExp->getOperand(0) == redVal)
curVal = redExp->getOperand(1);
else if (redExp->getOperand(1) == redVal)
curVal = redExp->getOperand(0);
// One of the operands must be the init value (which is also the
// previous reduction value).
assert(curVal);
#ifndef NDEBUG
// The reduction expression should be the only user of the reduction val
// inside the parallel for.
unsigned numUsers = 0;
for (Operation *op : redVal.getUsers()) {
if (op->getParentOp() == parOp)
numUsers++;
}
assert(numUsers == 1);
#endif // NDEBUG
rewriter.setInsertionPointAfter(redExp);
auto redOp = rewriter.create<scf::ReduceOp>(loc, curVal);
// Attach to the reduction op.
Block *redBlock = &redOp.getRegion().getBlocks().front();
rewriter.setInsertionPointToEnd(redBlock);
Operation *newRed = rewriter.clone(*redExp);
// Replaces arguments of the reduction expression by using the block
// arguments from scf.reduce.
rewriter.updateRootInPlace(
newRed, [&]() { newRed->setOperands(redBlock->getArguments()); });
// Erases the out-dated reduction expression.
rewriter.eraseOp(redExp);
rewriter.setInsertionPointToEnd(redBlock);
rewriter.create<scf::ReduceReturnOp>(loc, newRed->getResult(0));
}
rewriter.setInsertionPointAfter(parOp);
// In-place update reduction variables.
for (unsigned i = 0, e = parOp.getResults().size(); i < e; i++)
reduc[i] = parOp.getResult(i);
}
// Finished iterating a tensor, clean up
// We only do the clean up on for loop as while loops do not necessarily
// finish the iteration on a sparse tensor
for (auto [tid, lvl] : unpackTensorLevelRange(loopInfo.trivialTidLvls)) {
// Reset to null.
coords[tid][lvl] = Value();
posits[tid][lvl] = Value();
// Dense level, high is fixed.
if (!isDenseDLT(lvlTypes[tid][lvl]))
highs[tid][lvl] = Value();
}
}
void LoopEmitter::forwardsReducedSliceLevelTreeIt(OpBuilder &builder,
Location loc, TensorId tid,
Level rootLvl, Value fcnt) {
auto stt = getSparseTensorType(tensors[tid]);
// Finds a [Lvl, leafLvl) range, and all level in between are fully reduced
// level (but not resolved). Since we forward an iterator at higher level of
// the tree, the subtree need to be pruned.
Level leafLvl = rootLvl + 1;
while (leafLvl < stt.getLvlRank() && !dependentLvlMap[tid][leafLvl].empty()) {
assert(depFullyReduced(tid, leafLvl));
leafLvl++;
}
Level curLvl = rootLvl + 1;
// Prunes all denses subtree.
while (curLvl < leafLvl && isDenseDLT(lvlTypes[tid][curLvl])) {
// One step forward in parent level results in forwarding `slice.size` step
// in child dense level.
fcnt = MULI(sliceSizes[tid][curLvl].back(), fcnt);
curLvl++;
}
Value nxPosPtr = nullptr;
if (curLvl < leafLvl) {
assert(!isDenseDLT(lvlTypes[tid][curLvl]));
// The first compressed level, setting up the position pointer for it.
Value sPosBuf = slicePosBuffer[tid][curLvl].back();
// One step forwards in the parent level result in forwarding one `segment`
// (kSliceIterWidth) in the child sparse level.
Value fPosPtr = MULI(fcnt, C_IDX(kSliceIterWidth)); // forward ptr
Value pPosPtr = loadSlicePosPtr(builder, loc, sPosBuf); // previous ptr
Value cPosPtr = ADDI(fPosPtr, pPosPtr); // current ptr
updateSlicePosPtr(builder, loc, sPosBuf, cPosPtr);
// Loads the position pointer start for next level.
nxPosPtr = loadSliceNextPosPtrStart(builder, loc, sPosBuf, cPosPtr);
curLvl++;
}
// TODO: This is not always needed, but we did it unconditionally for now for
// simplicity.
// It is only needed when `curLvl` is forwarded without traversing its child
// level (e.g., the level is in a conjunctive lattices and got pruned), such
// that the position pointer is not forwarded inside the loop.
for (; curLvl < leafLvl; curLvl++) {
assert(nxPosPtr);
if (!isDenseDLT(lvlTypes[tid][curLvl])) {
nxPosPtr = MULI(nxPosPtr, C_IDX(kSliceIterWidth));
Value sPosBuf = slicePosBuffer[tid][curLvl].back();
updateSlicePosPtr(builder, loc, sPosBuf, nxPosPtr);
nxPosPtr = loadSliceNextPosPtrStart(builder, loc, sPosBuf, nxPosPtr);
}
}
}
void LoopEmitter::exitWhileLoop(OpBuilder &builder, Location loc,
MutableArrayRef<Value> reduc) {
const LoopInfo &loopInfo = loopStack.back();
auto whileOp = llvm::cast<scf::WhileOp>(loopInfo.loop);
Value iv = loopInfo.iv;
Value one = C_IDX(1);
// Finalize the induction. Note that the induction could be performed
// in the individual if-branches to avoid re-evaluating the conditions.
// However, that would result in a rather elaborate forest of yield
// instructions during code generation. Moreover, performing the induction
// after the if-statements more closely resembles code generated by TACO.
unsigned o = 0;
SmallVector<Value> operands;
unsigned delta = 0;
for (auto [tid, lvl, resolved] : loopInfo.sliceDrivenInfo) {
// TODO: handle dense.
assert(isCompressedDLT(lvlTypes[tid][lvl]));
levelReducedDep[tid][lvl]--;
if (!resolved) {
// TODO: support coiterating multiple slices
assert(loopInfo.trivialTidLvls.empty() &&
loopInfo.sliceDrivenInfo.size() == 1);
genSliceNextInduction(builder, loc, whileOp, tid, lvl, operands, o);
continue;
}
Value forwarded = nullptr;
if (loopInfo.trivialTidLvls.empty() &&
loopInfo.sliceDrivenInfo.size() == 1) {
// Forwards the position iterator.
operands.push_back(ADDI(posits[tid][lvl], one));
forwarded = constantI1(builder, loc, true);
} else {
const Value pos = posits[tid][lvl];
const Value nxPos = ADDI(posits[tid][lvl], one);
forwarded = CMPI(eq, coords[tid][lvl], iv);
operands.push_back(SELECT(forwarded, nxPos, pos));
}
{
OpBuilder::InsertionGuard guard(builder);
auto ifOp = builder.create<scf::IfOp>(loc, TypeRange{}, forwarded,
/*else=*/false);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
forwardsReducedSliceLevelTreeIt(builder, loc, tid, lvl, one);
}
// The coordinate is invalid now.
coords[tid][lvl] = nullptr;
// Update the position iterator as we exit the while loop.
posits[tid][lvl] = whileOp->getResult(o++);
};
for (auto [tid, dstLvl] : unpackTensorLevelRange(loopInfo.trivialTidLvls)) {
const auto lvlTp = lvlTypes[tid][dstLvl];
if (isCompressedDLT(lvlTp) || isSingletonDLT(lvlTp) ||
isCompressedWithHiDLT(lvlTp)) {
const auto reassoc = getCollapseReassociation(tid, dstLvl);
assert(reassoc.size() == 1 || isUniqueCOOType(tensors[tid].getType()));
for (unsigned i = 0, e = reassoc.size() - 1; i < e; i++) {
const Level srcLvl = reassoc[i];
if (!isUniqueDLT(lvlTypes[tid][srcLvl])) {
operands.push_back(segHi[tid][srcLvl]);
o++;
}
}
const Value crd = coords[tid][dstLvl];
const Value pos = posits[tid][dstLvl];
Value cmp = CMPI(eq, crd, iv);
// If the loop contains a coiteration with non-unique level, we fast
// forward all the duplicated coords by setting the position to the
// segment high.
Value add = !isUniqueDLT(lvlTypes[tid][reassoc.back()])
? segHi[tid][reassoc.back()]
: ADDI(pos, one);
operands.push_back(SELECT(cmp, add, pos));
// Following loops continue iteration from the break point of the
// current while loop.
const Value newPos = whileOp->getResult(o++);
// We need to define a new local variable for `tid` to avoid
// warnings about "captured structured bindings are a C++20 extension".
// FIXME(wrengr): define a helper function to capture this idiom!
const TensorId newTid = tid;
llvm::for_each(reassoc, [this, newTid, newPos](Level srcLvl) {
posits[newTid][srcLvl] = newPos;
});
// The coordinate is invalid now.
coords[tid][dstLvl] = nullptr;
// The segment high is invalid now.
segHi[tid][dstLvl] = nullptr;
// highs remains unchanged.
}
}
// Reduction value from users.
for (auto &i : reduc) {
operands.push_back(i);
// In place update reduction variable.
i = whileOp->getResult(o++);
}
// An (optional) universal index.
if (operands.size() + delta < whileOp.getNumResults()) {
assert(operands.size() + delta + 1 == whileOp.getNumResults());
// The last one is the universial index.
operands.push_back(ADDI(iv, one));
// update the loop starting point of current loop sequence
loopSeqStack.back().first = whileOp->getResult(o++);
}
assert(o == operands.size() + delta);
if (!operands.empty())
YIELD(operands);
builder.setInsertionPointAfter(whileOp);
}
void LoopEmitter::exitCurrentLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc) {
// Clean up the values, it would help use to discover potential bug at a
// earlier stage (instead of silently using a wrong value).
const LoopInfo &loopInfo = loopStack.back();
// Sets the insertion point to the right position.
rewriter.setInsertionPointToEnd(loopInfo.userCodeBlock);
if (!loopInfo.userCodeBlock->empty() &&
llvm::isa<scf::YieldOp>(&loopInfo.userCodeBlock->back())) {
// scf::While/For inserts an implicit yield op when there is no loop
// iter args. In this case, we need to insert the code before the yield.
assert(loopInfo.userCodeBlock->back().getNumResults() == 0);
rewriter.setInsertionPoint(&loopInfo.userCodeBlock->back());
}
if (llvm::isa<scf::WhileOp>(loopInfo.loop)) {
exitWhileLoop(rewriter, loc, reduc);
} else {
exitForLoop(rewriter, loc, reduc);
}
assert(loopStack.size() == loopSeqStack.size());
loopStack.pop_back();
}
//===----------------------------------------------------------------------===//
// Slice-driven loop related methods.
//===----------------------------------------------------------------------===//
unsigned LoopEmitter::remDepOnLevel(TensorId tid, Level lvl) const {
unsigned totalDependencies = dependentLvlMap[tid][lvl].size();
if (totalDependencies != 0) {
assert(totalDependencies >= 2);
return totalDependencies - levelReducedDep[tid][lvl];
}
return totalDependencies;
}
const LoopEmitter::SliceInfo &LoopEmitter::getMostRecentSliceOnLvl(TensorId tid,
Level lvl) {
// Finds the most-recent slice using a reverse iteration.
for (auto it = sliceStack[tid].rbegin(), ie = sliceStack[tid].rend(); it < ie;
it++) {
if (it->slicedOnLvl == lvl) { // the level matched
return *it;
}
}
llvm_unreachable("Failed to find sliceInfo");
}
// Generates a while loop to iterate over a slice sparse level as follows.
//
// while(coords[loopLo] < offset + size) {
// body_builder
// loopLo ++;
// }
std::pair<Operation *, ValueRange> LoopEmitter::genSliceLvlTraverseLoop(
OpBuilder &builder, Location loc, Value posLo, Value posHi, Value offset,
Value size, TensorId tid, Level lvl, ValueRange userReduc,
LoopBodyBuilder bodyBuilder) {
Value c1 = C_IDX(1);
Value sliceHi = ADDI(offset, sliceSizes[tid][lvl].back());
SmallVector<Value> reduc{posLo}; // loop lower bounds
const unsigned numMetaReduc = reduc.size();
// Append user required reduction value.
reduc.append(userReduc.begin(), userReduc.end());
scf::WhileOp whileOp = builder.create<scf::WhileOp>(
loc, ValueRange(reduc).getTypes(), reduc,
/*beforeBuilder=*/
[this, posHi, sliceHi, tid, lvl](OpBuilder &builder, Location loc,
ValueRange args) {
Value cond = genSparseReducedAffineCond(builder, loc,
coordinatesBuffers[tid][lvl],
sliceHi, args[0], posHi);
// continue if not yet break nor out of bound.
builder.create<scf::ConditionOp>(loc, cond, args);
},
/*afterBuilder=*/
[c1, numMetaReduc, bodyBuilder](OpBuilder &builder, Location loc,
ValueRange args) {
Value iv = args[0];
TypeRange types = args.drop_front(numMetaReduc).getTypes();
// The coordinate must be in bound as guaranteed by the loop
// condition. We generate a fake if operation here only to hide the
// extra loop induction variables maintained by us from users, which
// will be removed by later optimization pass.
auto ifOp = builder.create<scf::IfOp>(loc, types,
constantI1(builder, loc, true),
/*withElseBlock=*/!types.empty());
{
// 2 reduction variable maintained by us.
SmallVector<Value> ifRet = args.drop_front(numMetaReduc);
assert(ifRet.size() == args.size() - 1);
OpBuilder::InsertionGuard guard(builder);
// If coord >= sliceHi.
if (!ifRet.empty()) {
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
YIELD(ifRet);
}
// If coord < sliceHi.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
// Delegates to users' callback.
bodyBuilder(builder, loc, iv, ifRet);
}
// Marks this speical ifOp to avoid sparisification finalizing it.
ifOp->setAttr(getLoopEmitterLoopAttrName(),
StringAttr::get(builder.getContext(), "slice"));
// Insertion point restored to after ifOp.
SmallVector<Value> yields;
// Increase induction variable.
yields.push_back(ADDI(iv, c1));
yields.append(ifOp.getResults().begin(), ifOp.getResults().end());
YIELD(yields);
});
builder.setInsertionPointAfter(whileOp);
return std::make_pair(whileOp, whileOp.getResults().drop_front(numMetaReduc));
}
// Generates a loop nest that traverse all the unresolved levels in between.
//
// for(int i = 0; i < slicePos.size(); i+=2) {
// loopLo = slicePos[i];
// loopHi = slicePos[i + 1];
//
// // Then the same loop generated by genSliceLvlTraverse above.
// while (loopLo < loopHI) {
// if (pos[loopLo] < sliceHi) {
// bodyBuilder();
// } else {
// break;
// }
// loopLo ++;
// }
// }
ValueRange LoopEmitter::genUnResolvedSliceTreeTraverse(
OpBuilder &builder, Location loc, TensorId tid,
ArrayRef<const SliceInfo *> unResLvls,
std::optional<std::pair<TensorId, Level>> firstResLvl, ValueRange userReduc,
LoopBodyBuilder bodyBuilder) {
Value c0 = C_IDX(0), c1 = C_IDX(1), c2 = C_IDX(2);
Value pos = c0;
OpBuilder::InsertPoint ip;
SmallVector<Value> innerArgs(userReduc.begin(), userReduc.end());
scf::ForOp outerMost = nullptr; // the outtermost loop.
// Wraps body builder and inserts a extra counting instruction at the end.
auto wrapped = [bodyBuilder](OpBuilder &builder, Location loc, Value iv,
MutableArrayRef<Value> reduc) {
bodyBuilder(builder, loc, iv, reduc.drop_back());
// Increments the counter.
reduc.back() = ADDI(reduc.back(), C_IDX(1));
};
if (firstResLvl.has_value()) {
// Overwrite position when the first level is fully resolved.
pos = posits[firstResLvl->first][firstResLvl->second];
ip = builder.saveInsertionPoint();
} else {
const SliceInfo &frontSlice = *unResLvls.back();
Level firstLvl = *frontSlice.slicedOnLvl;
if (!lvlFullyResolved(tid, firstLvl)) {
if (isCompressedDLT(lvlTypes[tid][firstLvl])) {
// An extra counter that tracks how many segments are there in the child
// compressed level.
innerArgs.push_back(c0);
// Overrides the user-provided builder.
bodyBuilder = wrapped;
unsigned depth = frontSlice.depth - 1;
Value offset = frontSlice.offset;
Value sPtrBuf = slicePosBuffer[tid][firstLvl][depth];
Value mSz = genIndexLoad(builder, loc, sPtrBuf, c0); // memSize
outerMost = builder.create<scf::ForOp>(
loc, c2, mSz, C_IDX(kSliceIterWidth), innerArgs,
[this, c1, c2, tid, firstLvl, offset, sPtrBuf, &ip, &pos,
&innerArgs](OpBuilder &builder, Location loc, Value iv,
ValueRange iterArgs) {
// generate traversal for each level.
Value loopLo = genIndexLoad(builder, loc, sPtrBuf, iv);
Value loopHi = genIndexLoad(builder, loc, sPtrBuf, ADDI(iv, c1));
// We need to remember the starting index for next level's
// position, because slice-driven loop breaks the level into
// non-consecutive segments.
builder.create<memref::StoreOp>(loc, iterArgs.back(), sPtrBuf,
ADDI(iv, c2).getResult());
ValueRange itArgs =
genSliceLvlTraverseLoop(
builder, loc, loopLo, loopHi, offset,
sliceSizes[tid][firstLvl].back(), tid, firstLvl, iterArgs,
[&](OpBuilder &builder, Location, Value iv,
MutableArrayRef<Value> reduc) {
ip = builder.saveInsertionPoint();
pos = iv;
innerArgs.assign(reduc.begin(), reduc.end());
})
.second;
YIELD(itArgs);
});
} else if (isDenseDLT(lvlTypes[tid][firstLvl])) {
assert(firstLvl == 0); // This must be the first level.
Value lb = frontSlice.offset;
Value sliceSz =
sliceSizes[tid][*frontSlice.slicedOnLvl][frontSlice.depth - 1];
Value ub = ADDI(lb, sliceSz);
outerMost = builder.create<scf::ForOp>(
loc, lb, ub, c1, innerArgs,
[&](OpBuilder &builder, Location loc, Value iv,
ValueRange iterArgs) {
ip = builder.saveInsertionPoint();
pos = iv;
innerArgs.assign(iterArgs.begin(), iterArgs.end());
});
}
// We generated the loop for the first slice above, now remove it.
unResLvls = unResLvls.drop_back();
}
}
// Reset the insertion point into the loop body.
builder.restoreInsertionPoint(ip);
if (!unResLvls.empty()) {
// Fills in dense slices levels in between.
SmallVector<Value> lbs, ubs, steps, lvlSzs;
for (const SliceInfo *slice : llvm::reverse(unResLvls)) {
Level sliceLvl = *slice->slicedOnLvl;
assert(isDenseDLT(lvlTypes[tid][sliceLvl]));
Value offset = slice->offset;
Value sliceSz = sliceSizes[tid][sliceLvl][slice->depth - 1];
lbs.push_back(offset);
ubs.push_back(ADDI(offset, sliceSz));
steps.push_back(c1);
lvlSzs.push_back(lvlSizes[tid][sliceLvl]);
}
auto denseNest =
scf::buildLoopNest(builder, loc, lbs, ubs, steps, innerArgs,
[&innerArgs, &lvlSzs, &pos, bodyBuilder](
OpBuilder &builder, Location loc, ValueRange ivs,
ValueRange iterArgs) -> scf::ValueVector {
for (auto em : llvm::enumerate(ivs)) {
// Linearizes postion: pos = (pos * lvlsize) +
// iv;
pos = MULI(pos, lvlSzs[em.index()]);
pos = ADDI(pos, em.value());
}
innerArgs.assign(iterArgs.begin(), iterArgs.end());
// Generates user request loop body.
bodyBuilder(builder, loc, pos, innerArgs);
return innerArgs;
});
if (!outerMost) {
// If the outermost loop has not been set, this is the outermost loop.
outerMost = denseNest.loops.front();
} else {
// Otherwise we need to generate yield operations to link the SSA chain.
YIELD(denseNest.results);
}
} else {
assert(outerMost);
// Generates user request loop body.
bodyBuilder(builder, loc, pos, innerArgs);
YIELD(innerArgs);
}
assert(outerMost);
// Insert after current while operation.
builder.setInsertionPointAfter(outerMost);
return outerMost.getResults();
}
void LoopEmitter::genResolvedSliceBegin(OpBuilder &builder, Location loc,
TensorId tid, Level lvl) {
Value c0 = C_IDX(0), c1 = C_IDX(1), c2 = C_IDX(2), c3 = C_IDX(3),
c4 = C_IDX(4);
if (isDenseDLT(lvlTypes[tid][lvl])) {
// Dense slice begin is trivial.
sliceStack[tid].emplace_back(/*minCoord=*/c0, /*offset=*/c0,
/*nonEmpty=*/constantI1(builder, loc, true),
lvl, /*depth=*/1);
return;
}
Value size = sliceSizes[tid][lvl][0];
Value sPtrBuf = slicePosBuffer[tid][lvl][0];
Value pHi, pLo;
if (lvl == 0) {
pLo = c0;
pHi = genIndexLoad(builder, loc, positionsBuffers[tid][0], c1);
} else {
pLo = genIndexLoad(builder, loc, positionsBuffers[tid][lvl],
posits[tid][lvl - 1]);
pHi = genIndexLoad(builder, loc, positionsBuffers[tid][lvl],
ADDI(posits[tid][lvl - 1], c1));
}
// Fills out pIdxBuffer[tid][lvl][0] with [/*memSize =*/4, 0, 0, pHi]
builder.create<memref::StoreOp>(loc, c4, sPtrBuf, c0); // memSize = 4
builder.create<memref::StoreOp>(loc, c0, sPtrBuf, c1); // index = 0
builder.create<memref::StoreOp>(loc, pLo, sPtrBuf, c2); // pLo
builder.create<memref::StoreOp>(loc, pHi, sPtrBuf, c3); // pHi
// This is an non empty tensor if 0 < pHi.
Value isNonEmpty = CMPI(ult, c0, pHi);
// The minimal coord must be at the first on ordered level.
// FIXME: Technically we should load the coord only when the slice is
// nonempty. though we assume that even on empty sparse tensors, a non-empty
// ptr/idx buffer is allocated for each level so it would not cause OOB to
// avoid generating a ifOp here.
Value minCrd = genIndexLoad(builder, loc, coordinatesBuffers[tid][0], c0);
// FIXME: We need the relative offset related to the base slice.
Value absOffset = offsetFromMinCoord(builder, loc, minCrd, size, isNonEmpty);
sliceStack[tid].emplace_back(minCrd, absOffset, isNonEmpty, lvl,
/*depth=*/1);
}
// Fills in the slicePosBuffer before slice-driven loop begin.
// TODO: it can only handle all compressed tensors.
//
// // Loop generated by `genUnResolvedSliceTreeTraverse`
// for(int i = 0; i < slicePos.size(); i+=2) {
// loopLo = slicePos[i];
// loopHi = slicePos[i + 1];
// minCrd = max;
// while (loopLo < loopHi) {
// if (pos[loopLo] < sliceHi) {
// // bodyBuilder
// slicePos[tid].push_back(pos[loopLo]);
// slicePos[tid].push_back(pos[loopLo + 1]);
// minCrd = min(minCrd, crd[pos[loopLo]]);
// } else {
// break;
// }
// loopLo ++;
// }
// }
void LoopEmitter::genUnResolvedSliceBegin(OpBuilder &builder, Location loc,
TensorId tid, Level lvl) {
Value c0 = C_IDX(0), c1 = C_IDX(1), c2 = C_IDX(2);
unsigned depth = levelReducedDep[tid][lvl];
Value size = sliceSizes[tid][lvl][depth]; // Dense slice begin is trivial
if (isDenseDLT(lvlTypes[tid][lvl])) {
sliceStack[tid].emplace_back(c0, c0, constantI1(builder, loc, false), lvl,
depth + 1);
return;
}
assert(isCompressedDLT(lvlTypes[tid][lvl]));
// Unhandled Cases:
//
// 1st, lvl = prevSlicedLvl, i.e., t[d0 + d1 + d2,...] (more than one
// variable need to be reduced on the same level).
//
// 2nd, lvl > prevSliceLvl + 1, i.e., t[..., d2, d3 + d4] (having a
// simple dim expression in between).
assert(lvl == *sliceStack[tid].back().slicedOnLvl + 1);
// Check slice stack integrity.
assert(slicePosBuffer[tid][lvl - 1].size() == sliceStack[tid].back().depth);
SmallVector<const SliceInfo *> unResSlices;
std::optional<std::pair<TensorId, Level>> firstResLvl;
for (Level curLvl = lvl; curLvl >= 1; curLvl--) {
Level prevLvl = curLvl - 1;
if (lvlFullyResolved(tid, prevLvl)) {
firstResLvl = std::make_pair(tid, prevLvl);
break;
}
unResSlices.push_back(&getMostRecentSliceOnLvl(tid, prevLvl));
if (!isDenseDLT(lvlTypes[tid][prevLvl])) {
break;
}
}
assert(!unResSlices.empty() &&
!lvlFullyResolved(tid, *unResSlices.front()->slicedOnLvl));
Value sPtrBuf = slicePosBuffer[tid][lvl].back();
SmallVector<Value, 3> reduc = {
constantI1(builder, loc, false), // isNonEmpty
lvlSizes[tid][lvl], // minCoord
c2, // memSize
};
ValueRange result = genUnResolvedSliceTreeTraverse(
builder, loc, tid, unResSlices, firstResLvl, reduc,
[this, c1, tid, lvl, sPtrBuf](OpBuilder &builder, Location loc, Value iv,
MutableArrayRef<Value> reduc) {
Value &nonEmpty = reduc[0];
Value &minCrd = reduc[1];
Value &curMemSz = reduc[2];
Value pHi = ADDI(iv, c1);
Value sPLo = genIndexLoad(builder, loc, positionsBuffers[tid][lvl], iv);
Value sPHi =
genIndexLoad(builder, loc, positionsBuffers[tid][lvl], pHi);
// isNonEmpty = isNonEmpty || lvlNonEmpty, i.e., as long as there is
// one non-empty lvl, the slice is non-empty.
Value lvlNonEmpty = CMPI(ult, sPLo, sPHi);
nonEmpty = builder.create<arith::OrIOp>(loc, lvlNonEmpty, nonEmpty);
// Update the minimum coordinate.
auto ifNonEmpty = builder.create<scf::IfOp>(loc, builder.getIndexType(),
lvlNonEmpty, true);
{
// Generate Code as follows.
//
// if (nonEmpty) {
// minCrd = min(minCrd, crd[pos[pLo]]);
// }
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(ifNonEmpty.thenBlock());
Value curC =
genIndexLoad(builder, loc, coordinatesBuffers[tid][lvl], sPLo);
Value isSmaller = CMPI(ult, curC, minCrd);
Value newMin = SELECT(isSmaller, curC, minCrd);
YIELD(newMin);
builder.setInsertionPointToStart(ifNonEmpty.elseBlock());
YIELD(minCrd);
}
minCrd = ifNonEmpty.getResult(0);
builder.create<memref::StoreOp>(loc, sPLo, sPtrBuf, curMemSz);
Value nxtMemSize = ADDI(curMemSz, c1);
builder.create<memref::StoreOp>(loc, sPHi, sPtrBuf, nxtMemSize);
// curMemSize += kSliceIterWidth
curMemSz = ADDI(curMemSz, C_IDX(kSliceIterWidth));
});
Value isNonEmpty = result[0];
Value minCrd = result[1];
// Two metadata [memSize, idx].
// TODO: Can use an SSA value for these two metadata
builder.create<memref::StoreOp>(loc, result[2], sPtrBuf, c0);
builder.create<memref::StoreOp>(loc, c0, sPtrBuf, c1);
// FIXME: we need the relative offset related to the base slice.
Value absOffset = offsetFromMinCoord(builder, loc, minCrd, size, isNonEmpty);
sliceStack[tid].emplace_back(minCrd, absOffset, isNonEmpty, lvl, depth + 1);
}
bool LoopEmitter::genSliceBegin(OpBuilder &builder, Location loc, TensorId tid,
Level lvl) {
Value c1 = C_IDX(1), c2 = C_IDX(2);
if (depFullyReduced(tid, lvl)) {
// Do not need to prepare for slice driven loop on dense level after it is
// fully reduced.
if (isDenseDLT(lvlTypes[tid][lvl]))
return true;
// If constraints on the tensor is fully resolved. We do not need to
// generates slice begin any more, instead we fall back to TACO-based
// algorithm to (co)iterates over the slice.
Value pLoPtr =
loadSlicePosPtr(builder, loc, slicePosBuffer[tid][lvl].back());
pLoPtr = ADDI(pLoPtr, c2);
Value pHiPtr = ADDI(pLoPtr, c1);
posits[tid][lvl] =
genIndexLoad(builder, loc, slicePosBuffer[tid][lvl].back(), pLoPtr);
highs[tid][lvl] =
genIndexLoad(builder, loc, slicePosBuffer[tid][lvl].back(), pHiPtr);
return true;
}
// Only when the level is sorted, the next-non-empty slice can be computed
// efficiently.
const DimLevelType lvlType = lvlTypes[tid][lvl];
assert(isOrderedDLT(lvlType));
if (isSingletonDLT(lvlType)) {
llvm_unreachable("TODO: dense level should be easy to support, while "
"singleton level requres more efforts");
}
assert(!dependentLvlMap[tid][lvl].empty());
assert(!sliceStack[tid].empty());
const SliceInfo &sliceInfo = sliceStack[tid].back();
auto baseEnc = getSparseTensorEncoding(tensors[tid].getType());
if (baseEnc.isSlice())
llvm_unreachable("TODO: not yet implemented");
// Generate caches required to fast compute next-non-empty slices with
// increasing offset for slice-base loop.
// We do not need cache for dense levels.
if (slicePosBuffer[tid][lvl][0] == nullptr && !isDenseDLT(lvlType)) {
OpBuilder::InsertionGuard guard(builder);
// The buffer can be reused, and the size is loop invariant: it only
// depends on the iteration graph's toposort.
builder.setInsertionPointAfter(localInsertPos);
Value bufSize = C_IDX(1);
Value c2 = C_IDX(2);
// Accumlates the size required to cache the pLo for the slice.
// E.g., if we want to cache the pIdx for slice<d0xd1xf64> on the second
// level. We at most need to a memref<d0xindex>.
// NOTE: this is apperantly an over-approximation when the previous
// level is compressed, and we can compute a precise memory size
// inside the loops. But that would also requires us to allocate/free
// memorys in loops.
// TODO: Maybe using allocaScopeOp inside the loop to resolve the issue?
for (Level curLevel = lvl;
curLevel >= 1 && !lvlFullyResolved(tid, curLevel - 1); curLevel--) {
auto depth = remDepOnLevel(tid, curLevel - 1);
assert(sliceSizes[tid][lvl].size() >= depth);
Value sz = *(sliceSizes[tid][lvl].rbegin() + depth - 1);
bufSize = MULI(bufSize, sz);
}
// For a triple of [pLo, pHi, pPtr]. Note that we can not compress pHi
// because slice creates segments in the index buffer so that the pHi for
// the current level is no longer the pLo for the next level.
bufSize = MULI(bufSize, C_IDX(kSliceIterWidth));
// Additional two metadata {memSize, idx} at head.
bufSize = ADDI(bufSize, c2);
llvm::for_each(
slicePosBuffer[tid][lvl], [bufSize, loc, &builder](Value &cache) {
cache = genAlloca(builder, loc, bufSize, builder.getIndexType());
});
}
if (sliceInfo.isInitialTensor() ||
(lvl >= 1 && lvlFullyResolved(tid, lvl - 1))) {
// First level or previous level has been full resolved.
genResolvedSliceBegin(builder, loc, tid, lvl);
} else {
// The previous level has not been full resolved.
genUnResolvedSliceBegin(builder, loc, tid, lvl);
}
return false;
}
void LoopEmitter::invalidateSliceIterIdx(OpBuilder &builder, Location loc,
TensorId tid, Level lvl) {
for (unsigned i = 0; i <= lvl; i++) {
if (!isDenseDLT(lvlTypes[tid][i]) && !dependentLvlMap[tid][i].empty()) {
updateSlicePosPtr(builder, loc, slicePosBuffer[tid][i].back(), C_IDX(0));
}
}
}
void LoopEmitter::genSliceNextInduction(OpBuilder &builder, Location loc,
const Operation *op, TensorId tid,
Level lvl,
SmallVectorImpl<Value> &operands,
unsigned &retIdx) {
if (!isCompressedDLT(lvlTypes[tid][lvl]))
llvm_unreachable("TODO");
// else generate code to compute next non empty slice.
Value c0 = C_IDX(0), c1 = C_IDX(1), c2 = C_IDX(2);
auto whileOp = llvm::cast<scf::WhileOp>(op);
SliceInfo &info = sliceStack[tid].back();
assert(info.slicedOnLvl == lvl);
//
// We forward to the next non empty slice by
// if (minCrd > offset) {
// offset += 1
// } else {
// minCrd = nextMinInSlice();
// offset = minCrd - size + 1;
// }
//
// if (offset + size > parents.size)
// isNonEmpty = false;
//
Value absOffset = info.offset;
// Resets slices pointers as the resolved slices are invalidated after we
// moves forward to the next slice.
invalidateSliceIterIdx(builder, loc, tid, lvl);
SmallVector<Value, 3> reduc = {info.minCrd, info.isNonEmpty, absOffset};
Value sPtrBuf = slicePosBuffer[tid][lvl][info.depth - 1];
Value fastPathP = CMPI(ugt, info.minCrd, absOffset);
auto ifOp = builder.create<scf::IfOp>(loc, ValueRange(reduc).getTypes(),
fastPathP, true);
{
OpBuilder::InsertionGuard guard(builder);
// Take the fast path
// if (minCrd > offset) {
// return offset += 1
// }
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
reduc[2] = ADDI(absOffset, c1);
// Yield offset + 1.
YIELD(reduc);
// else /*minCrd == offset*/ {
// for (i = 0; i < slicePos.size(); i+=kSliceIterWidth) {
// if (crd[pos[slicePos[i]]] == minCrd) {
// slicePos[i]++;
// }
// minCrd=min(minCrd, crd[pos[slicePos[i]]]);
// }
// offset = minCrd - size + 1;
// }
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
reduc[2] = absOffset; // restore value.
Value pSt = c2; // pointer starting index
Value mSz = genIndexLoad(builder, loc, sPtrBuf, c0); // memSize
reduc[0] = lvlSizes[tid][lvl]; // next min coord
reduc[1] = constantI1(builder, loc, false); // isNonEmpty
auto loopArgs = static_cast<ValueRange>(reduc).drop_back();
auto forOp = scf::buildLoopNest(
builder, loc, pSt, mSz, C_IDX(kSliceIterWidth), loopArgs,
[this, tid, lvl, c1, sPtrBuf,
&info](OpBuilder &builder, Location loc, ValueRange ivs,
ValueRange iterArgs) -> scf::ValueVector {
Value curMinCrd = iterArgs[0];
Value isNonEmpty = iterArgs[1];
Type idxTp = builder.getIndexType();
Value pLo = genIndexLoad(builder, loc, sPtrBuf, ivs.front());
Value pHi =
genIndexLoad(builder, loc, sPtrBuf, ADDI(ivs.front(), c1));
//
// if (pLo < pHi) // Only loads when inbound.
// coord = load[pLo]
// if coord == minCrd
// pLo += 1
//
// if (pLo < pHi)
// curMinCrd = min(curMinCrd, load[pLo])
//
Value pred = CMPI(ult, pLo, pHi);
auto advPLo = builder.create<scf::IfOp>(loc, idxTp, pred, true);
/* if pLo < pHi */ {
builder.setInsertionPointToStart(&advPLo.getThenRegion().front());
// coord = load[pLo]
Value coord =
genIndexLoad(builder, loc, coordinatesBuffers[tid][lvl], pLo);
Value pred = CMPI(eq, coord, info.minCrd);
auto ifEqual = builder.create<scf::IfOp>(loc, idxTp, pred, true);
/* if coord == minCrd */ {
builder.setInsertionPointToStart(
&ifEqual.getThenRegion().front());
Value newPlo = ADDI(pLo, c1);
// Updates the cache.
builder.create<memref::StoreOp>(loc, newPlo, sPtrBuf,
ivs.front());
YIELD(newPlo);
}
/* else coord != minCrd */ {
builder.setInsertionPointToStart(
&ifEqual.getElseRegion().front());
YIELD(pLo);
}
builder.setInsertionPointAfter(ifEqual);
YIELD(ifEqual.getResults());
}
/* else pLo >= pHi */ {
builder.setInsertionPointToStart(&advPLo.getElseRegion().front());
YIELD(pLo);
}
builder.setInsertionPointAfter(advPLo);
pLo = advPLo.getResult(0);
Value lvlNonEmpty = CMPI(ult, pLo, pHi);
// Update minCrds
auto newMin =
builder.create<scf::IfOp>(loc, idxTp, lvlNonEmpty, true);
builder.setInsertionPointToStart(&newMin.getThenRegion().front());
YIELD(genIndexLoad(builder, loc, coordinatesBuffers[tid][lvl], pLo));
builder.setInsertionPointToStart(&newMin.getElseRegion().front());
YIELD(curMinCrd);
builder.setInsertionPointAfter(newMin);
// isNonEmpty = isNonEmpty || lvlNonEmpty
isNonEmpty =
builder.create<arith::OrIOp>(loc, lvlNonEmpty, isNonEmpty);
curMinCrd = builder.create<arith::SelectOp>(
loc, CMPI(ult, newMin.getResult(0), curMinCrd),
newMin.getResult(0), curMinCrd);
return {curMinCrd, isNonEmpty};
});
builder.setInsertionPointAfter(forOp.loops.front());
// minOffset = minCrd + 1 >= size ? minCrd + 1 - size : c0
Value tmp = ADDI(forOp.results.front(), c1);
Value minOffset = SUBI(tmp, sliceSizes[tid][lvl][info.depth - 1]);
Value p = CMPI(uge, tmp, sliceSizes[tid][lvl][info.depth - 1]);
minOffset = SELECT(p, minOffset, c0);
SmallVector<Value, 3> yields;
yields.assign(forOp.results.begin(), forOp.results.end());
yields.push_back(minOffset);
YIELD(yields);
}
Value nextMinCrd = ifOp.getResults()[0];
Value nextNonEmpty = ifOp.getResults()[1];
// The next offset should at least be offset + 1;
Value minOffset = ifOp.getResults()[2];
Value nxOffset = ADDI(info.offset, c1);
Value maxPred = CMPI(ugt, minOffset, nxOffset);
Value nextAbsOffset = SELECT(maxPred, minOffset, nxOffset);
Value sliceUB = ADDI(nextAbsOffset, sliceSizes[tid][lvl][info.depth - 1]);
// FIXME: this only works if there is only one parent.
assert(info.depth - 1 == 0);
// nextNonEmpty = nextNonEmpty && slice upper bound <= parent upperbound.
nextNonEmpty = ANDI(nextNonEmpty, CMPI(ule, sliceUB, lvlSizes[tid][lvl]));
// FIXME: compute relative offset.
assert(info.depth - 1 == 0);
Value nextRelOffset = nextAbsOffset;
nextRelOffset = SELECT(nextNonEmpty, nextRelOffset, c0);
operands.push_back(nextNonEmpty);
operands.push_back(nextMinCrd);
operands.push_back(nextAbsOffset); // we push the absolute offset.
// Update the slice stack.
info.isNonEmpty = whileOp.getResult(retIdx++);
info.minCrd = whileOp.getResult(retIdx++);
info.offset = whileOp.getResult(retIdx++);
}
#undef CMPI
#undef C_IDX
#undef YIELD
#undef ADDI
#undef ANDI
#undef SUBI
#undef MULI
#undef SELECT
|