1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
|
//===- LoopEmitter.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_SPARSETENSORLOOPEMITTER_H_
#define MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_SPARSETENSORLOOPEMITTER_H_
#include <vector>
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
#include "mlir/IR/PatternMatch.h"
namespace mlir {
namespace sparse_tensor {
//===----------------------------------------------------------------------===//
/// The position of a loop in the loop-stack, or the position of a
/// `LoopId` in a topologically-sorted list of `LoopId`s.
///
/// Although this type may have the same cardinality as `LoopId`, it must
/// not be confused with that type. The `LoopId` type is used by the `Merger`
/// as a unique identifier for loop-variables, regardless of the ordering
/// of those loops. Whereas the `LoopOrd` type is used by the `LoopEmitter`
/// (and `CodegenEnv`) to refer to the actual order in which loops are
/// generated.
///
/// TODO: further explicate the correspondences between these various
/// types. In particular, since the `$dim` argument to `linalg::IndexOp`
/// is a De Bruijn index, it seems like that should correspond to `LoopOrd`,
/// and yet the `Merger` has that correspond with `LoopId` instead.
/// In addition `LoopEmitter::genAffine` has `AffineDimExpr::position`
/// correspond to `LoopId`, however it is unclear what the providence
/// of those `AffineDimExpr` is.
//
// TODO: use a struct/class rather than a typedef, so that we can actually
// typecheck this to avoid mixups in the code.
using LoopOrd = unsigned;
// A compressed <tensor id, level> pair.
using TensorLevel = unsigned;
//===----------------------------------------------------------------------===//
// SparseTensorLoopEmiter class, manages sparse tensors and helps to
// generate loop structure to (co)-iterate sparse tensors.
//
// An example usage:
// To generate the following loops over T1<?x?> and T2<?x?>
//
// for i in TENSOR_1_0 {
// for j : TENSOR_2_0 {
// for k : TENSOR_1_1 {}
// for k : TENSOR_2_1 {}
// }
// }
//
// One can use
//
// LoopEmiter loopEmiter({T1, T1});
// loopEmiter.initializeLoopEmit();
// loopEmiter.enterLoopOverTensorAtLvl(T1, 0);
// loopEmiter.enterLoopOverTensorAtLvl(T2, 0);
// loopEmiter.enterLoopOverTensorAtLvl(T1, 1);
// loopEmiter.exitCurrentLoop();
// loopEmiter.enterLoopOverTensorAtLvl(T2, 1);
// loopEmiter.exitCurrentLoop(); // exit k
// loopEmiter.exitCurrentLoop(); // exit j
// loopEmiter.exitCurrentLoop(); // exit i
//===----------------------------------------------------------------------===//
class LoopEmitter {
public:
/// Optional callback function to setup dense output tensors when
/// initializing the loop emitter (e.g., to fill a dense output with zeros).
using OutputUpdater = function_ref<Value(OpBuilder &builder, Location loc,
Value memref, Value tensor)>;
/// Optional callback function to set the bound for the synthetic tensor,
/// which essentially is the dense loop bound.
using SynTensorBoundSetter =
function_ref<Value(OpBuilder &builder, Location loc, Level lvl)>;
// Map from [tid, dim] to a list of dependent [tid, dim] for affine expression
// index on sparse tensors.
// E.g., for affine index (d0 + d1), it depends on two [tid, dim] that defines
// d0 and d1 (for affine expression reduction).
// If the list is empty, it means that there is no affine expression on the
// input [tid, dim].
// NOTE: The caller is responsible to ensure that the order of the returned
// list to be consistent with the topological order of the iteration graph,
// otherwise the loop emitter might reduce a wrong dependent index variable
// when generating slice-driven loops.
using DependentLvlGetter =
function_ref<std::vector<std::pair<TensorId, Level>>(TensorId, Level)>;
LoopEmitter() = default;
/// Takes an array of input tensors, which the generated loops will
/// iterate over. Each tensor is given a `TensorId` (numerically equal
/// to the position of that tensor `Value` in the array). Setting
/// `isSparseOut` indicates that the sparse output tensor is empty,
/// so the loop emitter will generate loops over it according to the
/// level-sizes. The `topSort` array specifies the actual order in
/// which loops are generated, thus providing a mapping from `LoopOrd`
/// to `LoopId`.
void initialize(ValueRange tensors, StringAttr loopTag = nullptr,
bool hasOutput = false, bool isSparseOut = false,
ArrayRef<LoopId> topSort = {},
DependentLvlGetter getter = nullptr);
explicit LoopEmitter(ValueRange tensors, StringAttr loopTag = nullptr,
bool hasOutput = false, bool isSparseOut = false,
ArrayRef<LoopId> topSort = {},
DependentLvlGetter getter = nullptr);
/// Starts a loop emitting session by generating all the buffers needed
/// for iterating over the tensors.
void initializeLoopEmit(OpBuilder &builder, Location loc,
OutputUpdater updater = nullptr,
SynTensorBoundSetter synSetter = nullptr);
/// Generates code to compute an affine expression whose variables are
/// `LoopId`s (i.e., `a.cast<AffineDimExpr>().getPosition()` is a valid
/// `LoopId`).
Value genAffine(OpBuilder &builder, Location loc, AffineExpr a);
/// Enters a new loop sequence, the loops within the same sequence starts
/// from the break points of previous loop instead of starting over from 0.
/// e.g.,
/// {
/// // loop sequence start.
/// p0 = while(xxx)
/// ...
/// break p0
///
/// // Starts loop from p0
/// for (i = p0; i < end; i++)
/// ...
/// // loop sequence end.
/// }
void enterNewLoopSeq(OpBuilder &builder, Location loc,
ArrayRef<TensorLevel> tidLvls);
/// Exits the current loop sequence, this will reset universal index to 0.
void exitCurrentLoopSeq(OpBuilder &builder, Location loc);
/// Enters a loop that tries to locate a coordinates in a sparse level based
/// on the value evaluated by the provided affine expression.
/// DEPRECATED: affine index expression should be handled by index reduction
/// loop, filter loop-based solution is slow.
Operation *enterFilterLoopOverTensorAtLvl(OpBuilder &builder, Location loc,
TensorId tid, Level lvl,
AffineExpr affine,
MutableArrayRef<Value> reduc = {});
/// Emits the address for a dense level based on the value evaluated by the
/// provided affine expression.
/// DEPRECATED: affine index expression should be handled by index reduction
/// loop, filter loop-based solution is slow.
void genDenseAffineAddress(OpBuilder &builder, Location loc,
TensorLevel tidLvl, AffineExpr lvlExpr);
// TODO: Get rid of `lvls` in the argument list? Track the level we
// are currently at internally. Then it would be enterNextLvlForTensor.
// Still need a way to specify the lvl for non-annotated tensors though,
// as those can be accessed out of order.
//
/// Emits a co-iteration loop over a set of tensors.
/// Emits loop over tensor_tid_lvl, it assumes that loops between
/// tensor_tid_[0, lvl - 1] have already been generated.
/// The function will also perform in-place update on the `reduc` vector to
/// return the reduction variable used inside the generated loop.
Operation *enterCoIterationOverTensorsAtLvls(
OpBuilder &builder, Location loc, ArrayRef<TensorLevel> tidLvls,
MutableArrayRef<Value> reduc = {}, bool isParallel = false,
bool genDedup = false, bool needsUniv = false);
/// Generates code to exit the current loop (e.g., generates yields, forwards
/// loop induction variables, etc).
void exitCurrentLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc = {});
/// Fills the out-parameter with the loop induction variables for all
/// loops in the current loop-stack. The variables are given in the
/// same order as the loop-stack, hence `ivs` should be indexed into
/// by `LoopOrd` (not `LoopId`).
void getLoopIVs(SmallVectorImpl<Value> &ivs) const {
ivs.clear();
ivs.reserve(getCurrentDepth());
for (auto &l : loopStack)
ivs.push_back(l.iv);
}
/// Gets the current depth of the loop-stack. The result is given
/// the type `LoopOrd` for the same reason as one-past-the-end iterators.
LoopOrd getCurrentDepth() const { return loopStack.size(); }
/// Gets loop induction variable for the given `LoopOrd`.
Value getLoopIV(LoopOrd n) const {
return n < getCurrentDepth() ? loopStack[n].iv : Value();
}
/// Gets the total number of manifest tensors (excluding the synthetic
/// tensor).
unsigned getNumManifestTensors() const { return tensors.size(); }
/// Gets the total number of tensors that loopEmitter is operating on.
unsigned getNumTensors() const {
// Manifest tensors with one synthetic tensor at the end.
return getNumManifestTensors() + 1;
}
/// Gets the TensorId for synthetic tensor.
TensorId getSynTensorId() const { return tensors.size(); }
/// Gets the TensorId for output tensor.
TensorId getOutTensorId() const {
assert(hasOutput);
return getNumManifestTensors() - 1;
}
/// Compresses a TensorId and Level into a TensorLevel.
TensorLevel makeTensorLevel(TensorId t, Level l) const {
return l * getNumTensors() + t;
}
/// De-compresses a TensorLevel back to a pair of TensorId and Level.
std::pair<TensorId, Level> unpackTensorLevel(TensorLevel tidLvl) const {
unsigned nt = getNumTensors();
return std::make_pair(tidLvl % nt, tidLvl / nt);
}
/// Converts a range of TensorLevel to a range of std::pair<TensorId, Level>
template <class ContainerTy>
auto unpackTensorLevelRange(ContainerTy &&c) const {
using EltTy = decltype(*c.begin());
static_assert(std::is_same_v<llvm::remove_cvref_t<EltTy>, TensorLevel>,
"Must be unpacking a TensorLevel range");
return llvm::map_range(std::forward<ContainerTy>(c), [this](EltTy tl) {
return this->unpackTensorLevel(tl);
});
}
template <class ContainerTy>
auto unpackTensorLevelFromCondRange(ContainerTy &&c) const {
using EltTy = decltype(*c.begin());
static_assert(std::is_same_v<llvm::remove_cvref_t<EltTy>, TensorLvlCond>,
"Must be unpacking a TensorLvlCond range");
return unpackTensorLevelRange(
llvm::make_first_range(std::forward<ContainerTy>(c)));
}
///
/// Getters.
///
const std::vector<std::vector<Value>> &getPosits() const { return posits; };
const std::vector<std::vector<Value>> &getCoords() const { return coords; };
const std::vector<std::vector<Value>> &getHighs() const { return highs; };
const std::vector<std::vector<Value>> &getPositionBuffers() const {
return positionsBuffers;
};
const std::vector<std::vector<Value>> &getCoordinateBuffers() const {
return coordinatesBuffers;
};
const std::vector<Value> &getValBuffer() const { return valBuffer; };
constexpr static llvm::StringLiteral getLoopEmitterLoopAttrName() {
return llvm::StringLiteral("Emitted from");
}
private:
///
/// Structure definitions that hold different kinds of loops information.
///
// A tuple that stored the slice-driven loop information.
struct SliceLoopInfo final {
SliceLoopInfo(TensorId tid, Level lvl, bool reduced)
: tid(tid), lvl(lvl), reduced(reduced) {}
TensorId tid;
Level lvl;
bool reduced;
};
// LoopInfo stores information of a loop generated by LoopEmitter. E.g.,
// the set of tensors levels that the loop is iterating over.
struct LoopInfo final {
LoopInfo(ArrayRef<TensorLevel> trivialTidLvls,
ArrayRef<SliceLoopInfo> sliceDrivenInfo, Operation *loop,
Block *userBlock, Value iv, StringAttr loopTag)
: trivialTidLvls(trivialTidLvls), sliceDrivenInfo(sliceDrivenInfo),
loop(loop), userCodeBlock(userBlock), iv(iv) {
// Attached a special tag to loop emitter generated loop.
if (loopTag)
loop->setAttr(LoopEmitter::getLoopEmitterLoopAttrName(), loopTag);
}
// The set of <tensor, lvl>, with *only* trivial index expressions, that are
// used as the condition for the generated loop. Extra information is
// required for levels with non-tivial index expressions, which is
// maintained by the sliceDrivenInfo array below.
const llvm::SmallVector<TensorLevel> trivialTidLvls;
// The set of <tensor, lvl>, with *only* non-trivial index expressions, that
// are used as the condition for the generated loop.
const llvm::SmallVector<SliceLoopInfo> sliceDrivenInfo;
const Operation *loop; // the loop operation
Block *const userCodeBlock; // the block holding users' generated code.
const Value iv; // the induction variable for the loop
};
// SliceInfo stores information of an extracted slice for slice-driven loop.
// E.g., the in-scope SSA values for the minimum coordinates and offset for
// the slice, etc.
struct SliceInfo final {
// Note that we do not need to create a actual sparse tensor slice but
// instead only need to maintain the metadata of the slice.
SliceInfo(Value minCrd, Value offset, Value isNonEmpty,
std::optional<Level> slicedOnLvl, unsigned depth)
: minCrd(minCrd), offset(offset), isNonEmpty(isNonEmpty),
slicedOnLvl(slicedOnLvl), depth(depth) {
// TODO: use std::optional<pair<Level, minCrd>>
assert(!slicedOnLvl || minCrd);
}
// Whether this is the tensor that has not yet been sliced.
bool isInitialTensor() const { return !slicedOnLvl.has_value(); }
Value minCrd; // the minimum coordinate of the slice.
Value offset; // the offset of the current slice.
Value isNonEmpty; // whether the slice is empty.
std::optional<Level> slicedOnLvl; // the level on which the slice is done
unsigned depth; // the depth (relative to dependentDimMap[tid][lvl]).
};
///
/// Enums for different kinds of loop conditions.
///
// The bit indicating whether the loop conditions is sparse.
static constexpr uint8_t kSparseCond = 1 << 3;
// The bit indicating whether the loop iterates over sparse tensor slices
// (i.e., with non-empty SliceDimAttr).
static constexpr uint8_t kSliceCond = 1 << 2;
// The bit indicating whether the loop iterates over tensor levels with
// non-trivial affine index reduction.
static constexpr uint8_t kAffineIdxCond = 1 << 1;
// The bit indicating whether the loop iterates over tensor levels with
// non-trivial affine index reduction, and it is not fully reduced.
static constexpr uint8_t kAffineIdxCondUnRed = 1 << 0;
enum class LoopCondKind : uint8_t {
// Dense conditions.
DenseCond = 0,
DenseSliceCond = kSliceCond,
DenseAffineCond = kAffineIdxCond,
DenseAffineUnRedCond = kAffineIdxCond | kAffineIdxCondUnRed,
// Sparse Conditions.
SparseCond = kSparseCond,
SparseSliceCond = kSparseCond | kSliceCond,
SparseAffineCond = kSparseCond | kAffineIdxCond,
SparseAffineUnRedCond = kSparseCond | kAffineIdxCond | kAffineIdxCondUnRed,
};
using TensorLvlCond = std::pair<TensorLevel, LoopCondKind>;
/// Sparse or dense loop condition.
static bool isSparseCond(LoopCondKind k) {
return static_cast<uint8_t>(k) & kSparseCond;
}
static bool isDenseCond(LoopCondKind k) { return !isSparseCond(k); }
/// Whether loops over sparse tensor slices or sparse tensors.
static bool isSliceCond(LoopCondKind k) {
return static_cast<uint8_t>(k) & kSliceCond;
}
/// Affine or trivial index expression loop condition.
static bool isAffineIdxCond(LoopCondKind k) {
return static_cast<uint8_t>(k) & kAffineIdxCond;
}
static bool isTrivalIdxCond(LoopCondKind k) { return !isAffineIdxCond(k); }
/// Whether the affine index expression is not fully reduced.
static bool isAffineIdxUnRedCond(LoopCondKind k) {
return isAffineIdxCond(k) && static_cast<uint8_t>(k) & kAffineIdxCondUnRed;
}
static bool isAffineIdxRedCond(LoopCondKind k) {
return isAffineIdxCond(k) && !isAffineIdxUnRedCond(k);
}
// Whether the loop condition kind requires extra check inside the loop body.
// E.g., to iterate over sparse tensor slice, we need to check whether the
// current cooridnate is on the slice (e.g., due to stride) or not.
static bool isCondWithExtraCheck(LoopCondKind k) {
return isSparseCond(k) && isSliceCond(k);
}
static LoopCondKind makeLoopCondKind(bool isSparse, bool isSlice,
bool isAffine, bool isUnRedu) {
assert(!isUnRedu || isAffine);
uint8_t bits = 0;
bits = isSparse ? bits | kSparseCond : bits;
bits = isSlice ? bits | kSliceCond : bits;
bits = isAffine ? bits | kAffineIdxCond : bits;
bits = isUnRedu ? bits | kAffineIdxCondUnRed : bits;
LoopCondKind kind = static_cast<LoopCondKind>(bits);
// Sanity checks.
assert(isSparse == isSparseCond(kind));
assert(isSlice == isSliceCond(kind));
assert(isAffine == isAffineIdxCond(kind));
assert(isUnRedu == isAffineIdxUnRedCond(kind));
return kind;
}
void categorizeLoopCondition(ArrayRef<TensorLevel> tidLvls,
SmallVectorImpl<TensorLvlCond> &dnConds,
SmallVectorImpl<TensorLvlCond> &spConds);
///
/// LoopEmitter internal helper functions.
///
using LoopBodyBuilder = llvm::function_ref<void(OpBuilder &, Location, Value,
MutableArrayRef<Value>)>;
/// Whether the list of the sparse condition should be iterated by for loop.
bool shouldIteratedByForLoop(ArrayRef<TensorLvlCond> spConds, bool genDedup);
/// Linearizes address for dense dimension (i.e., p = (i * d0) + j).
Value genAddress(OpBuilder &builder, Location loc, TensorId tid, Level lvl,
Value iv);
/// Generates the segment high for a non-unique level (to fast forward
/// duplicated coordinates). That is, it generates the code:
///
/// crd = coordinates_tid_lvl[pos]
/// while (pos < pHi && coordinates_tid_lvl[pos] == crd)
/// pos++;
/// <return pos>;
Value genSegmentHigh(OpBuilder &builder, Location loc, TensorId tid,
Level lvl, Value pos, Value pHi);
/// Generates instructions to compute the coordinate of tensors[tid][lvl]
/// under the current loop context. The final argument is the
/// collapsed-output level, whereas this function handles converting
/// that to the uncollapsed-input level
Value genSparseCrd(OpBuilder &builder, Location loc, TensorId tid,
Level dstLvl);
/// Generates a predicate to determine whether the tranformed coordinates are
/// in the given slice.
/// Returns std::pair<Transformed coordinates, Predicate>
std::pair<Value, Value> genSliceLegitPredicate(OpBuilder &builder,
Location loc, Value crd,
TensorId tid, Level lvl);
bool isSynTensor(TensorId tid) const { return tid == getSynTensorId(); }
bool isOutputTensor(TensorId tid) const {
return hasOutput && tid == getOutTensorId();
}
bool isSparseOutput(TensorId tid) const {
return isOutputTensor(tid) && isSparseOut;
}
bool isValidLevel(TensorId tid, Level lvl) const {
return tid < lvlTypes.size() && lvl < lvlTypes[tid].size();
}
/// Forwards the (conceptual) "tree iterator" when iterating over a fully
/// reduced slice created by index-reduction.
void forwardsReducedSliceLevelTreeIt(OpBuilder &builder, Location loc,
TensorId tid, Level lvl, Value fcnt);
/// Prepares loop for iterating over `tensor[lvl]`, under the assumption
/// that `tensor[0...lvl-1]` loops have already been set up.
void prepareLoopOverTensorAtLvl(OpBuilder &builder, Location loc,
TensorId tid, Level lvl);
/// Enter dense tensor levels. Since the dense tensor condition could be
/// optimized from the loop condition, we need to compute the
/// positions/coordinates inside the loop body.
void enterTensorsAtDenseLvls(OpBuilder &builder, Location loc,
ArrayRef<TensorLvlCond> dnConds, Value iv,
SmallVectorImpl<SliceLoopInfo> &sliceInfo);
/// Emits a for loop to iterate over a tensor level with the provided
/// lower bound `lo` and upper bound `hi`. Apart from iterating just
/// single tensor level, for loops can be used for slice-driven loop on
/// dense level too.
/// Returns a pair: the loop generated and the value for the induction
/// variable.
std::pair<Operation *, Value>
emitForLoopOverTensorAtLvl(OpBuilder &builder, Location loc, TensorId tid,
Level lvl, Value lo, Value hi,
MutableArrayRef<Value> reduc, bool isParallel);
/// Emits a while loop to co-iterate over a list of sparse condition, or
/// (complex) single sparse condition that can not be handled by for loop
/// (e.g., index reduction loop).
/// Returns a pair: the loop generated and the value for the induction
/// variable (which is the minimum coordinate of all the tensor that being
/// iterated).
std::pair<Operation *, Value>
emitWhileLoopOverTensorsAtLvls(OpBuilder &builder, Location loc,
ArrayRef<TensorLvlCond> spConds,
MutableArrayRef<Value> reduc, bool needsUniv);
/// Generates the while loop condition for the given tensor level condition.
Value genWhileLoopConditions(OpBuilder &builder, Location loc, ValueRange ivs,
TensorLvlCond cond);
/// Generates the while loop body for the given tensor level condition.
std::optional<Value> genWhileLoopBody(OpBuilder &builder, Location loc,
ValueRange ivs, TensorLvlCond cond);
/// Generates the values (to forward the loop) if the extra check failes.
/// E.g., to iterate over a sparse tensor slice, we need:
///
/// pos = onSlice(curCrd) ? pos : pos + 1
///
/// to skip invalid coordinate that is included in the slice.
ValueRange genCheckedValue(OpBuilder &builder, Location loc, Value pred,
ValueRange curArg, TensorLvlCond cond);
/// Exits a for loop, returns the reduction results, e.g.,
/// For sequential for loops:
/// %ret = for () {
/// ...
/// %val = addi %args, %c
/// yield %val
/// }
/// For parallel loops, the following generated code by users:
/// %ret = parallel () init(%args) {
/// ...
/// %val = op %args, %c
/// }
/// will be transformed into
/// %ret = parallel () init(%args) {
/// ...
/// scf.reduce(%c) bb0(%0, %1){
/// %val = op %0, %1
/// scf.reduce.return %val
/// }
/// }
/// NOTE: only one instruction will be moved into reduce block,
/// transformation will fail if multiple instructions are used to compute
/// the reduction value. Return %ret to user, while %val is provided by
/// users (`reduc`).
void exitForLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc);
/// Exits a while loop, returns the reduction results.
void exitWhileLoop(OpBuilder &builder, Location loc,
MutableArrayRef<Value> reduc);
//
// View-based-reshape methods.
//
/// Get the collapse reassociation for `tensors[tid][dstLvl]`.
/// For unreshaped operands, the reassociation is simply an identity
/// transformation.
///
/// NOTE: the result uses `Level` rather than the `int64_t` of
/// `ReassociationIndices`, since the former gives clarity to what
/// the values actually mean.
///
/// TODO: why not do this computation when we first store the reassoc,
/// instead of doing it every time we look it up?
SmallVector<Level, 2> getCollapseReassociation(TensorId tid, Level dstLvl) {
assert(tid < getNumTensors() && "Invalid TensorId");
assert(collapseReassoc.size() == getNumTensors());
if (const auto reassoc = collapseReassoc[tid]) {
assert(!isSynTensor(tid) && !isOutputTensor(tid) &&
"Output/Synthetic tensor should not have reassociation");
// TODO: store the dstLvlRank in the LoopEmitter so that we can
// check `dstLvl < dstLvlRank` at the top; and only here need to
// assert that `reassoc.size() == dstLvlRank`.
assert(dstLvl < reassoc.size() && "Level is out-of-bounds");
const auto srcLvls = cast<ArrayAttr>(reassoc[dstLvl]);
return llvm::to_vector<2>(
llvm::map_range(srcLvls, [&](Attribute srcLvl) -> Level {
// TODO: replace this with the converter for `LevelAttr`.
return cast<IntegerAttr>(srcLvl).getValue().getZExtValue();
}));
}
return {dstLvl};
}
//
// Slice-driven loop related methods.
//
/// Retrieves the most recent slice on lvl. To reduce affine expression like
/// d0 + d1 + d2, we need two slices (one of size d1 + d2, and the other of
/// size d2). This methods returns the latter slice (of size d2).
const SliceInfo &getMostRecentSliceOnLvl(TensorId tid, Level lvl);
/// Similar to getMostRecentSliceOnLvl, but yields error when the most recent
/// slice is not the final slice needed to fully reduced the dependencies.
const SliceInfo &getFinalSliceOnLvl(TensorId tid, Level lvl) {
const SliceInfo &info = getMostRecentSliceOnLvl(tid, lvl);
assert(info.depth == dependentLvlMap[tid][lvl].size() - 1);
return info;
}
/// Get the remaining number of constraints needed to fully *resolve*
/// dependent levels on tensor[tid].
unsigned remDepOnLevel(TensorId tid, Level lvl) const;
/// Whether the tid, lvl is fully *reduced*, i.e., the non-trivial index
/// expression has been reduced to a trivial one.
/// E.g., A[i + j] => A[i + 2] (j is reduced)
bool depFullyReduced(TensorId tid, Level lvl) const {
return remDepOnLevel(tid, lvl) == 1;
}
/// Whether the tid, lvl is fully resolved, i.e., we entered the level already
/// (the index on that level is determined).
/// E.g., A[i + j] => A[2 + 3] (both i and j become invariants for inner
/// loops).
bool lvlFullyResolved(TensorId tid, Level lvl) const {
return remDepOnLevel(tid, lvl) == 0;
}
/// Generates a whileOp to iterate over a subset of coordinates on tid on lvl
/// using the pHi and pLo provided, the loop break on the first coordinate
/// that exceeds the slice boundary (i.e., coord >= slice.offset +
/// slice.size).
std::pair<Operation *, ValueRange>
genSliceLvlTraverseLoop(OpBuilder &builder, Location loc, Value pLo,
Value pHi, Value offset, Value size, TensorId tid,
Level lvl, ValueRange userReduc,
LoopBodyBuilder bodyBuilder);
/// Generates a nested loop that iterates over tid on all the coordinates on
/// lvl.
ValueRange genUnResolvedSliceTreeTraverse(
OpBuilder &builder, Location loc, TensorId tid,
ArrayRef<const SliceInfo *> unResLvls,
std::optional<std::pair<TensorId, Level>> firstResLvl,
ValueRange userReduc, LoopBodyBuilder bodyBuilder);
/// Generates code to get the first non-empty slice of tid on lvl, when all
/// the previous level before `lvl` are resolved (or lvl is the first level).
///
/// This is the simple case because the previous level are resolved into a
/// single node in the storage tree.
void genResolvedSliceBegin(OpBuilder &builder, Location loc, TensorId tid,
Level lvl);
/// Generates code to get the first non-empty slice of tid on lvl, when
/// the previous levels before `lvl` are unresolved
///
/// This is the complex case because the previous levels corresponding to a
/// range of nodes in the storage tree.
void genUnResolvedSliceBegin(OpBuilder &builder, Location loc, TensorId tid,
Level lvl);
/// Invalidates the index kept in slice postion buffers (by setting it to
/// zero).
/// TODO: We should instead use an SSA value for the index.
void invalidateSliceIterIdx(OpBuilder &builder, Location loc, TensorId tid,
Level lvl);
/// Generates code to get the first non-empty slice of tid on lvl.
/// return true if has already been resolved.
bool genSliceBegin(OpBuilder &builder, Location loc, TensorId tid, Level lvl);
/// Generates code to get the next non-empty slices of tid on lvl.
void genSliceNextInduction(OpBuilder &builder, Location loc,
const Operation *whileOp, TensorId tid, Level lvl,
SmallVectorImpl<Value> &operands,
unsigned &retIdx);
/// A optional string attribute that should be attached to the loop
/// generated by loop emitter, it might help following passes to identify
/// loops that operates on sparse tensors more easily.
StringAttr loopTag;
/// Whether the loop emitter needs to treat the last tensor as the output
/// tensor.
bool hasOutput;
bool isSparseOut;
/// The insertion point to allocate top level local variables.
Operation *localInsertPos;
//
// Fields which have `numTensor` many entries.
//
// TODO: switch to an AOS style to avoid any possible mismatches.
//
/// Input and (optional) output tensors.
std::vector<Value> tensors;
/// Level-types for each `(TensorId, Level)` pair.
std::vector<std::vector<DimLevelType>> lvlTypes;
// Sparse iteration information for each `(TensorId, Level)` pair.
// These arrays are updated to remain current within the current loop.
// TODO: Clarify which of these are indexed by dstLvl vs srcLvl.
//
/// The collection of positions for a given element (one such collection
/// for each tensor). This is the position analogue of the "coords"
/// naming convention.
///
/// FIXME: [CLARIFY_POSITS_LVL] It's unclear which levels are used
/// to index the `posits` array. On the one hand `genSparseCrd`
/// uses dstLvl; on the other hand `enterLoopOverTensorAtLvl`,
/// `prepareLoopOverTensorAtLvl`, and `enterCoIterationOverTensorsAtLvls`
/// uses srcLvl. So which is it?
std::vector<std::vector<Value>> posits;
/// The collection of coordinates for a given element (one such
/// collection for each tensor).
std::vector<std::vector<Value>> coords;
// The segment upper bound for non-uniques level after de-duplication.
std::vector<std::vector<Value>> segHi;
std::vector<std::vector<Value>> highs;
std::vector<std::vector<Value>> lvlSizes;
std::vector<std::vector<Value>> positionsBuffers; // to_positions
std::vector<std::vector<Value>> coordinatesBuffers; // to_coordinates
std::vector<Value> valBuffer; // to_value
//
// Slice-driven loops related fields.
//
/// Whether the sparse input is a slice.
std::vector<bool> isSparseSlices;
/// Values related to slices.
std::vector<std::vector<Value>> sliceOffsets;
std::vector<std::vector<Value>> sliceStrides;
// Map from [tid, level] to a list of dependent [tid, level].
// See comments for `DependentDimGetter`.
std::vector<std::vector<std::vector<std::pair<TensorId, Level>>>>
dependentLvlMap;
// The cached position buffer for the slices, they serve the same purpose as
// ptrBuffer for compressed dimensions.
// But they always starts with the first pidx pointing to coord > slice.offset
// to avoid iteration from the beginning.
std::vector<std::vector<std::vector<Value>>> slicePosBuffer;
// The cached size for each slices.
std::vector<std::vector<std::vector<Value>>> sliceSizes;
// The number of reduced dependencies on a tensor level so far.
std::vector<std::vector<unsigned>> levelReducedDep;
// sliceStack[tid] holds the generated slice stack on tid.
std::vector<std::vector<SliceInfo>> sliceStack;
//
// View based reshape related-fields and methods
//
/// Collapse Reassociations related to a specific tensor
// TODO: support expand.
std::vector<ArrayAttr> collapseReassoc;
/// TODO: not yet used, it should track the current level for each tensor
/// to help eliminate `lvls` paramters from above APIs.
/// std::vector<Level> curLvl;
//
// Fields which have at most `numLoops` many entries.
//
/// Loop Stack, stores the information of all the nested loops that are
/// alive.
std::vector<LoopInfo> loopStack;
// Loop Sequence Stack, stores the unversial index for the current loop
// sequence. and a list of tids which was taken sliced.
// TODO: maybe we should have a LoopSeqInfo
std::vector<std::pair<Value, std::vector<std::tuple<TensorId, Level, bool>>>>
loopSeqStack;
/// Maps `LoopId` (used by `AffineDimExpr`) to `LoopOrd` (in the `loopStack`).
/// TODO: We should probably use a callback function here to make it more
/// general.
std::vector<LoopOrd> loopIdToOrd;
};
} // namespace sparse_tensor
} // namespace mlir
#endif // MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_SPARSETENSORLOOPEMITTER_H_
|