1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
|
//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor types and primitives to actual compiler
// visible buffers and actual compiler IR that implements these primitives on
// the selected sparse tensor storage schemes. This pass provides an alternative
// to the SparseTensorConversion pass, eliminating the dependence on a runtime
// support library, and providing much more opportunities for subsequent
// compiler optimization of the generated code.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "SparseTensorDescriptor.h"
#include "llvm/Support/FormatVariadic.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
#include <optional>
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
using FuncGeneratorType =
function_ref<void(OpBuilder &, ModuleOp, func::FuncOp, RankedTensorType)>;
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Flatten a list of operands that may contain sparse tensors.
static void flattenOperands(ValueRange operands,
SmallVectorImpl<Value> &flattened) {
// In case of
// sparse_tensor, c, sparse_tensor
// ==>
// memref ..., c, memref ...
for (auto operand : operands) {
if (getSparseTensorEncoding(operand.getType())) {
auto tuple = getTuple(operand);
// An unrealized_conversion_cast will be inserted by type converter to
// inter-mix the gap between 1:N conversion between sparse tensors and
// fields. In this case, take the operands in the cast and replace the
// sparse tensor output with the flattened type array.
flattened.append(tuple.getOperands().begin(), tuple.getOperands().end());
} else {
flattened.push_back(operand);
}
}
}
/// Generates a load with proper `index` typing.
static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx) {
idx = genCast(builder, loc, idx, builder.getIndexType());
return builder.create<memref::LoadOp>(loc, mem, idx);
}
/// Generates a store with proper `index` typing and proper value.
static void genStore(OpBuilder &builder, Location loc, Value val, Value mem,
Value idx) {
idx = genCast(builder, loc, idx, builder.getIndexType());
val = genCast(builder, loc, val,
cast<ShapedType>(mem.getType()).getElementType());
builder.create<memref::StoreOp>(loc, val, mem, idx);
}
/// Creates a straightforward counting for-loop.
static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper,
MutableArrayRef<Value> fields,
Value lower = Value()) {
Type indexType = builder.getIndexType();
if (!lower)
lower = constantZero(builder, loc, indexType);
Value one = constantOne(builder, loc, indexType);
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lower, upper, one, fields);
for (unsigned i = 0, e = fields.size(); i < e; i++)
fields[i] = forOp.getRegionIterArg(i);
builder.setInsertionPointToStart(forOp.getBody());
return forOp;
}
/// Gets the dimension size for the given sparse tensor at the given
/// original dimension 'dim'.
static Value sizeFromTensorAtDim(OpBuilder &builder, Location loc,
SparseTensorDescriptor desc, Dimension dim) {
const SparseTensorType stt(desc.getRankedTensorType());
// Access into static dimension can query original type directly.
// Note that this is typically already done by DimOp's folding.
if (auto sz = stt.getStaticDimSize(dim))
return constantIndex(builder, loc, *sz);
// Any other query can consult the dimSizes array at field DimSizesIdx,
// accounting for the reordering applied to the sparse storage.
// FIXME: `toStoredDim` is deprecated.
const Level lvl = toStoredDim(stt, dim);
return desc.getLvlSize(builder, loc, lvl);
}
// Gets the dimension size at the given stored level 'lvl', either as a
// constant for a static size, or otherwise dynamically through memSizes.
static Value sizeFromTensorAtLvl(OpBuilder &builder, Location loc,
SparseTensorDescriptor desc, Level lvl) {
// FIXME: `toOrigDim` is deprecated.
return sizeFromTensorAtDim(builder, loc, desc,
toOrigDim(desc.getRankedTensorType(), lvl));
}
static void createPushback(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc,
SparseTensorFieldKind kind, std::optional<Level> lvl,
Value value, Value repeat = Value()) {
Type etp = desc.getMemRefElementType(kind, lvl);
Value field = desc.getMemRefField(kind, lvl);
StorageSpecifierKind specFieldKind = toSpecifierKind(kind);
auto pushBackOp = builder.create<PushBackOp>(
loc, desc.getSpecifierField(builder, loc, specFieldKind, lvl), field,
genCast(builder, loc, value, etp), repeat);
desc.setMemRefField(kind, lvl, pushBackOp.getOutBuffer());
desc.setSpecifierField(builder, loc, specFieldKind, lvl,
pushBackOp.getNewSize());
}
/// Generates code that allocates a sparse storage scheme for given rank.
static void allocSchemeForRank(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc, Level startLvl) {
const SparseTensorType stt(desc.getRankedTensorType());
Value linear = constantIndex(builder, loc, 1);
const Level lvlRank = stt.getLvlRank();
for (Level l = startLvl; l < lvlRank; l++) {
const auto dlt = stt.getLvlType(l);
if (isCompressedDLT(dlt)) {
// Append linear x positions, initialized to zero. Since each compressed
// dimension initially already has a single zero entry, this maintains
// the desired "linear + 1" length property at all times.
Value posZero = constantZero(builder, loc, stt.getPosType());
createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, l,
posZero, linear);
return;
}
if (isSingletonDLT(dlt)) {
return; // nothing to do
}
// Keep compounding the size, but nothing needs to be initialized
// at this level. We will eventually reach a compressed level or
// otherwise the values array for the from-here "all-dense" case.
assert(isDenseDLT(dlt));
Value size = sizeFromTensorAtLvl(builder, loc, desc, l);
linear = builder.create<arith::MulIOp>(loc, linear, size);
}
// Reached values array so prepare for an insertion.
Value valZero = constantZero(builder, loc, stt.getElementType());
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
std::nullopt, valZero, linear);
}
/// Creates allocation operation.
static Value createAllocation(OpBuilder &builder, Location loc,
MemRefType memRefType, Value sz,
bool enableInit) {
Value buffer = builder.create<memref::AllocOp>(loc, memRefType, sz);
Type elemType = memRefType.getElementType();
if (enableInit) {
Value fillValue = constantZero(builder, loc, elemType);
builder.create<linalg::FillOp>(loc, fillValue, buffer);
}
return buffer;
}
/// Creates allocation for each field in sparse tensor type. Note that
/// for all dynamic memrefs, the memory size is really the capacity of
/// the "vector", while the actual size resides in the sizes array.
///
/// TODO: for efficiency, we will need heuristics to make educated guesses
/// on the required capacities (see heuristic variable).
///
static void createAllocFields(OpBuilder &builder, Location loc,
SparseTensorType stt, ValueRange dynSizes,
bool enableInit, SmallVectorImpl<Value> &fields,
Value sizeHint) {
// Build original sizes.
assert((dynSizes.size() == static_cast<size_t>(stt.getNumDynamicDims())) &&
"Got wrong number of dynamic sizes");
const Dimension dimRank = stt.getDimRank();
SmallVector<Value> dimSizes;
dimSizes.reserve(dimRank);
unsigned i = 0; // cumulative index into `dynSizes`.
for (const DynSize sh : stt.getDimShape())
dimSizes.push_back(ShapedType::isDynamic(sh)
? dynSizes[i++]
: constantIndex(builder, loc, sh));
// Set up some heuristic sizes. We try to set the initial
// size based on available information. Otherwise we just
// initialize a few elements to start the reallocation chain.
// TODO: refine this
Value posHeuristic, crdHeuristic, valHeuristic;
if (stt.isAllDense()) {
valHeuristic = dimSizes[0];
for (const Value sz : ArrayRef<Value>{dimSizes}.drop_front())
valHeuristic = builder.create<arith::MulIOp>(loc, valHeuristic, sz);
} else if (sizeHint) {
if (getCOOStart(stt.getEncoding()) == 0) {
posHeuristic = constantIndex(builder, loc, 2);
crdHeuristic = builder.create<arith::MulIOp>(
loc, constantIndex(builder, loc, dimRank), sizeHint); // AOS
} else if (dimRank == 2 && stt.isDenseLvl(0) && stt.isCompressedLvl(1)) {
posHeuristic = builder.create<arith::AddIOp>(
loc, sizeHint, constantIndex(builder, loc, 1));
crdHeuristic = sizeHint;
} else {
posHeuristic = crdHeuristic = constantIndex(builder, loc, 16);
}
valHeuristic = sizeHint;
} else {
posHeuristic = crdHeuristic = valHeuristic =
constantIndex(builder, loc, 16);
}
foreachFieldAndTypeInSparseTensor(
stt,
[&builder, &fields, stt, loc, posHeuristic, crdHeuristic, valHeuristic,
enableInit](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
Level /*lvl*/, DimLevelType /*dlt*/) -> bool {
assert(fields.size() == fIdx);
Value field;
switch (fKind) {
case SparseTensorFieldKind::StorageSpec:
field = SparseTensorSpecifier::getInitValue(builder, loc, stt);
break;
case SparseTensorFieldKind::PosMemRef:
case SparseTensorFieldKind::CrdMemRef:
case SparseTensorFieldKind::ValMemRef:
field = createAllocation(
builder, loc, cast<MemRefType>(fType),
(fKind == SparseTensorFieldKind::PosMemRef) ? posHeuristic
: (fKind == SparseTensorFieldKind::CrdMemRef) ? crdHeuristic
: valHeuristic,
enableInit);
break;
}
assert(field);
fields.push_back(field);
// Returns true to continue the iteration.
return true;
});
MutSparseTensorDescriptor desc(stt, fields);
// Initialize the storage scheme to an empty tensor. Initialized memSizes
// to all zeros, sets the dimSizes to known values and gives all position
// fields an initial zero entry, so that it is easier to maintain the
// "linear + 1" length property.
Value posZero = constantZero(builder, loc, stt.getPosType());
for (Level lvlRank = stt.getLvlRank(), l = 0; l < lvlRank; l++) {
// Fills dim sizes array.
// FIXME: `toOrigDim` is deprecated.
desc.setLvlSize(builder, loc, l, dimSizes[toOrigDim(stt, l)]);
// Pushes a leading zero to positions memref.
if (stt.isCompressedLvl(l))
createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, l,
posZero);
}
allocSchemeForRank(builder, loc, desc, /*rank=*/0);
}
/// Helper method that generates block specific to compressed case:
///
/// // given: parentPos = posCursor[lvl-1]
/// pstart = desc.positions[lvl][parentPos]
/// pstop = desc.positions[lvl][parentPos+1]
/// plast = pstop - 1
/// msz = desc.coordinates[lvl].size()
/// if (pstart < pstop) {
/// isPresent = (desc.coordinates[lvl][plast] == lvlCoords[lvl])
/// } else { // first insertion
/// isPresent = false
/// desc.positions[lvl][parentPos] = msz
/// }
/// if (isPresent) { // coordinate is already present
/// pnext = plast
/// } else {
/// desc.coordinates[lvl].push_back(lvlCoords[lvl])
/// desc.positions[lvl][parentPos+1] = msz+1
/// pnext = msz
/// <prepare level lvl+1>
/// }
/// posCursor[lvl] = pnext
static Value genCompressed(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc, ValueRange lvlCoords,
Value /*unused*/, Value parentPos, Level lvl) {
const SparseTensorType stt(desc.getRankedTensorType());
const Level lvlRank = stt.getLvlRank();
assert(lvl < lvlRank && "Level is out of bounds");
assert(lvlCoords.size() == static_cast<size_t>(lvlRank) &&
"Level-rank mismatch");
SmallVector<Type> types;
Type indexType = builder.getIndexType();
Type boolType = builder.getIntegerType(1);
unsigned crdFidx;
unsigned crdStride;
std::tie(crdFidx, crdStride) = desc.getCrdMemRefIndexAndStride(lvl);
const Value one = constantIndex(builder, loc, 1);
const Value pp1 = builder.create<arith::AddIOp>(loc, parentPos, one);
const Value positionsAtLvl = desc.getPosMemRef(lvl);
const Value pstart = genLoad(builder, loc, positionsAtLvl, parentPos);
const Value pstop = genLoad(builder, loc, positionsAtLvl, pp1);
const Value crdMsz = desc.getCrdMemSize(builder, loc, lvl);
const Value crdStrideC =
crdStride > 1 ? constantIndex(builder, loc, crdStride) : Value();
const Value msz =
crdStrideC ? builder.create<arith::DivUIOp>(loc, crdMsz, crdStrideC)
: crdMsz;
const Value plast = builder.create<arith::SubIOp>(
loc, genCast(builder, loc, pstop, indexType), one);
// Conditional expression.
Value lt = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
pstart, pstop);
types.push_back(boolType);
scf::IfOp ifOp1 = builder.create<scf::IfOp>(loc, types, lt, /*else*/ true);
types.pop_back();
builder.setInsertionPointToStart(&ifOp1.getThenRegion().front());
Value crd =
genLoad(builder, loc, desc.getMemRefField(crdFidx),
crdStrideC ? builder.create<arith::MulIOp>(loc, plast, crdStrideC)
: plast);
Value eq = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, genCast(builder, loc, crd, indexType),
lvlCoords[lvl]);
builder.create<scf::YieldOp>(loc, eq);
builder.setInsertionPointToStart(&ifOp1.getElseRegion().front());
if (lvl > 0)
genStore(builder, loc, msz, positionsAtLvl, parentPos);
builder.create<scf::YieldOp>(loc, constantI1(builder, loc, false));
builder.setInsertionPointAfter(ifOp1);
// If present construct. Note that for a non-unique dimension level, we
// simply set the condition to false and rely on CSE/DCE to clean up the IR.
//
// TODO: generate less temporary IR?
//
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
types.push_back(desc.getField(i).getType());
types.push_back(indexType);
const Value p = stt.isUniqueLvl(lvl) ? ifOp1.getResult(0)
: constantI1(builder, loc, false);
scf::IfOp ifOp2 = builder.create<scf::IfOp>(loc, types, p, /*else*/ true);
// If present (fields unaffected, update pnext to plast).
builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
// FIXME: This does not looks like a clean way, but probably the most
// efficient way.
desc.getFields().push_back(plast);
builder.create<scf::YieldOp>(loc, desc.getFields());
desc.getFields().pop_back();
// If !present (changes fields, update pnext).
builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
Value mszp1 = builder.create<arith::AddIOp>(loc, msz, one);
genStore(builder, loc, mszp1, positionsAtLvl, pp1);
createPushback(builder, loc, desc, SparseTensorFieldKind::CrdMemRef, lvl,
lvlCoords[lvl]);
// Prepare the next level "as needed".
if ((lvl + 1) < lvlRank)
allocSchemeForRank(builder, loc, desc, lvl + 1);
desc.getFields().push_back(msz);
builder.create<scf::YieldOp>(loc, desc.getFields());
desc.getFields().pop_back();
// Update fields and return next pos.
builder.setInsertionPointAfter(ifOp2);
unsigned o = 0;
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
desc.setField(i, ifOp2.getResult(o++));
return ifOp2.getResult(o);
}
/// Helper class to help lowering sparse_tensor.insert operation.
class SparseInsertGenerator
: public FuncCallOrInlineGenerator<SparseInsertGenerator> {
public:
SparseInsertGenerator(TensorType rtp, TypeRange retTypes, ValueRange params,
bool genCall)
: FuncCallOrInlineGenerator(retTypes, params, genCall), rtp(rtp){};
/// Generates code along an insertion path without the need for a "cursor".
/// This current insertion strategy comes at the expense of some testing
/// overhead for each insertion. The strategy will be optimized later for
/// common insertion patterns. The current insertion strategy also assumes
/// insertions occur in "a reasonable order" that enables building the
/// storage scheme in an appending/inserting kind of fashion (i.e. no
/// in-between insertions that need data movement). The implementation
/// relies on CSE/DCE to clean up all bookkeeping that is not needed.
///
/// TODO: better unord/not-unique; also generalize, optimize, specialize!
SmallVector<Value> genImplementation(TypeRange retTypes, ValueRange args,
OpBuilder &builder, Location loc) {
const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));
const Level lvlRank = stt.getLvlRank();
// Extract fields and coordinates from args.
SmallVector<Value> fields = llvm::to_vector(args.drop_back(lvlRank + 1));
MutSparseTensorDescriptor desc(stt, fields);
const SmallVector<Value> coords =
llvm::to_vector(args.take_back(lvlRank + 1).drop_back());
Value value = args.back();
Value parentPos = constantZero(builder, loc, builder.getIndexType());
// Generate code for every level.
for (Level l = 0; l < lvlRank; l++) {
const auto dlt = stt.getLvlType(l);
if (isCompressedDLT(dlt)) {
// Create:
// if (!present) {
// coordinates[l].push_back(coords[l])
// <update positions and prepare level l + 1>
// }
// positions[l] = coordinates.size() - 1
// <insert @ positions[l] at next level l + 1>
parentPos =
genCompressed(builder, loc, desc, coords, value, parentPos, l);
} else if (isSingletonDLT(dlt)) {
// Create:
// coordinates[l].push_back(coords[l])
// positions[l] = positions[l-1]
// <insert @ positions[l] at next level l + 1>
createPushback(builder, loc, desc, SparseTensorFieldKind::CrdMemRef, l,
coords[l]);
} else {
assert(isDenseDLT(dlt));
// Construct the new position as:
// positions[l] = size * positions[l-1] + coords[l]
// <insert @ positions[l] at next level l + 1>
Value size = sizeFromTensorAtLvl(builder, loc, desc, l);
Value mult = builder.create<arith::MulIOp>(loc, size, parentPos);
parentPos = builder.create<arith::AddIOp>(loc, mult, coords[l]);
}
}
// Reached the actual value append/insert.
if (!stt.isDenseLvl(lvlRank - 1))
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
std::nullopt, value);
else
genStore(builder, loc, value, desc.getValMemRef(), parentPos);
return fields;
}
std::string getMangledFuncName() {
// The mangled name of the function has this format:
// <namePrefix>_<DLT>_<shape>_<ordering>_<eltType>_<crdWidth>_<posWidth>
constexpr const char kInsertFuncNamePrefix[] = "_insert_";
const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));
SmallString<32> nameBuffer;
llvm::raw_svector_ostream nameOstream(nameBuffer);
nameOstream << kInsertFuncNamePrefix;
const Level lvlRank = stt.getLvlRank();
for (Level l = 0; l < lvlRank; l++)
nameOstream << toMLIRString(stt.getLvlType(l)) << "_";
// Static dim sizes are used in the generated code while dynamic sizes are
// loaded from the dimSizes buffer. This is the reason for adding the shape
// to the function name.
for (const auto sh : stt.getDimShape())
nameOstream << sh << "_";
// Permutation information is also used in generating insertion.
if (!stt.isIdentity())
nameOstream << stt.getDimToLvl() << "_";
nameOstream << stt.getElementType() << "_";
nameOstream << stt.getCrdWidth() << "_" << stt.getPosWidth();
return nameOstream.str().str();
}
private:
TensorType rtp;
};
/// Generations insertion finalization code.
static void genEndInsert(OpBuilder &builder, Location loc,
SparseTensorDescriptor desc) {
const SparseTensorType stt(desc.getRankedTensorType());
const Level lvlRank = stt.getLvlRank();
for (Level l = 0; l < lvlRank; l++) {
const auto dlt = stt.getLvlType(l);
if (isCompressedWithHiDLT(dlt))
llvm_unreachable("TODO: Not yet implemented");
if (isCompressedDLT(dlt)) {
// Compressed dimensions need a position cleanup for all entries
// that were not visited during the insertion pass.
//
// TODO: avoid cleanup and keep compressed scheme consistent at all
// times?
//
if (l > 0) {
Type posType = stt.getPosType();
Value posMemRef = desc.getPosMemRef(l);
Value hi = desc.getPosMemSize(builder, loc, l);
Value zero = constantIndex(builder, loc, 0);
Value one = constantIndex(builder, loc, 1);
// Vector of only one, but needed by createFor's prototype.
SmallVector<Value, 1> inits{genLoad(builder, loc, posMemRef, zero)};
scf::ForOp loop = createFor(builder, loc, hi, inits, one);
Value i = loop.getInductionVar();
Value oldv = loop.getRegionIterArg(0);
Value newv = genLoad(builder, loc, posMemRef, i);
Value posZero = constantZero(builder, loc, posType);
Value cond = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, newv, posZero);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, TypeRange(posType),
cond, /*else*/ true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
genStore(builder, loc, oldv, posMemRef, i);
builder.create<scf::YieldOp>(loc, oldv);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, newv);
builder.setInsertionPointAfter(ifOp);
builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
builder.setInsertionPointAfter(loop);
}
} else {
assert(isDenseDLT(dlt) || isSingletonDLT(dlt));
}
}
}
static TypedValue<BaseMemRefType> genToMemref(OpBuilder &builder, Location loc,
Value tensor) {
auto tTp = llvm::cast<TensorType>(tensor.getType());
auto mTp = MemRefType::get(tTp.getShape(), tTp.getElementType());
return builder.create<bufferization::ToMemrefOp>(loc, mTp, tensor)
.getResult();
}
Value genSliceToSize(OpBuilder &builder, Location loc, Value mem, Value sz) {
auto elemTp = llvm::cast<MemRefType>(mem.getType()).getElementType();
return builder
.create<memref::SubViewOp>(
loc, MemRefType::get({ShapedType::kDynamic}, elemTp), mem,
ValueRange{}, ValueRange{sz}, ValueRange{},
ArrayRef<int64_t>{0}, // static offset
ArrayRef<int64_t>{ShapedType::kDynamic}, // dynamic size
ArrayRef<int64_t>{1}) // static stride
.getResult();
}
static ReassociationIndices getReassociationForFlattening(ShapedType srcTp) {
ReassociationIndices reassociation;
for (int i = 0, e = srcTp.getRank(); i < e; i++)
reassociation.push_back(i);
return reassociation;
}
//===----------------------------------------------------------------------===//
// Codegen rules.
//===----------------------------------------------------------------------===//
/// Sparse tensor storage conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SmallVector<Value> flattened;
flattenOperands(adaptor.getOperands(), flattened);
// Create a return with the flattened value extracted from sparse tensors.
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, flattened);
return success();
}
};
/// Sparse tensor storage conversion rule for calls.
class SparseCallConverter : public OpConversionPattern<func::CallOp> {
public:
// The default CallOp converter can not handle 1:N type conversion.
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::CallOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// In case of:
// sparse_tensor, f, sparse_tensor = call @foo(...)
// ==>
// memref..., f, memref = call @foo(...) replace with
// cast(memref...)->sparse_tensor, f, cast(memref...)->sparse_tensor
SmallVector<Type> finalRetTy;
if (failed(typeConverter->convertTypes(op.getResultTypes(), finalRetTy)))
return failure();
// (1) Genereates new call with flattened return value.
SmallVector<Value> flattened;
flattenOperands(adaptor.getOperands(), flattened);
auto newCall = rewriter.create<func::CallOp>(loc, op.getCallee(),
finalRetTy, flattened);
// (2) Create cast operation for sparse tensor returns.
SmallVector<Value> castedRet;
// Tracks the offset of current return value (of the orignal call)
// relative to the new call (after sparse tensor flattening);
unsigned retOffset = 0;
// Temporal buffer to hold the flattened list of type for
// a sparse tensor.
SmallVector<Type> sparseFlat;
for (auto ret : op.getResults()) {
assert(retOffset < newCall.getNumResults());
auto retType = ret.getType();
if (failed(typeConverter->convertType(retType, sparseFlat)))
// This should never happen.
llvm_unreachable("Failed to convert type in sparse tensor codegen");
// Converted types can not be empty when the type conversion succeed.
assert(!sparseFlat.empty());
if (sparseFlat.size() > 1) {
auto flatSize = sparseFlat.size();
ValueRange fields(iterator_range<ResultRange::iterator>(
newCall.result_begin() + retOffset,
newCall.result_begin() + retOffset + flatSize));
castedRet.push_back(genTuple(rewriter, loc, retType, fields));
retOffset += flatSize;
} else {
// If this is an 1:1 conversion, no need for casting.
castedRet.push_back(newCall.getResult(retOffset));
retOffset++;
}
sparseFlat.clear();
}
assert(castedRet.size() == op.getNumResults());
rewriter.replaceOp(op, castedRet);
return success();
}
};
/// Sparse codegen rule for dimension accesses.
class SparseDimOpConverter : public OpConversionPattern<tensor::DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
std::optional<int64_t> dim = op.getConstantIndex();
if (!dim || !getSparseTensorEncoding(adaptor.getSource().getType()))
return failure();
auto desc = getDescriptorFromTensorTuple(adaptor.getSource());
auto sz = sizeFromTensorAtDim(rewriter, op.getLoc(), desc, *dim);
rewriter.replaceOp(op, sz);
return success();
}
};
template <typename Op, StorageSpecifierKind kind>
class SparseSliceGetterOpConverter : public OpConversionPattern<Op> {
public:
using OpConversionPattern<Op>::OpConversionPattern;
LogicalResult
matchAndRewrite(Op op, typename Op::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Simply lowers to specifer.get <field> operation.
auto desc = getDescriptorFromTensorTuple(adaptor.getSlice());
auto v = desc.getSpecifierField(rewriter, op.getLoc(), kind,
op.getDim().getZExtValue());
rewriter.replaceOp(op, v);
return success();
}
};
/// Sparse codegen rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse codgen rule for the alloc operator.
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorAllocConverter(TypeConverter &typeConverter, MLIRContext *context,
bool enableInit)
: OpConversionPattern(typeConverter, context),
enableBufferInitialization(enableInit) {}
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto resType = getSparseTensorType(op);
if (!resType.hasEncoding())
return failure();
// Construct allocation for each field.
const Location loc = op.getLoc();
if (op.getCopy()) {
auto desc = getDescriptorFromTensorTuple(adaptor.getCopy());
SmallVector<Value> fields;
fields.reserve(desc.getNumFields());
// Memcpy on memref fields.
for (auto field : desc.getMemRefFields()) {
auto memrefTp = cast<MemRefType>(field.getType());
auto size = rewriter.create<memref::DimOp>(loc, field, 0);
auto copied =
rewriter.create<memref::AllocOp>(loc, memrefTp, ValueRange{size});
rewriter.create<memref::CopyOp>(loc, field, copied);
fields.push_back(copied);
}
// Reuses specifier.
fields.push_back(desc.getSpecifier());
assert(fields.size() == desc.getNumFields());
rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
return success();
}
const Value sizeHint = op.getSizeHint();
const ValueRange dynSizes = adaptor.getDynamicSizes();
const size_t found = dynSizes.size();
const int64_t expected = resType.getNumDynamicDims();
if (found != static_cast<size_t>(expected))
return rewriter.notifyMatchFailure(
op, llvm::formatv(
"Got wrong number of dynamic sizes: Found={0}, Expected={1}",
found, expected));
SmallVector<Value> fields;
createAllocFields(rewriter, loc, resType, dynSizes,
enableBufferInitialization, fields, sizeHint);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
return success();
}
private:
bool enableBufferInitialization;
};
/// Sparse codegen rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorDeallocConverter(TypeConverter &typeConverter,
MLIRContext *context, bool createDeallocs)
: OpConversionPattern(typeConverter, context),
createDeallocs(createDeallocs) {}
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto enc = getSparseTensorEncoding(op.getTensor().getType());
if (!enc)
return failure();
// If user requests not to deallocate sparse tensors, simply erase the
// operation.
if (createDeallocs) {
// Replace the sparse tensor deallocation with field deallocations.
Location loc = op.getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
for (auto input : desc.getMemRefFields())
// Deallocate every buffer used to store the sparse tensor handler.
rewriter.create<memref::DeallocOp>(loc, input);
}
rewriter.eraseOp(op);
return success();
}
private:
const bool createDeallocs;
};
/// Sparse codegen rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Prepare descriptor.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
// Generate optional insertion finalization code.
if (op.getHasInserts())
genEndInsert(rewriter, op.getLoc(), desc);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), desc));
return success();
}
};
/// Sparse codegen rule for the expand op.
class SparseExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!getSparseTensorEncoding(op.getTensor().getType()))
return failure();
Location loc = op->getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
const auto srcType = getSparseTensorType(op.getTensor());
Type eltType = srcType.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Determine the size for access expansion (always the innermost stored
// level size, translated back to original dimension). Note that we
// recursively rewrite the new DimOp on the **original** tensor.
// FIXME: `toOrigDim` is deprecated.
const Dimension innerDim = toOrigDim(srcType, srcType.getLvlRank() - 1);
const auto sz = sizeFromTensorAtDim(rewriter, loc, desc, innerDim);
// Generate a memref for `sz` elements of type `t`.
const auto genAlloc = [&](Type t) {
const auto memTp = MemRefType::get({ShapedType::kDynamic}, t);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
};
// Allocate temporary buffers for values/filled-switch and added.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(eltType);
Value filled = genAlloc(boolType);
Value added = genAlloc(idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial coordinate.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, added, zero});
return success();
}
};
/// Sparse codegen rule for the compress operator.
class SparseCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
SmallVector<Value> fields;
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
Value values = adaptor.getValues();
Value filled = adaptor.getFilled();
Value added = adaptor.getAdded();
Value count = adaptor.getCount();
const SparseTensorType dstType(desc.getRankedTensorType());
Type eltType = dstType.getElementType();
// If the innermost level is ordered, we need to sort the coordinates
// in the "added" array prior to applying the compression.
if (dstType.isOrderedLvl(dstType.getLvlRank() - 1))
rewriter.create<SortOp>(loc, count, ValueRange{added}, ValueRange{},
SparseTensorSortKind::HybridQuickSort);
// While performing the insertions, we also need to reset the elements
// of the values/filled-switch by only iterating over the set elements,
// to ensure that the runtime complexity remains proportional to the
// sparsity of the expanded access pattern.
//
// Generate
// out_memrefs = for (i = 0; i < count; i++)(in_memrefs) {
// crd = added[i];
// value = values[crd];
// insert({lvlCoords, crd}, value);
// new_memrefs = insert(in_memrefs, {lvlCoords, crd}, value);
// values[crd] = 0;
// filled[crd] = false;
// yield new_memrefs
// }
scf::ForOp loop = createFor(rewriter, loc, count, desc.getFields());
Value i = loop.getInductionVar();
Value crd = genLoad(rewriter, loc, added, i);
Value value = genLoad(rewriter, loc, values, crd);
SmallVector<Value> params(desc.getFields().begin(), desc.getFields().end());
SmallVector<Type> flatSpTensorTps = llvm::to_vector(
llvm::map_range(desc.getFields(), [](Value v) { return v.getType(); }));
params.append(adaptor.getLvlCoords().begin(), adaptor.getLvlCoords().end());
params.push_back(crd);
params.push_back(value);
SparseInsertGenerator insertGen(op.getTensor().getType(), flatSpTensorTps,
params, /*genCall=*/true);
SmallVector<Value> insertRet = insertGen.genCallOrInline(rewriter, loc);
genStore(rewriter, loc, constantZero(rewriter, loc, eltType), values, crd);
genStore(rewriter, loc, constantI1(rewriter, loc, false), filled, crd);
rewriter.create<scf::YieldOp>(loc, insertRet);
rewriter.setInsertionPointAfter(loop);
Value result = genTuple(rewriter, loc, dstType, loop->getResults());
// Deallocate the buffers on exit of the full loop nest.
Operation *parent = getTop(op);
rewriter.setInsertionPointAfter(parent);
rewriter.create<memref::DeallocOp>(loc, values);
rewriter.create<memref::DeallocOp>(loc, filled);
rewriter.create<memref::DeallocOp>(loc, added);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, result);
return success();
}
};
/// Sparse codegen rule for the insert operator.
class SparseInsertConverter : public OpConversionPattern<InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
TypeRange flatSpTensorTps = desc.getFields().getTypes();
SmallVector<Value> params = llvm::to_vector(desc.getFields());
params.append(adaptor.getLvlCoords().begin(), adaptor.getLvlCoords().end());
params.push_back(adaptor.getValue());
SparseInsertGenerator insertGen(op.getTensor().getType(), flatSpTensorTps,
params, /*genCall=*/true);
SmallVector<Value> ret = insertGen.genCallOrInline(rewriter, loc);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op,
genTuple(rewriter, loc, op.getTensor().getType(), ret));
return success();
}
};
/// Sparse codegen rule for position accesses.
class SparseToPositionsConverter : public OpConversionPattern<ToPositionsOp> {
public:
using OpAdaptor = typename ToPositionsOp::Adaptor;
using OpConversionPattern<ToPositionsOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPositionsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested position access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
rewriter.replaceOp(op, desc.getPosMemRef(op.getLevel()));
return success();
}
};
/// Sparse codegen rule for accessing the coordinates arrays.
class SparseToCoordinatesConverter
: public OpConversionPattern<ToCoordinatesOp> {
public:
using OpAdaptor = typename ToCoordinatesOp::Adaptor;
using OpConversionPattern<ToCoordinatesOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToCoordinatesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested coordinates access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
Location loc = op.getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
Value field = desc.getCrdMemRefOrView(rewriter, loc, op.getLevel());
// Insert a cast to bridge the actual type to the user expected type. If the
// actual type and the user expected type aren't compatible, the compiler or
// the runtime will issue an error.
Type resType = op.getResult().getType();
if (resType != field.getType())
field = rewriter.create<memref::CastOp>(loc, resType, field);
rewriter.replaceOp(op, field);
return success();
}
};
/// Sparse codegen rule for accessing the linear coordinates buffer.
class SparseToCoordinatesBufferConverter
: public OpConversionPattern<ToCoordinatesBufferOp> {
public:
using OpAdaptor = typename ToCoordinatesBufferOp::Adaptor;
using OpConversionPattern<ToCoordinatesBufferOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToCoordinatesBufferOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested coordinates access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
rewriter.replaceOp(op, desc.getAOSMemRef());
return success();
}
};
/// Sparse codegen rule for value accesses.
class SparseToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpAdaptor = typename ToValuesOp::Adaptor;
using OpConversionPattern<ToValuesOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested values access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
rewriter.replaceOp(op, desc.getValMemRef());
return success();
}
};
/// Sparse codegen rule for the convert operator.
class SparseConvertConverter : public OpConversionPattern<ConvertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SparseTensorEncodingAttr encDst = getSparseTensorEncoding(op.getType());
SparseTensorEncodingAttr encSrc =
getSparseTensorEncoding(op.getSource().getType());
// The output tensor can not be a slice and those cases should have been
// rejected by ConvertOp::verify() already.
assert(!encDst.isSlice() && "Cannot convert to a sparse tensor slices.");
// Different encoding (except for different bitwidth) should be handled by
// rewriting.
// We need further rewrites if the input tensor is a slice too.
if (encDst.withoutBitWidths() != encSrc.withoutBitWidths() ||
encSrc.isSlice()) {
return failure();
}
Type retElemTp = op.getResult().getType().getElementType();
Type srcElemTp = op.getSource().getType().getElementType();
// Fold the trivial cases.
if (retElemTp == srcElemTp && encDst == encSrc) {
rewriter.replaceOp(op, adaptor.getSource());
return success();
}
//
// Do element-wise type conversion without using InsertOp.
//
// for each memref in srcTensor:
// dst = memref.alloc
// if srcMemRefType != dstMemRefType:
// for every dst[i] = cast(src[i])
// else:
// dst = memref.copy(src)
Location loc = op.getLoc();
auto srcDesc = getDescriptorFromTensorTuple(adaptor.getSource());
SmallVector<Value> fields;
foreachFieldAndTypeInSparseTensor(
SparseTensorType(cast<RankedTensorType>(op.getResult().getType())),
[&rewriter, &fields, srcDesc,
loc](Type fTp, FieldIndex fIdx, SparseTensorFieldKind fKind, Level lvl,
DimLevelType /*dlt*/) -> bool {
// Simply reuses the storage specifier as it is an SSA value.
if (fKind == SparseTensorFieldKind::StorageSpec) {
fields.push_back(srcDesc.getSpecifier());
} else {
// Allocates new memrefs
Value srcMem = srcDesc.getMemRefField(fIdx);
// TODO: We can instead use the actual memSize in specifier, that
// would require a subViewOp to avoid overflow when copying
// values.
Value sz = linalg::createOrFoldDimOp(rewriter, loc, srcMem, 0);
auto dstMem = rewriter.create<memref::AllocOp>(
loc, cast<MemRefType>(fTp), sz);
if (fTp != srcMem.getType()) {
// Converts elements type.
scf::buildLoopNest(
rewriter, loc, constantIndex(rewriter, loc, 0), sz,
constantIndex(rewriter, loc, 1),
[srcMem, &dstMem](OpBuilder &builder, Location loc,
ValueRange ivs) {
Value v = builder.create<memref::LoadOp>(loc, srcMem, ivs);
Value casted = genCast(builder, loc, v,
dstMem.getType().getElementType());
builder.create<memref::StoreOp>(loc, casted, dstMem, ivs);
});
} else {
// TODO: We can even reuse the same memref for the new tensor,
// but that requires a `ref-counting` based memory management
// for shared memrefs between multiple sparse tensors.
rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
}
fields.push_back(dstMem);
}
return true;
});
rewriter.replaceOp(
op, genTuple(rewriter, loc, op.getResult().getType(), fields));
return success();
}
};
class SparseExtractSliceConverter
: public OpConversionPattern<tensor::ExtractSliceOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::ExtractSliceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
MLIRContext *ctx = op.getContext();
auto srcEnc = getSparseTensorEncoding(op.getSourceType());
auto dstEnc = getSparseTensorEncoding(op.getResult().getType());
// TODO: We should check these in ExtractSliceOp::verify.
if (!srcEnc || !dstEnc || !dstEnc.isSlice())
return failure();
assert(srcEnc.withoutDimSlices() == dstEnc.withoutDimSlices());
SmallVector<Value> fields;
auto desc = getMutDescriptorFromTensorTuple(adaptor.getSource(), fields);
auto newSpec = rewriter.create<StorageSpecifierInitOp>(
loc, StorageSpecifierType::get(ctx, dstEnc), desc.getSpecifier());
desc.setSpecifier(newSpec);
// Fills in slice information.
for (auto [idx, offset, size, stride] : llvm::enumerate(
op.getMixedOffsets(), op.getMixedSizes(), op.getMixedStrides())) {
Dimension dim = idx;
Value offsetV = getValueOrCreateConstantIndexOp(rewriter, loc, offset);
Value sizeV = getValueOrCreateConstantIndexOp(rewriter, loc, size);
Value strideV = getValueOrCreateConstantIndexOp(rewriter, loc, stride);
// TODO: We could probably only set dynamic value here. But it would
// requires us to fill the hole when casting a static slice to dynamic
// slice.
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimOffset,
dim, offsetV);
// FIXME: we need to distinguish level sizes and dimension size for slices
// here. Maybe we should store slice level sizes in a different array
// instead of reusing it.
assert(srcEnc.isIdentity());
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::LvlSize, dim,
sizeV);
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimStride,
dim, strideV);
}
// NOTE: we can not generate tuples directly from descriptor here, as the
// descriptor is holding the original type, yet we want the slice type
// here (they shared every memref but with an updated specifier).
rewriter.replaceOp(op, genTuple(rewriter, loc, op.getResult().getType(),
desc.getFields()));
return success();
}
};
/// Sparse codegen rule for number of entries operator.
class SparseNumberOfEntriesConverter
: public OpConversionPattern<NumberOfEntriesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Query memSizes for the actually stored values.
// FIXME: the nse value computed in this way might be wrong when there is
// any "compressed-hi" level.
rewriter.replaceOp(
op, genValMemSize(rewriter, op.getLoc(), adaptor.getTensor()));
return success();
}
};
struct SparsePackOpConverter : public OpConversionPattern<PackOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(PackOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op.getResult());
SmallVector<Value> fields;
foreachFieldAndTypeInSparseTensor(
stt,
[&rewriter, &fields, &op, &stt,
loc](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
Level /*lvl*/, DimLevelType dlt) -> bool {
assert(fields.size() == fIdx);
if (fKind == SparseTensorFieldKind::StorageSpec) {
fields.push_back(
SparseTensorSpecifier::getInitValue(rewriter, loc, stt));
} else {
// Else simply takes the inputs.
Value tensor = fKind == SparseTensorFieldKind::ValMemRef
? op.getValues()
: op.getLevels()[fIdx];
TypedValue<BaseMemRefType> mem = genToMemref(rewriter, loc, tensor);
if (mem.getType().getRank() > 1) {
// Flattens the buffer to rank 1.
auto reassoc = getReassociationForFlattening(mem.getType());
mem = rewriter.create<memref::CastOp>(
loc, fType,
rewriter.create<memref::CollapseShapeOp>(loc, mem, reassoc));
} else {
mem = rewriter.create<memref::CastOp>(loc, fType, mem);
}
fields.push_back(mem);
}
return true;
});
MutSparseTensorDescriptor desc(stt, fields);
Value c0 = constantIndex(rewriter, loc, 0);
Value c1 = constantIndex(rewriter, loc, 1);
Value c2 = constantIndex(rewriter, loc, 2);
Value posBack = c0; // index to the last value in the postion array
Value memSize = c1; // memory size for current array
Level trailCOOStart = getCOOStart(stt.getEncoding());
Level trailCOORank = stt.getLvlRank() - trailCOOStart;
// Sets up SparseTensorSpecifier.
for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
assert(!ShapedType::isDynamic(stt.getDimShape()[lvl]));
// FIXME: dim/lvl confusion!
// Sets up the level size.
auto lvlSize = constantIndex(rewriter, loc, stt.getDimShape()[lvl]);
desc.setLvlSize(rewriter, loc, lvl, lvlSize);
// We use a single AOS array to store the trailing COO, so there is only
// one memory size to set for the entire COO section.
if (lvl > trailCOOStart)
continue;
// Sets up the memory size by reading the last value in position array.
DimLevelType dlt = stt.getLvlType(lvl);
// Simply forwards the position index when this is a dense level.
if (isDenseDLT(dlt)) {
memSize = rewriter.create<arith::MulIOp>(loc, lvlSize, memSize);
posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
continue;
}
if (isDLTWithPos(dlt)) {
assert(isCompressedDLT(dlt) || isCompressedWithHiDLT(dlt));
if (isCompressedWithHiDLT(dlt)) {
memSize = rewriter.create<arith::MulIOp>(loc, memSize, c2);
posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
} else {
assert(isCompressedDLT(dlt));
posBack = memSize;
memSize = rewriter.create<arith::AddIOp>(loc, memSize, c1);
}
desc.setPosMemSize(rewriter, loc, lvl, memSize);
// The last value in position array is the memory size for next level.
memSize = genIndexLoad(rewriter, loc, desc.getPosMemRef(lvl), posBack);
posBack = rewriter.create<arith::SubIOp>(loc, posBack, c1);
}
assert(isDLTWithCrd(dlt) && lvl <= trailCOOStart);
// FIXME: This seems to be unnecessarily complex, can we simplify it?
if (lvl == trailCOOStart) {
Value cooSz = rewriter.create<arith::MulIOp>(
loc, memSize, constantIndex(rewriter, loc, trailCOORank));
desc.setCrdMemSize(rewriter, loc, lvl, cooSz);
} else {
desc.setCrdMemSize(rewriter, loc, lvl, memSize);
}
}
desc.setValMemSize(rewriter, loc, memSize);
rewriter.replaceOp(op, genTuple(rewriter, loc, desc));
return success();
}
};
struct SparseUnpackOpConverter : public OpConversionPattern<UnpackOp> {
using OpConversionPattern::OpConversionPattern;
SparseUnpackOpConverter(TypeConverter &typeConverter, MLIRContext *context)
: OpConversionPattern(typeConverter, context) {}
LogicalResult
matchAndRewrite(UnpackOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
Location loc = op.getLoc();
SmallVector<Value> retMem;
SmallVector<Value> retLen;
desc.getLayout().foreachField([desc, loc, &rewriter, &op, &retMem, &retLen](
FieldIndex fid,
SparseTensorFieldKind fKind, Level lvl,
DimLevelType dlt) -> bool {
if (fKind == SparseTensorFieldKind::StorageSpec)
return true;
SparseTensorType stt(desc.getRankedTensorType());
Value sz, src;
TypedValue<BaseMemRefType> dst;
if (fKind == SparseTensorFieldKind::ValMemRef) {
sz = desc.getValMemSize(rewriter, loc);
src = desc.getValMemRef();
dst = genToMemref(rewriter, loc, op.getOutValues());
// Values is the last field in descriptor, but it is the first
// operand in unpack operation.
// TODO: maybe change unpack/pack operation instead to be
// consistent.
retMem.insert(retMem.begin(), dst);
retLen.insert(retLen.begin(), sz);
} else {
assert(fKind == SparseTensorFieldKind::PosMemRef ||
fKind == SparseTensorFieldKind::CrdMemRef);
sz = fKind == SparseTensorFieldKind::PosMemRef
? desc.getPosMemSize(rewriter, loc, lvl)
: desc.getCrdMemSize(rewriter, loc, lvl);
src = desc.getMemRefField(fid);
dst = genToMemref(rewriter, loc, op.getOutLevels()[fid]);
retMem.push_back(dst);
retLen.push_back(sz);
}
Value flatOut = dst;
if (dst.getType().getRank() != 1) {
auto reassoc = getReassociationForFlattening(dst.getType());
flatOut = rewriter.create<memref::CollapseShapeOp>(loc, dst, reassoc);
}
Value dstMem = genSliceToSize(rewriter, loc, flatOut, sz);
Value srcMem = genSliceToSize(rewriter, loc, src, sz);
rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
return true;
});
// Converts MemRefs back to Tensors.
SmallVector<Value> retValues = llvm::to_vector(
llvm::map_range(retMem, [&rewriter, loc](Value v) -> Value {
return rewriter.create<bufferization::ToTensorOp>(loc, v);
}));
// Appends the actual memory length used in each buffer returned.
retValues.append(retLen.begin(), retLen.end());
rewriter.replaceOp(op, retValues);
return success();
}
};
struct SparseNewOpConverter : public OpConversionPattern<NewOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto dstTp = getSparseTensorType(op.getResult());
// Creating COO with NewOp is handled by direct IR codegen. All other cases
// are handled by rewriting.
if (!dstTp.hasEncoding() || getCOOStart(dstTp.getEncoding()) != 0)
return failure();
// Implement the NewOp(filename) as follows:
// %reader = @getSparseTensorReader(%filename)
// %nse = @getSparseTensorNSE(%reader)
// %coo = bufferization.alloc_tensor an ordered COO with
// dst dim ordering, size_hint = %nse
// %coordinates = sparse_tensor.coordinates_buffer(%coo)
// %values = sparse_tensor.values(%coo)
// %isSorted = @sparseTensorReaderReadToBuffers(%coordinates, %values)
// if (! %isSorted) sparse_tensor.sort_coo(%nse, %coordinates, %values)
// update storage specifier
// @delSparseTensorReader(%reader)
// Create a sparse tensor reader.
const Value fileName = op.getSource();
const Type opaqueTp = getOpaquePointerType(rewriter);
// FIXME: use `createCheckedSparseTensorReader` instead, because
// `createSparseTensorReader` is unsafe.
Value reader = createFuncCall(rewriter, loc, "createSparseTensorReader",
{opaqueTp}, {fileName}, EmitCInterface::Off)
.getResult(0);
const Type indexTp = rewriter.getIndexType();
const Dimension dimRank = dstTp.getDimRank();
const Level lvlRank = dstTp.getLvlRank();
// If the result tensor has dynamic dimensions, get the dynamic sizes from
// the sparse tensor reader.
SmallVector<Value> dynSizes;
if (dstTp.hasDynamicDimShape()) {
// FIXME: call `getSparseTensorReaderDimSizes` instead, because
// `copySparseTensorReaderDimSizes` copies the memref over,
// instead of just accessing the reader's memory directly.
Value dimSizes = genAlloca(rewriter, loc, dimRank, indexTp);
createFuncCall(rewriter, loc, "copySparseTensorReaderDimSizes", {},
{reader, dimSizes}, EmitCInterface::On);
for (const auto &d : llvm::enumerate(dstTp.getDimShape()))
if (ShapedType::isDynamic(d.value()))
dynSizes.push_back(rewriter.create<memref::LoadOp>(
loc, dimSizes, constantIndex(rewriter, loc, d.index())));
}
Value nse = createFuncCall(rewriter, loc, "getSparseTensorReaderNSE",
{indexTp}, {reader}, EmitCInterface::Off)
.getResult(0);
// Construct allocation for each field.
SmallVector<Value> fields;
createAllocFields(rewriter, loc, dstTp, dynSizes, /*enableInit=*/false,
fields, nse);
MutSparseTensorDescriptor desc(dstTp, fields);
// Construct the `dimToLvl` buffer for handing off to the runtime library.
// FIXME: This code is (mostly) copied from the SparseTensorConversion.cpp
// handling of `NewOp`, and only handles permutations. Fixing this
// requires waiting for wrengr to finish redoing the CL that handles
// all dim<->lvl stuff more robustly.
SmallVector<Value> dimToLvlValues(dimRank);
if (!dstTp.isIdentity()) {
const auto dimToLvl = dstTp.getDimToLvl();
assert(dimToLvl.isPermutation() && "Got non-permutation");
for (Level l = 0; l < lvlRank; l++) {
const Dimension d = dimToLvl.getDimPosition(l);
dimToLvlValues[d] = constantIndex(rewriter, loc, l);
}
} else {
// The `SparseTensorType` ctor already ensures `dimRank == lvlRank`
// when `isIdentity`; so no need to re-assert it here.
for (Dimension d = 0; d < dimRank; d++)
dimToLvlValues[d] = constantIndex(rewriter, loc, d);
}
Value dimToLvl = allocaBuffer(rewriter, loc, dimToLvlValues);
// Read the COO tensor data.
Value xs = desc.getAOSMemRef();
Value ys = desc.getValMemRef();
const Type boolTp = rewriter.getIntegerType(1);
const Type elemTp = dstTp.getElementType();
const Type crdTp = dstTp.getCrdType();
// FIXME: This function name is weird; should rename to
// "sparseTensorReaderReadToBuffers".
SmallString<32> readToBuffersFuncName{"getSparseTensorReaderRead",
overheadTypeFunctionSuffix(crdTp),
primaryTypeFunctionSuffix(elemTp)};
Value isSorted =
createFuncCall(rewriter, loc, readToBuffersFuncName, {boolTp},
{reader, dimToLvl, xs, ys}, EmitCInterface::On)
.getResult(0);
// If the destination tensor is a sorted COO, we need to sort the COO tensor
// data if the input elements aren't sorted yet.
if (dstTp.isOrderedLvl(lvlRank - 1)) {
Value kFalse = constantI1(rewriter, loc, false);
Value notSorted = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, isSorted, kFalse);
scf::IfOp ifOp =
rewriter.create<scf::IfOp>(loc, notSorted, /*else*/ false);
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
rewriter.create<SortCooOp>(
loc, nse, xs, ValueRange{ys}, rewriter.getIndexAttr(lvlRank),
rewriter.getIndexAttr(0), SparseTensorSortKind::HybridQuickSort);
rewriter.setInsertionPointAfter(ifOp);
}
// Set PosMemRef0[1] = nse.
const Value c1 = constantIndex(rewriter, loc, 1);
const Value posMemref0 = desc.getPosMemRef(0);
const Type posTp = dstTp.getPosType();
const Value posNse = genCast(rewriter, loc, nse, posTp);
rewriter.create<memref::StoreOp>(loc, posNse, posMemref0, c1);
// Update storage specifier.
Value coordinatesSize = rewriter.create<arith::MulIOp>(
loc, nse, constantIndex(rewriter, loc, lvlRank));
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::CrdMemSize, 0,
coordinatesSize);
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::ValMemSize,
std::nullopt, nse);
// Release the sparse tensor reader.
createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
EmitCInterface::Off);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op, genTuple(rewriter, loc, dstTp, fields));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorCodegenPatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns,
bool createSparseDeallocs, bool enableBufferInitialization) {
patterns.add<SparsePackOpConverter, SparseUnpackOpConverter,
SparseReturnConverter, SparseCallConverter, SparseDimOpConverter,
SparseCastConverter, SparseExtractSliceConverter,
SparseTensorLoadConverter, SparseExpandConverter,
SparseCompressConverter, SparseInsertConverter,
SparseSliceGetterOpConverter<ToSliceOffsetOp,
StorageSpecifierKind::DimOffset>,
SparseSliceGetterOpConverter<ToSliceStrideOp,
StorageSpecifierKind::DimStride>,
SparseToPositionsConverter, SparseToCoordinatesConverter,
SparseToCoordinatesBufferConverter, SparseToValuesConverter,
SparseConvertConverter, SparseNewOpConverter,
SparseNumberOfEntriesConverter>(typeConverter,
patterns.getContext());
patterns.add<SparseTensorDeallocConverter>(
typeConverter, patterns.getContext(), createSparseDeallocs);
patterns.add<SparseTensorAllocConverter>(typeConverter, patterns.getContext(),
enableBufferInitialization);
}
|