File: SparseTensorCodegen.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (1538 lines) | stat: -rw-r--r-- 67,586 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor types and primitives to actual compiler
// visible buffers and actual compiler IR that implements these primitives on
// the selected sparse tensor storage schemes. This pass provides an alternative
// to the SparseTensorConversion pass, eliminating the dependence on a runtime
// support library, and providing much more opportunities for subsequent
// compiler optimization of the generated code.
//
//===----------------------------------------------------------------------===//

#include "CodegenUtils.h"
#include "SparseTensorDescriptor.h"

#include "llvm/Support/FormatVariadic.h"

#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"

#include <optional>

using namespace mlir;
using namespace mlir::sparse_tensor;

namespace {

using FuncGeneratorType =
    function_ref<void(OpBuilder &, ModuleOp, func::FuncOp, RankedTensorType)>;

//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//

/// Flatten a list of operands that may contain sparse tensors.
static void flattenOperands(ValueRange operands,
                            SmallVectorImpl<Value> &flattened) {
  // In case of
  // sparse_tensor, c, sparse_tensor
  // ==>
  // memref ..., c, memref ...
  for (auto operand : operands) {
    if (getSparseTensorEncoding(operand.getType())) {
      auto tuple = getTuple(operand);
      // An unrealized_conversion_cast will be inserted by type converter to
      // inter-mix the gap between 1:N conversion between sparse tensors and
      // fields. In this case, take the operands in the cast and replace the
      // sparse tensor output with the flattened type array.
      flattened.append(tuple.getOperands().begin(), tuple.getOperands().end());
    } else {
      flattened.push_back(operand);
    }
  }
}

/// Generates a load with proper `index` typing.
static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx) {
  idx = genCast(builder, loc, idx, builder.getIndexType());
  return builder.create<memref::LoadOp>(loc, mem, idx);
}

/// Generates a store with proper `index` typing and proper value.
static void genStore(OpBuilder &builder, Location loc, Value val, Value mem,
                     Value idx) {
  idx = genCast(builder, loc, idx, builder.getIndexType());
  val = genCast(builder, loc, val,
                cast<ShapedType>(mem.getType()).getElementType());
  builder.create<memref::StoreOp>(loc, val, mem, idx);
}

/// Creates a straightforward counting for-loop.
static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper,
                            MutableArrayRef<Value> fields,
                            Value lower = Value()) {
  Type indexType = builder.getIndexType();
  if (!lower)
    lower = constantZero(builder, loc, indexType);
  Value one = constantOne(builder, loc, indexType);
  scf::ForOp forOp = builder.create<scf::ForOp>(loc, lower, upper, one, fields);
  for (unsigned i = 0, e = fields.size(); i < e; i++)
    fields[i] = forOp.getRegionIterArg(i);
  builder.setInsertionPointToStart(forOp.getBody());
  return forOp;
}

/// Gets the dimension size for the given sparse tensor at the given
/// original dimension 'dim'.
static Value sizeFromTensorAtDim(OpBuilder &builder, Location loc,
                                 SparseTensorDescriptor desc, Dimension dim) {
  const SparseTensorType stt(desc.getRankedTensorType());
  // Access into static dimension can query original type directly.
  // Note that this is typically already done by DimOp's folding.
  if (auto sz = stt.getStaticDimSize(dim))
    return constantIndex(builder, loc, *sz);

  // Any other query can consult the dimSizes array at field DimSizesIdx,
  // accounting for the reordering applied to the sparse storage.
  // FIXME: `toStoredDim` is deprecated.
  const Level lvl = toStoredDim(stt, dim);
  return desc.getLvlSize(builder, loc, lvl);
}

// Gets the dimension size at the given stored level 'lvl', either as a
// constant for a static size, or otherwise dynamically through memSizes.
static Value sizeFromTensorAtLvl(OpBuilder &builder, Location loc,
                                 SparseTensorDescriptor desc, Level lvl) {
  // FIXME: `toOrigDim` is deprecated.
  return sizeFromTensorAtDim(builder, loc, desc,
                             toOrigDim(desc.getRankedTensorType(), lvl));
}

static void createPushback(OpBuilder &builder, Location loc,
                           MutSparseTensorDescriptor desc,
                           SparseTensorFieldKind kind, std::optional<Level> lvl,
                           Value value, Value repeat = Value()) {
  Type etp = desc.getMemRefElementType(kind, lvl);
  Value field = desc.getMemRefField(kind, lvl);
  StorageSpecifierKind specFieldKind = toSpecifierKind(kind);

  auto pushBackOp = builder.create<PushBackOp>(
      loc, desc.getSpecifierField(builder, loc, specFieldKind, lvl), field,
      genCast(builder, loc, value, etp), repeat);

  desc.setMemRefField(kind, lvl, pushBackOp.getOutBuffer());
  desc.setSpecifierField(builder, loc, specFieldKind, lvl,
                         pushBackOp.getNewSize());
}

/// Generates code that allocates a sparse storage scheme for given rank.
static void allocSchemeForRank(OpBuilder &builder, Location loc,
                               MutSparseTensorDescriptor desc, Level startLvl) {
  const SparseTensorType stt(desc.getRankedTensorType());
  Value linear = constantIndex(builder, loc, 1);
  const Level lvlRank = stt.getLvlRank();
  for (Level l = startLvl; l < lvlRank; l++) {
    const auto dlt = stt.getLvlType(l);
    if (isCompressedDLT(dlt)) {
      // Append linear x positions, initialized to zero. Since each compressed
      // dimension initially already has a single zero entry, this maintains
      // the desired "linear + 1" length property at all times.
      Value posZero = constantZero(builder, loc, stt.getPosType());
      createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, l,
                     posZero, linear);
      return;
    }
    if (isSingletonDLT(dlt)) {
      return; // nothing to do
    }
    // Keep compounding the size, but nothing needs to be initialized
    // at this level. We will eventually reach a compressed level or
    // otherwise the values array for the from-here "all-dense" case.
    assert(isDenseDLT(dlt));
    Value size = sizeFromTensorAtLvl(builder, loc, desc, l);
    linear = builder.create<arith::MulIOp>(loc, linear, size);
  }
  // Reached values array so prepare for an insertion.
  Value valZero = constantZero(builder, loc, stt.getElementType());
  createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
                 std::nullopt, valZero, linear);
}

/// Creates allocation operation.
static Value createAllocation(OpBuilder &builder, Location loc,
                              MemRefType memRefType, Value sz,
                              bool enableInit) {
  Value buffer = builder.create<memref::AllocOp>(loc, memRefType, sz);
  Type elemType = memRefType.getElementType();
  if (enableInit) {
    Value fillValue = constantZero(builder, loc, elemType);
    builder.create<linalg::FillOp>(loc, fillValue, buffer);
  }
  return buffer;
}

/// Creates allocation for each field in sparse tensor type. Note that
/// for all dynamic memrefs, the memory size is really the capacity of
/// the "vector", while the actual size resides in the sizes array.
///
/// TODO: for efficiency, we will need heuristics to make educated guesses
///       on the required capacities (see heuristic variable).
///
static void createAllocFields(OpBuilder &builder, Location loc,
                              SparseTensorType stt, ValueRange dynSizes,
                              bool enableInit, SmallVectorImpl<Value> &fields,
                              Value sizeHint) {
  // Build original sizes.
  assert((dynSizes.size() == static_cast<size_t>(stt.getNumDynamicDims())) &&
         "Got wrong number of dynamic sizes");
  const Dimension dimRank = stt.getDimRank();
  SmallVector<Value> dimSizes;
  dimSizes.reserve(dimRank);
  unsigned i = 0; // cumulative index into `dynSizes`.
  for (const DynSize sh : stt.getDimShape())
    dimSizes.push_back(ShapedType::isDynamic(sh)
                           ? dynSizes[i++]
                           : constantIndex(builder, loc, sh));

  // Set up some heuristic sizes. We try to set the initial
  // size based on available information. Otherwise we just
  // initialize a few elements to start the reallocation chain.
  // TODO: refine this
  Value posHeuristic, crdHeuristic, valHeuristic;
  if (stt.isAllDense()) {
    valHeuristic = dimSizes[0];
    for (const Value sz : ArrayRef<Value>{dimSizes}.drop_front())
      valHeuristic = builder.create<arith::MulIOp>(loc, valHeuristic, sz);
  } else if (sizeHint) {
    if (getCOOStart(stt.getEncoding()) == 0) {
      posHeuristic = constantIndex(builder, loc, 2);
      crdHeuristic = builder.create<arith::MulIOp>(
          loc, constantIndex(builder, loc, dimRank), sizeHint); // AOS
    } else if (dimRank == 2 && stt.isDenseLvl(0) && stt.isCompressedLvl(1)) {
      posHeuristic = builder.create<arith::AddIOp>(
          loc, sizeHint, constantIndex(builder, loc, 1));
      crdHeuristic = sizeHint;
    } else {
      posHeuristic = crdHeuristic = constantIndex(builder, loc, 16);
    }
    valHeuristic = sizeHint;
  } else {
    posHeuristic = crdHeuristic = valHeuristic =
        constantIndex(builder, loc, 16);
  }

  foreachFieldAndTypeInSparseTensor(
      stt,
      [&builder, &fields, stt, loc, posHeuristic, crdHeuristic, valHeuristic,
       enableInit](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
                   Level /*lvl*/, DimLevelType /*dlt*/) -> bool {
        assert(fields.size() == fIdx);
        Value field;
        switch (fKind) {
        case SparseTensorFieldKind::StorageSpec:
          field = SparseTensorSpecifier::getInitValue(builder, loc, stt);
          break;
        case SparseTensorFieldKind::PosMemRef:
        case SparseTensorFieldKind::CrdMemRef:
        case SparseTensorFieldKind::ValMemRef:
          field = createAllocation(
              builder, loc, cast<MemRefType>(fType),
              (fKind == SparseTensorFieldKind::PosMemRef)   ? posHeuristic
              : (fKind == SparseTensorFieldKind::CrdMemRef) ? crdHeuristic
                                                            : valHeuristic,
              enableInit);
          break;
        }
        assert(field);
        fields.push_back(field);
        // Returns true to continue the iteration.
        return true;
      });

  MutSparseTensorDescriptor desc(stt, fields);

  // Initialize the storage scheme to an empty tensor. Initialized memSizes
  // to all zeros, sets the dimSizes to known values and gives all position
  // fields an initial zero entry, so that it is easier to maintain the
  // "linear + 1" length property.
  Value posZero = constantZero(builder, loc, stt.getPosType());
  for (Level lvlRank = stt.getLvlRank(), l = 0; l < lvlRank; l++) {
    // Fills dim sizes array.
    // FIXME: `toOrigDim` is deprecated.
    desc.setLvlSize(builder, loc, l, dimSizes[toOrigDim(stt, l)]);
    // Pushes a leading zero to positions memref.
    if (stt.isCompressedLvl(l))
      createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, l,
                     posZero);
  }
  allocSchemeForRank(builder, loc, desc, /*rank=*/0);
}

/// Helper method that generates block specific to compressed case:
///
///  // given: parentPos = posCursor[lvl-1]
///  pstart = desc.positions[lvl][parentPos]
///  pstop = desc.positions[lvl][parentPos+1]
///  plast = pstop - 1
///  msz = desc.coordinates[lvl].size()
///  if (pstart < pstop) {
///    isPresent = (desc.coordinates[lvl][plast] == lvlCoords[lvl])
///  } else { // first insertion
///    isPresent = false
///    desc.positions[lvl][parentPos] = msz
///  }
///  if (isPresent) { // coordinate is already present
///    pnext = plast
///  } else {
///    desc.coordinates[lvl].push_back(lvlCoords[lvl])
///    desc.positions[lvl][parentPos+1] = msz+1
///    pnext = msz
///    <prepare level lvl+1>
///  }
///  posCursor[lvl] = pnext
static Value genCompressed(OpBuilder &builder, Location loc,
                           MutSparseTensorDescriptor desc, ValueRange lvlCoords,
                           Value /*unused*/, Value parentPos, Level lvl) {
  const SparseTensorType stt(desc.getRankedTensorType());
  const Level lvlRank = stt.getLvlRank();
  assert(lvl < lvlRank && "Level is out of bounds");
  assert(lvlCoords.size() == static_cast<size_t>(lvlRank) &&
         "Level-rank mismatch");
  SmallVector<Type> types;
  Type indexType = builder.getIndexType();
  Type boolType = builder.getIntegerType(1);
  unsigned crdFidx;
  unsigned crdStride;
  std::tie(crdFidx, crdStride) = desc.getCrdMemRefIndexAndStride(lvl);
  const Value one = constantIndex(builder, loc, 1);
  const Value pp1 = builder.create<arith::AddIOp>(loc, parentPos, one);
  const Value positionsAtLvl = desc.getPosMemRef(lvl);
  const Value pstart = genLoad(builder, loc, positionsAtLvl, parentPos);
  const Value pstop = genLoad(builder, loc, positionsAtLvl, pp1);
  const Value crdMsz = desc.getCrdMemSize(builder, loc, lvl);
  const Value crdStrideC =
      crdStride > 1 ? constantIndex(builder, loc, crdStride) : Value();
  const Value msz =
      crdStrideC ? builder.create<arith::DivUIOp>(loc, crdMsz, crdStrideC)
                 : crdMsz;
  const Value plast = builder.create<arith::SubIOp>(
      loc, genCast(builder, loc, pstop, indexType), one);
  // Conditional expression.
  Value lt = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
                                           pstart, pstop);
  types.push_back(boolType);
  scf::IfOp ifOp1 = builder.create<scf::IfOp>(loc, types, lt, /*else*/ true);
  types.pop_back();
  builder.setInsertionPointToStart(&ifOp1.getThenRegion().front());
  Value crd =
      genLoad(builder, loc, desc.getMemRefField(crdFidx),
              crdStrideC ? builder.create<arith::MulIOp>(loc, plast, crdStrideC)
                         : plast);
  Value eq = builder.create<arith::CmpIOp>(
      loc, arith::CmpIPredicate::eq, genCast(builder, loc, crd, indexType),
      lvlCoords[lvl]);
  builder.create<scf::YieldOp>(loc, eq);
  builder.setInsertionPointToStart(&ifOp1.getElseRegion().front());
  if (lvl > 0)
    genStore(builder, loc, msz, positionsAtLvl, parentPos);
  builder.create<scf::YieldOp>(loc, constantI1(builder, loc, false));
  builder.setInsertionPointAfter(ifOp1);
  // If present construct. Note that for a non-unique dimension level, we
  // simply set the condition to false and rely on CSE/DCE to clean up the IR.
  //
  // TODO: generate less temporary IR?
  //
  for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
    types.push_back(desc.getField(i).getType());
  types.push_back(indexType);
  const Value p = stt.isUniqueLvl(lvl) ? ifOp1.getResult(0)
                                       : constantI1(builder, loc, false);
  scf::IfOp ifOp2 = builder.create<scf::IfOp>(loc, types, p, /*else*/ true);
  // If present (fields unaffected, update pnext to plast).
  builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());

  // FIXME: This does not looks like a clean way, but probably the most
  // efficient way.
  desc.getFields().push_back(plast);
  builder.create<scf::YieldOp>(loc, desc.getFields());
  desc.getFields().pop_back();

  // If !present (changes fields, update pnext).
  builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
  Value mszp1 = builder.create<arith::AddIOp>(loc, msz, one);
  genStore(builder, loc, mszp1, positionsAtLvl, pp1);
  createPushback(builder, loc, desc, SparseTensorFieldKind::CrdMemRef, lvl,
                 lvlCoords[lvl]);
  // Prepare the next level "as needed".
  if ((lvl + 1) < lvlRank)
    allocSchemeForRank(builder, loc, desc, lvl + 1);

  desc.getFields().push_back(msz);
  builder.create<scf::YieldOp>(loc, desc.getFields());
  desc.getFields().pop_back();

  // Update fields and return next pos.
  builder.setInsertionPointAfter(ifOp2);
  unsigned o = 0;
  for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
    desc.setField(i, ifOp2.getResult(o++));
  return ifOp2.getResult(o);
}

/// Helper class to help lowering sparse_tensor.insert operation.
class SparseInsertGenerator
    : public FuncCallOrInlineGenerator<SparseInsertGenerator> {
public:
  SparseInsertGenerator(TensorType rtp, TypeRange retTypes, ValueRange params,
                        bool genCall)
      : FuncCallOrInlineGenerator(retTypes, params, genCall), rtp(rtp){};

  /// Generates code along an insertion path without the need for a "cursor".
  /// This current insertion strategy comes at the expense of some testing
  /// overhead for each insertion. The strategy will be optimized later for
  /// common insertion patterns. The current insertion strategy also assumes
  /// insertions occur in "a reasonable order" that enables building the
  /// storage scheme in an appending/inserting kind of fashion (i.e. no
  /// in-between insertions that need data movement). The implementation
  /// relies on CSE/DCE to clean up all bookkeeping that is not needed.
  ///
  /// TODO: better unord/not-unique; also generalize, optimize, specialize!
  SmallVector<Value> genImplementation(TypeRange retTypes, ValueRange args,
                                       OpBuilder &builder, Location loc) {
    const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));
    const Level lvlRank = stt.getLvlRank();
    // Extract fields and coordinates from args.
    SmallVector<Value> fields = llvm::to_vector(args.drop_back(lvlRank + 1));
    MutSparseTensorDescriptor desc(stt, fields);
    const SmallVector<Value> coords =
        llvm::to_vector(args.take_back(lvlRank + 1).drop_back());
    Value value = args.back();
    Value parentPos = constantZero(builder, loc, builder.getIndexType());
    // Generate code for every level.
    for (Level l = 0; l < lvlRank; l++) {
      const auto dlt = stt.getLvlType(l);
      if (isCompressedDLT(dlt)) {
        // Create:
        //   if (!present) {
        //     coordinates[l].push_back(coords[l])
        //     <update positions and prepare level l + 1>
        //   }
        //   positions[l] = coordinates.size() - 1
        //   <insert @ positions[l] at next level l + 1>
        parentPos =
            genCompressed(builder, loc, desc, coords, value, parentPos, l);
      } else if (isSingletonDLT(dlt)) {
        // Create:
        //   coordinates[l].push_back(coords[l])
        //   positions[l] = positions[l-1]
        //   <insert @ positions[l] at next level l + 1>
        createPushback(builder, loc, desc, SparseTensorFieldKind::CrdMemRef, l,
                       coords[l]);
      } else {
        assert(isDenseDLT(dlt));
        // Construct the new position as:
        //   positions[l] = size * positions[l-1] + coords[l]
        //   <insert @ positions[l] at next level l + 1>
        Value size = sizeFromTensorAtLvl(builder, loc, desc, l);
        Value mult = builder.create<arith::MulIOp>(loc, size, parentPos);
        parentPos = builder.create<arith::AddIOp>(loc, mult, coords[l]);
      }
    }
    // Reached the actual value append/insert.
    if (!stt.isDenseLvl(lvlRank - 1))
      createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
                     std::nullopt, value);
    else
      genStore(builder, loc, value, desc.getValMemRef(), parentPos);
    return fields;
  }

  std::string getMangledFuncName() {
    // The mangled name of the function has this format:
    //   <namePrefix>_<DLT>_<shape>_<ordering>_<eltType>_<crdWidth>_<posWidth>
    constexpr const char kInsertFuncNamePrefix[] = "_insert_";
    const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));

    SmallString<32> nameBuffer;
    llvm::raw_svector_ostream nameOstream(nameBuffer);
    nameOstream << kInsertFuncNamePrefix;
    const Level lvlRank = stt.getLvlRank();
    for (Level l = 0; l < lvlRank; l++)
      nameOstream << toMLIRString(stt.getLvlType(l)) << "_";
    // Static dim sizes are used in the generated code while dynamic sizes are
    // loaded from the dimSizes buffer. This is the reason for adding the shape
    // to the function name.
    for (const auto sh : stt.getDimShape())
      nameOstream << sh << "_";
    // Permutation information is also used in generating insertion.
    if (!stt.isIdentity())
      nameOstream << stt.getDimToLvl() << "_";
    nameOstream << stt.getElementType() << "_";
    nameOstream << stt.getCrdWidth() << "_" << stt.getPosWidth();
    return nameOstream.str().str();
  }

private:
  TensorType rtp;
};

/// Generations insertion finalization code.
static void genEndInsert(OpBuilder &builder, Location loc,
                         SparseTensorDescriptor desc) {
  const SparseTensorType stt(desc.getRankedTensorType());
  const Level lvlRank = stt.getLvlRank();
  for (Level l = 0; l < lvlRank; l++) {
    const auto dlt = stt.getLvlType(l);
    if (isCompressedWithHiDLT(dlt))
      llvm_unreachable("TODO: Not yet implemented");
    if (isCompressedDLT(dlt)) {
      // Compressed dimensions need a position cleanup for all entries
      // that were not visited during the insertion pass.
      //
      // TODO: avoid cleanup and keep compressed scheme consistent at all
      // times?
      //
      if (l > 0) {
        Type posType = stt.getPosType();
        Value posMemRef = desc.getPosMemRef(l);
        Value hi = desc.getPosMemSize(builder, loc, l);
        Value zero = constantIndex(builder, loc, 0);
        Value one = constantIndex(builder, loc, 1);
        // Vector of only one, but needed by createFor's prototype.
        SmallVector<Value, 1> inits{genLoad(builder, loc, posMemRef, zero)};
        scf::ForOp loop = createFor(builder, loc, hi, inits, one);
        Value i = loop.getInductionVar();
        Value oldv = loop.getRegionIterArg(0);
        Value newv = genLoad(builder, loc, posMemRef, i);
        Value posZero = constantZero(builder, loc, posType);
        Value cond = builder.create<arith::CmpIOp>(
            loc, arith::CmpIPredicate::eq, newv, posZero);
        scf::IfOp ifOp = builder.create<scf::IfOp>(loc, TypeRange(posType),
                                                   cond, /*else*/ true);
        builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
        genStore(builder, loc, oldv, posMemRef, i);
        builder.create<scf::YieldOp>(loc, oldv);
        builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
        builder.create<scf::YieldOp>(loc, newv);
        builder.setInsertionPointAfter(ifOp);
        builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
        builder.setInsertionPointAfter(loop);
      }
    } else {
      assert(isDenseDLT(dlt) || isSingletonDLT(dlt));
    }
  }
}

static TypedValue<BaseMemRefType> genToMemref(OpBuilder &builder, Location loc,
                                              Value tensor) {
  auto tTp = llvm::cast<TensorType>(tensor.getType());
  auto mTp = MemRefType::get(tTp.getShape(), tTp.getElementType());
  return builder.create<bufferization::ToMemrefOp>(loc, mTp, tensor)
      .getResult();
}

Value genSliceToSize(OpBuilder &builder, Location loc, Value mem, Value sz) {
  auto elemTp = llvm::cast<MemRefType>(mem.getType()).getElementType();
  return builder
      .create<memref::SubViewOp>(
          loc, MemRefType::get({ShapedType::kDynamic}, elemTp), mem,
          ValueRange{}, ValueRange{sz}, ValueRange{},
          ArrayRef<int64_t>{0},                    // static offset
          ArrayRef<int64_t>{ShapedType::kDynamic}, // dynamic size
          ArrayRef<int64_t>{1})                    // static stride
      .getResult();
}

static ReassociationIndices getReassociationForFlattening(ShapedType srcTp) {
  ReassociationIndices reassociation;
  for (int i = 0, e = srcTp.getRank(); i < e; i++)
    reassociation.push_back(i);
  return reassociation;
}

//===----------------------------------------------------------------------===//
// Codegen rules.
//===----------------------------------------------------------------------===//

/// Sparse tensor storage conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    SmallVector<Value> flattened;
    flattenOperands(adaptor.getOperands(), flattened);
    // Create a return with the flattened value extracted from sparse tensors.
    rewriter.replaceOpWithNewOp<func::ReturnOp>(op, flattened);
    return success();
  }
};

/// Sparse tensor storage conversion rule for calls.
class SparseCallConverter : public OpConversionPattern<func::CallOp> {
public:
  // The default CallOp converter can not handle 1:N type conversion.
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(func::CallOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    // In case of:
    //  sparse_tensor, f, sparse_tensor = call @foo(...)
    // ==>
    //  memref..., f, memref = call @foo(...) replace with
    //  cast(memref...)->sparse_tensor, f, cast(memref...)->sparse_tensor
    SmallVector<Type> finalRetTy;
    if (failed(typeConverter->convertTypes(op.getResultTypes(), finalRetTy)))
      return failure();

    // (1) Genereates new call with flattened return value.
    SmallVector<Value> flattened;
    flattenOperands(adaptor.getOperands(), flattened);
    auto newCall = rewriter.create<func::CallOp>(loc, op.getCallee(),
                                                 finalRetTy, flattened);
    // (2) Create cast operation for sparse tensor returns.
    SmallVector<Value> castedRet;
    // Tracks the offset of current return value (of the orignal call)
    // relative to the new call (after sparse tensor flattening);
    unsigned retOffset = 0;
    // Temporal buffer to hold the flattened list of type for
    // a sparse tensor.
    SmallVector<Type> sparseFlat;
    for (auto ret : op.getResults()) {
      assert(retOffset < newCall.getNumResults());
      auto retType = ret.getType();
      if (failed(typeConverter->convertType(retType, sparseFlat)))
        // This should never happen.
        llvm_unreachable("Failed to convert type in sparse tensor codegen");

      // Converted types can not be empty when the type conversion succeed.
      assert(!sparseFlat.empty());
      if (sparseFlat.size() > 1) {
        auto flatSize = sparseFlat.size();
        ValueRange fields(iterator_range<ResultRange::iterator>(
            newCall.result_begin() + retOffset,
            newCall.result_begin() + retOffset + flatSize));
        castedRet.push_back(genTuple(rewriter, loc, retType, fields));
        retOffset += flatSize;
      } else {
        // If this is an 1:1 conversion, no need for casting.
        castedRet.push_back(newCall.getResult(retOffset));
        retOffset++;
      }
      sparseFlat.clear();
    }

    assert(castedRet.size() == op.getNumResults());
    rewriter.replaceOp(op, castedRet);
    return success();
  }
};

/// Sparse codegen rule for dimension accesses.
class SparseDimOpConverter : public OpConversionPattern<tensor::DimOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    std::optional<int64_t> dim = op.getConstantIndex();
    if (!dim || !getSparseTensorEncoding(adaptor.getSource().getType()))
      return failure();

    auto desc = getDescriptorFromTensorTuple(adaptor.getSource());
    auto sz = sizeFromTensorAtDim(rewriter, op.getLoc(), desc, *dim);

    rewriter.replaceOp(op, sz);
    return success();
  }
};

template <typename Op, StorageSpecifierKind kind>
class SparseSliceGetterOpConverter : public OpConversionPattern<Op> {
public:
  using OpConversionPattern<Op>::OpConversionPattern;
  LogicalResult
  matchAndRewrite(Op op, typename Op::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Simply lowers to specifer.get <field> operation.
    auto desc = getDescriptorFromTensorTuple(adaptor.getSlice());
    auto v = desc.getSpecifierField(rewriter, op.getLoc(), kind,
                                    op.getDim().getZExtValue());

    rewriter.replaceOp(op, v);
    return success();
  }
};

/// Sparse codegen rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Only rewrite identically annotated source/dest.
    auto encDst = getSparseTensorEncoding(op.getType());
    auto encSrc = getSparseTensorEncoding(op.getSource().getType());
    if (!encDst || encDst != encSrc)
      return failure();
    rewriter.replaceOp(op, adaptor.getOperands());
    return success();
  }
};

/// Sparse codgen rule for the alloc operator.
class SparseTensorAllocConverter
    : public OpConversionPattern<bufferization::AllocTensorOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  SparseTensorAllocConverter(TypeConverter &typeConverter, MLIRContext *context,
                             bool enableInit)
      : OpConversionPattern(typeConverter, context),
        enableBufferInitialization(enableInit) {}

  LogicalResult
  matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    const auto resType = getSparseTensorType(op);
    if (!resType.hasEncoding())
      return failure();

    // Construct allocation for each field.
    const Location loc = op.getLoc();
    if (op.getCopy()) {
      auto desc = getDescriptorFromTensorTuple(adaptor.getCopy());
      SmallVector<Value> fields;
      fields.reserve(desc.getNumFields());
      // Memcpy on memref fields.
      for (auto field : desc.getMemRefFields()) {
        auto memrefTp = cast<MemRefType>(field.getType());
        auto size = rewriter.create<memref::DimOp>(loc, field, 0);
        auto copied =
            rewriter.create<memref::AllocOp>(loc, memrefTp, ValueRange{size});
        rewriter.create<memref::CopyOp>(loc, field, copied);
        fields.push_back(copied);
      }
      // Reuses specifier.
      fields.push_back(desc.getSpecifier());
      assert(fields.size() == desc.getNumFields());
      rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
      return success();
    }

    const Value sizeHint = op.getSizeHint();
    const ValueRange dynSizes = adaptor.getDynamicSizes();
    const size_t found = dynSizes.size();
    const int64_t expected = resType.getNumDynamicDims();
    if (found != static_cast<size_t>(expected))
      return rewriter.notifyMatchFailure(
          op, llvm::formatv(
                  "Got wrong number of dynamic sizes: Found={0}, Expected={1}",
                  found, expected));
    SmallVector<Value> fields;
    createAllocFields(rewriter, loc, resType, dynSizes,
                      enableBufferInitialization, fields, sizeHint);
    // Replace operation with resulting memrefs.
    rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
    return success();
  }

private:
  bool enableBufferInitialization;
};

/// Sparse codegen rule for the dealloc operator.
class SparseTensorDeallocConverter
    : public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  SparseTensorDeallocConverter(TypeConverter &typeConverter,
                               MLIRContext *context, bool createDeallocs)
      : OpConversionPattern(typeConverter, context),
        createDeallocs(createDeallocs) {}

  LogicalResult
  matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto enc = getSparseTensorEncoding(op.getTensor().getType());
    if (!enc)
      return failure();

    // If user requests not to deallocate sparse tensors, simply erase the
    // operation.
    if (createDeallocs) {
      // Replace the sparse tensor deallocation with field deallocations.
      Location loc = op.getLoc();
      auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
      for (auto input : desc.getMemRefFields())
        // Deallocate every buffer used to store the sparse tensor handler.
        rewriter.create<memref::DeallocOp>(loc, input);
    }
    rewriter.eraseOp(op);
    return success();
  }

private:
  const bool createDeallocs;
};

/// Sparse codegen rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(LoadOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Prepare descriptor.
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    // Generate optional insertion finalization code.
    if (op.getHasInserts())
      genEndInsert(rewriter, op.getLoc(), desc);
    // Replace operation with resulting memrefs.
    rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), desc));
    return success();
  }
};

/// Sparse codegen rule for the expand op.
class SparseExpandConverter : public OpConversionPattern<ExpandOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    if (!getSparseTensorEncoding(op.getTensor().getType()))
      return failure();
    Location loc = op->getLoc();
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    const auto srcType = getSparseTensorType(op.getTensor());
    Type eltType = srcType.getElementType();
    Type boolType = rewriter.getIntegerType(1);
    Type idxType = rewriter.getIndexType();
    // All initialization should be done on entry of the loop nest.
    rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
    // Determine the size for access expansion (always the innermost stored
    // level size, translated back to original dimension). Note that we
    // recursively rewrite the new DimOp on the **original** tensor.
    // FIXME: `toOrigDim` is deprecated.
    const Dimension innerDim = toOrigDim(srcType, srcType.getLvlRank() - 1);
    const auto sz = sizeFromTensorAtDim(rewriter, loc, desc, innerDim);
    // Generate a memref for `sz` elements of type `t`.
    const auto genAlloc = [&](Type t) {
      const auto memTp = MemRefType::get({ShapedType::kDynamic}, t);
      return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
    };
    // Allocate temporary buffers for values/filled-switch and added.
    // We do not use stack buffers for this, since the expanded size may
    // be rather large (as it envelops a single expanded dense dimension).
    Value values = genAlloc(eltType);
    Value filled = genAlloc(boolType);
    Value added = genAlloc(idxType);
    Value zero = constantZero(rewriter, loc, idxType);
    // Reset the values/filled-switch to all-zero/false. Note that this
    // introduces an O(N) operation into the computation, but this reset
    // operation is amortized over the innermost loops for the access
    // pattern expansion. As noted in the operation doc, we would like
    // to amortize this setup cost even between kernels.
    rewriter.create<linalg::FillOp>(
        loc, ValueRange{constantZero(rewriter, loc, eltType)},
        ValueRange{values});
    rewriter.create<linalg::FillOp>(
        loc, ValueRange{constantZero(rewriter, loc, boolType)},
        ValueRange{filled});
    // Replace expansion op with these buffers and initial coordinate.
    assert(op.getNumResults() == 4);
    rewriter.replaceOp(op, {values, filled, added, zero});
    return success();
  }
};

/// Sparse codegen rule for the compress operator.
class SparseCompressConverter : public OpConversionPattern<CompressOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(CompressOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op->getLoc();
    SmallVector<Value> fields;
    auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
    Value values = adaptor.getValues();
    Value filled = adaptor.getFilled();
    Value added = adaptor.getAdded();
    Value count = adaptor.getCount();
    const SparseTensorType dstType(desc.getRankedTensorType());
    Type eltType = dstType.getElementType();

    // If the innermost level is ordered, we need to sort the coordinates
    // in the "added" array prior to applying the compression.
    if (dstType.isOrderedLvl(dstType.getLvlRank() - 1))
      rewriter.create<SortOp>(loc, count, ValueRange{added}, ValueRange{},
                              SparseTensorSortKind::HybridQuickSort);
    // While performing the insertions, we also need to reset the elements
    // of the values/filled-switch by only iterating over the set elements,
    // to ensure that the runtime complexity remains proportional to the
    // sparsity of the expanded access pattern.
    //
    // Generate
    //    out_memrefs = for (i = 0; i < count; i++)(in_memrefs) {
    //      crd = added[i];
    //      value = values[crd];
    //      insert({lvlCoords, crd}, value);
    //      new_memrefs = insert(in_memrefs, {lvlCoords, crd}, value);
    //      values[crd] = 0;
    //      filled[crd] = false;
    //      yield new_memrefs
    //    }
    scf::ForOp loop = createFor(rewriter, loc, count, desc.getFields());
    Value i = loop.getInductionVar();

    Value crd = genLoad(rewriter, loc, added, i);
    Value value = genLoad(rewriter, loc, values, crd);
    SmallVector<Value> params(desc.getFields().begin(), desc.getFields().end());
    SmallVector<Type> flatSpTensorTps = llvm::to_vector(
        llvm::map_range(desc.getFields(), [](Value v) { return v.getType(); }));
    params.append(adaptor.getLvlCoords().begin(), adaptor.getLvlCoords().end());
    params.push_back(crd);
    params.push_back(value);
    SparseInsertGenerator insertGen(op.getTensor().getType(), flatSpTensorTps,
                                    params, /*genCall=*/true);
    SmallVector<Value> insertRet = insertGen.genCallOrInline(rewriter, loc);
    genStore(rewriter, loc, constantZero(rewriter, loc, eltType), values, crd);
    genStore(rewriter, loc, constantI1(rewriter, loc, false), filled, crd);
    rewriter.create<scf::YieldOp>(loc, insertRet);

    rewriter.setInsertionPointAfter(loop);
    Value result = genTuple(rewriter, loc, dstType, loop->getResults());
    // Deallocate the buffers on exit of the full loop nest.
    Operation *parent = getTop(op);
    rewriter.setInsertionPointAfter(parent);
    rewriter.create<memref::DeallocOp>(loc, values);
    rewriter.create<memref::DeallocOp>(loc, filled);
    rewriter.create<memref::DeallocOp>(loc, added);
    // Replace operation with resulting memrefs.
    rewriter.replaceOp(op, result);
    return success();
  }
};

/// Sparse codegen rule for the insert operator.
class SparseInsertConverter : public OpConversionPattern<InsertOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(InsertOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    TypeRange flatSpTensorTps = desc.getFields().getTypes();
    SmallVector<Value> params = llvm::to_vector(desc.getFields());
    params.append(adaptor.getLvlCoords().begin(), adaptor.getLvlCoords().end());
    params.push_back(adaptor.getValue());
    SparseInsertGenerator insertGen(op.getTensor().getType(), flatSpTensorTps,
                                    params, /*genCall=*/true);
    SmallVector<Value> ret = insertGen.genCallOrInline(rewriter, loc);
    // Replace operation with resulting memrefs.
    rewriter.replaceOp(op,
                       genTuple(rewriter, loc, op.getTensor().getType(), ret));
    return success();
  }
};

/// Sparse codegen rule for position accesses.
class SparseToPositionsConverter : public OpConversionPattern<ToPositionsOp> {
public:
  using OpAdaptor = typename ToPositionsOp::Adaptor;
  using OpConversionPattern<ToPositionsOp>::OpConversionPattern;
  LogicalResult
  matchAndRewrite(ToPositionsOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Replace the requested position access with corresponding field.
    // The cast_op is inserted by type converter to intermix 1:N type
    // conversion.
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    rewriter.replaceOp(op, desc.getPosMemRef(op.getLevel()));
    return success();
  }
};

/// Sparse codegen rule for accessing the coordinates arrays.
class SparseToCoordinatesConverter
    : public OpConversionPattern<ToCoordinatesOp> {
public:
  using OpAdaptor = typename ToCoordinatesOp::Adaptor;
  using OpConversionPattern<ToCoordinatesOp>::OpConversionPattern;
  LogicalResult
  matchAndRewrite(ToCoordinatesOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Replace the requested coordinates access with corresponding field.
    // The cast_op is inserted by type converter to intermix 1:N type
    // conversion.
    Location loc = op.getLoc();
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    Value field = desc.getCrdMemRefOrView(rewriter, loc, op.getLevel());

    // Insert a cast to bridge the actual type to the user expected type. If the
    // actual type and the user expected type aren't compatible, the compiler or
    // the runtime will issue an error.
    Type resType = op.getResult().getType();
    if (resType != field.getType())
      field = rewriter.create<memref::CastOp>(loc, resType, field);
    rewriter.replaceOp(op, field);

    return success();
  }
};

/// Sparse codegen rule for accessing the linear coordinates buffer.
class SparseToCoordinatesBufferConverter
    : public OpConversionPattern<ToCoordinatesBufferOp> {
public:
  using OpAdaptor = typename ToCoordinatesBufferOp::Adaptor;
  using OpConversionPattern<ToCoordinatesBufferOp>::OpConversionPattern;
  LogicalResult
  matchAndRewrite(ToCoordinatesBufferOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Replace the requested coordinates access with corresponding field.
    // The cast_op is inserted by type converter to intermix 1:N type
    // conversion.
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    rewriter.replaceOp(op, desc.getAOSMemRef());

    return success();
  }
};

/// Sparse codegen rule for value accesses.
class SparseToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
  using OpAdaptor = typename ToValuesOp::Adaptor;
  using OpConversionPattern<ToValuesOp>::OpConversionPattern;
  LogicalResult
  matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Replace the requested values access with corresponding field.
    // The cast_op is inserted by type converter to intermix 1:N type
    // conversion.
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    rewriter.replaceOp(op, desc.getValMemRef());
    return success();
  }
};

/// Sparse codegen rule for the convert operator.
class SparseConvertConverter : public OpConversionPattern<ConvertOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    SparseTensorEncodingAttr encDst = getSparseTensorEncoding(op.getType());
    SparseTensorEncodingAttr encSrc =
        getSparseTensorEncoding(op.getSource().getType());
    // The output tensor can not be a slice and those cases should have been
    // rejected by ConvertOp::verify() already.
    assert(!encDst.isSlice() && "Cannot convert to a sparse tensor slices.");
    // Different encoding (except for different bitwidth) should be handled by
    // rewriting.
    // We need further rewrites if the input tensor is a slice too.
    if (encDst.withoutBitWidths() != encSrc.withoutBitWidths() ||
        encSrc.isSlice()) {
      return failure();
    }

    Type retElemTp = op.getResult().getType().getElementType();
    Type srcElemTp = op.getSource().getType().getElementType();
    // Fold the trivial cases.
    if (retElemTp == srcElemTp && encDst == encSrc) {
      rewriter.replaceOp(op, adaptor.getSource());
      return success();
    }
    //
    // Do element-wise type conversion without using InsertOp.
    //
    // for each memref in srcTensor:
    //   dst = memref.alloc
    //   if srcMemRefType != dstMemRefType:
    //     for every dst[i] = cast(src[i])
    //   else:
    //     dst = memref.copy(src)
    Location loc = op.getLoc();
    auto srcDesc = getDescriptorFromTensorTuple(adaptor.getSource());
    SmallVector<Value> fields;
    foreachFieldAndTypeInSparseTensor(
        SparseTensorType(cast<RankedTensorType>(op.getResult().getType())),
        [&rewriter, &fields, srcDesc,
         loc](Type fTp, FieldIndex fIdx, SparseTensorFieldKind fKind, Level lvl,
              DimLevelType /*dlt*/) -> bool {
          // Simply reuses the storage specifier as it is an SSA value.
          if (fKind == SparseTensorFieldKind::StorageSpec) {
            fields.push_back(srcDesc.getSpecifier());
          } else {
            // Allocates new memrefs
            Value srcMem = srcDesc.getMemRefField(fIdx);
            // TODO: We can instead use the actual memSize in specifier, that
            // would require a subViewOp to avoid overflow when copying
            // values.
            Value sz = linalg::createOrFoldDimOp(rewriter, loc, srcMem, 0);
            auto dstMem = rewriter.create<memref::AllocOp>(
                loc, cast<MemRefType>(fTp), sz);
            if (fTp != srcMem.getType()) {
              // Converts elements type.
              scf::buildLoopNest(
                  rewriter, loc, constantIndex(rewriter, loc, 0), sz,
                  constantIndex(rewriter, loc, 1),
                  [srcMem, &dstMem](OpBuilder &builder, Location loc,
                                    ValueRange ivs) {
                    Value v = builder.create<memref::LoadOp>(loc, srcMem, ivs);
                    Value casted = genCast(builder, loc, v,
                                           dstMem.getType().getElementType());
                    builder.create<memref::StoreOp>(loc, casted, dstMem, ivs);
                  });
            } else {
              // TODO: We can even reuse the same memref for the new tensor,
              // but that requires a `ref-counting` based memory management
              // for shared memrefs between multiple sparse tensors.
              rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
            }
            fields.push_back(dstMem);
          }
          return true;
        });

    rewriter.replaceOp(
        op, genTuple(rewriter, loc, op.getResult().getType(), fields));
    return success();
  }
};

class SparseExtractSliceConverter
    : public OpConversionPattern<tensor::ExtractSliceOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(tensor::ExtractSliceOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    MLIRContext *ctx = op.getContext();
    auto srcEnc = getSparseTensorEncoding(op.getSourceType());
    auto dstEnc = getSparseTensorEncoding(op.getResult().getType());
    // TODO: We should check these in ExtractSliceOp::verify.
    if (!srcEnc || !dstEnc || !dstEnc.isSlice())
      return failure();
    assert(srcEnc.withoutDimSlices() == dstEnc.withoutDimSlices());

    SmallVector<Value> fields;
    auto desc = getMutDescriptorFromTensorTuple(adaptor.getSource(), fields);

    auto newSpec = rewriter.create<StorageSpecifierInitOp>(
        loc, StorageSpecifierType::get(ctx, dstEnc), desc.getSpecifier());
    desc.setSpecifier(newSpec);

    // Fills in slice information.
    for (auto [idx, offset, size, stride] : llvm::enumerate(
             op.getMixedOffsets(), op.getMixedSizes(), op.getMixedStrides())) {
      Dimension dim = idx;

      Value offsetV = getValueOrCreateConstantIndexOp(rewriter, loc, offset);
      Value sizeV = getValueOrCreateConstantIndexOp(rewriter, loc, size);
      Value strideV = getValueOrCreateConstantIndexOp(rewriter, loc, stride);
      // TODO: We could probably only set dynamic value here. But it would
      // requires us to fill the hole when casting a static slice to dynamic
      // slice.
      desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimOffset,
                             dim, offsetV);

      // FIXME: we need to distinguish level sizes and dimension size for slices
      // here. Maybe we should store slice level sizes in a different array
      // instead of reusing it.
      assert(srcEnc.isIdentity());
      desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::LvlSize, dim,
                             sizeV);
      desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimStride,
                             dim, strideV);
    }

    // NOTE: we can not generate tuples directly from descriptor here, as the
    // descriptor is holding the original type, yet we want the slice type
    // here (they shared every memref but with an updated specifier).
    rewriter.replaceOp(op, genTuple(rewriter, loc, op.getResult().getType(),
                                    desc.getFields()));
    return success();
  }
};

/// Sparse codegen rule for number of entries operator.
class SparseNumberOfEntriesConverter
    : public OpConversionPattern<NumberOfEntriesOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Query memSizes for the actually stored values.
    // FIXME: the nse value computed in this way might be wrong when there is
    // any "compressed-hi" level.
    rewriter.replaceOp(
        op, genValMemSize(rewriter, op.getLoc(), adaptor.getTensor()));
    return success();
  }
};

struct SparsePackOpConverter : public OpConversionPattern<PackOp> {
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(PackOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    const auto stt = getSparseTensorType(op.getResult());

    SmallVector<Value> fields;

    foreachFieldAndTypeInSparseTensor(
        stt,
        [&rewriter, &fields, &op, &stt,
         loc](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
              Level /*lvl*/, DimLevelType dlt) -> bool {
          assert(fields.size() == fIdx);
          if (fKind == SparseTensorFieldKind::StorageSpec) {
            fields.push_back(
                SparseTensorSpecifier::getInitValue(rewriter, loc, stt));
          } else {
            // Else simply takes the inputs.
            Value tensor = fKind == SparseTensorFieldKind::ValMemRef
                               ? op.getValues()
                               : op.getLevels()[fIdx];

            TypedValue<BaseMemRefType> mem = genToMemref(rewriter, loc, tensor);
            if (mem.getType().getRank() > 1) {
              // Flattens the buffer to rank 1.
              auto reassoc = getReassociationForFlattening(mem.getType());
              mem = rewriter.create<memref::CastOp>(
                  loc, fType,
                  rewriter.create<memref::CollapseShapeOp>(loc, mem, reassoc));
            } else {
              mem = rewriter.create<memref::CastOp>(loc, fType, mem);
            }
            fields.push_back(mem);
          }
          return true;
        });

    MutSparseTensorDescriptor desc(stt, fields);
    Value c0 = constantIndex(rewriter, loc, 0);
    Value c1 = constantIndex(rewriter, loc, 1);
    Value c2 = constantIndex(rewriter, loc, 2);
    Value posBack = c0; // index to the last value in the postion array
    Value memSize = c1; // memory size for current array

    Level trailCOOStart = getCOOStart(stt.getEncoding());
    Level trailCOORank = stt.getLvlRank() - trailCOOStart;
    // Sets up SparseTensorSpecifier.
    for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
      assert(!ShapedType::isDynamic(stt.getDimShape()[lvl]));

      // FIXME: dim/lvl confusion!
      // Sets up the level size.
      auto lvlSize = constantIndex(rewriter, loc, stt.getDimShape()[lvl]);
      desc.setLvlSize(rewriter, loc, lvl, lvlSize);
      // We use a single AOS array to store the trailing COO, so there is only
      // one memory size to set for the entire COO section.
      if (lvl > trailCOOStart)
        continue;

      // Sets up the memory size by reading the last value in position array.
      DimLevelType dlt = stt.getLvlType(lvl);
      // Simply forwards the position index when this is a dense level.
      if (isDenseDLT(dlt)) {
        memSize = rewriter.create<arith::MulIOp>(loc, lvlSize, memSize);
        posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
        continue;
      }

      if (isDLTWithPos(dlt)) {
        assert(isCompressedDLT(dlt) || isCompressedWithHiDLT(dlt));
        if (isCompressedWithHiDLT(dlt)) {
          memSize = rewriter.create<arith::MulIOp>(loc, memSize, c2);
          posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
        } else {
          assert(isCompressedDLT(dlt));
          posBack = memSize;
          memSize = rewriter.create<arith::AddIOp>(loc, memSize, c1);
        }
        desc.setPosMemSize(rewriter, loc, lvl, memSize);
        // The last value in position array is the memory size for next level.
        memSize = genIndexLoad(rewriter, loc, desc.getPosMemRef(lvl), posBack);
        posBack = rewriter.create<arith::SubIOp>(loc, posBack, c1);
      }
      assert(isDLTWithCrd(dlt) && lvl <= trailCOOStart);
      // FIXME: This seems to be unnecessarily complex, can we simplify it?
      if (lvl == trailCOOStart) {
        Value cooSz = rewriter.create<arith::MulIOp>(
            loc, memSize, constantIndex(rewriter, loc, trailCOORank));
        desc.setCrdMemSize(rewriter, loc, lvl, cooSz);
      } else {
        desc.setCrdMemSize(rewriter, loc, lvl, memSize);
      }
    }
    desc.setValMemSize(rewriter, loc, memSize);

    rewriter.replaceOp(op, genTuple(rewriter, loc, desc));
    return success();
  }
};

struct SparseUnpackOpConverter : public OpConversionPattern<UnpackOp> {
  using OpConversionPattern::OpConversionPattern;
  SparseUnpackOpConverter(TypeConverter &typeConverter, MLIRContext *context)
      : OpConversionPattern(typeConverter, context) {}

  LogicalResult
  matchAndRewrite(UnpackOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
    Location loc = op.getLoc();
    SmallVector<Value> retMem;
    SmallVector<Value> retLen;
    desc.getLayout().foreachField([desc, loc, &rewriter, &op, &retMem, &retLen](
                                      FieldIndex fid,
                                      SparseTensorFieldKind fKind, Level lvl,
                                      DimLevelType dlt) -> bool {
      if (fKind == SparseTensorFieldKind::StorageSpec)
        return true;
      SparseTensorType stt(desc.getRankedTensorType());
      Value sz, src;
      TypedValue<BaseMemRefType> dst;
      if (fKind == SparseTensorFieldKind::ValMemRef) {
        sz = desc.getValMemSize(rewriter, loc);
        src = desc.getValMemRef();
        dst = genToMemref(rewriter, loc, op.getOutValues());
        // Values is the last field in descriptor, but it is the first
        // operand in unpack operation.
        // TODO: maybe change unpack/pack operation instead to be
        // consistent.
        retMem.insert(retMem.begin(), dst);
        retLen.insert(retLen.begin(), sz);
      } else {
        assert(fKind == SparseTensorFieldKind::PosMemRef ||
               fKind == SparseTensorFieldKind::CrdMemRef);

        sz = fKind == SparseTensorFieldKind::PosMemRef
                 ? desc.getPosMemSize(rewriter, loc, lvl)
                 : desc.getCrdMemSize(rewriter, loc, lvl);
        src = desc.getMemRefField(fid);
        dst = genToMemref(rewriter, loc, op.getOutLevels()[fid]);
        retMem.push_back(dst);
        retLen.push_back(sz);
      }
      Value flatOut = dst;
      if (dst.getType().getRank() != 1) {
        auto reassoc = getReassociationForFlattening(dst.getType());
        flatOut = rewriter.create<memref::CollapseShapeOp>(loc, dst, reassoc);
      }
      Value dstMem = genSliceToSize(rewriter, loc, flatOut, sz);
      Value srcMem = genSliceToSize(rewriter, loc, src, sz);
      rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
      return true;
    });

    // Converts MemRefs back to Tensors.
    SmallVector<Value> retValues = llvm::to_vector(
        llvm::map_range(retMem, [&rewriter, loc](Value v) -> Value {
          return rewriter.create<bufferization::ToTensorOp>(loc, v);
        }));
    // Appends the actual memory length used in each buffer returned.
    retValues.append(retLen.begin(), retLen.end());
    rewriter.replaceOp(op, retValues);
    return success();
  }
};

struct SparseNewOpConverter : public OpConversionPattern<NewOp> {
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(NewOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    const auto dstTp = getSparseTensorType(op.getResult());
    // Creating COO with NewOp is handled by direct IR codegen. All other cases
    // are handled by rewriting.
    if (!dstTp.hasEncoding() || getCOOStart(dstTp.getEncoding()) != 0)
      return failure();

    // Implement the NewOp(filename) as follows:
    //   %reader = @getSparseTensorReader(%filename)
    //   %nse = @getSparseTensorNSE(%reader)
    //   %coo = bufferization.alloc_tensor an ordered COO with
    //          dst dim ordering, size_hint = %nse
    //   %coordinates = sparse_tensor.coordinates_buffer(%coo)
    //   %values = sparse_tensor.values(%coo)
    //   %isSorted = @sparseTensorReaderReadToBuffers(%coordinates, %values)
    //   if (! %isSorted) sparse_tensor.sort_coo(%nse, %coordinates, %values)
    //   update storage specifier
    //   @delSparseTensorReader(%reader)

    // Create a sparse tensor reader.
    const Value fileName = op.getSource();
    const Type opaqueTp = getOpaquePointerType(rewriter);
    // FIXME: use `createCheckedSparseTensorReader` instead, because
    // `createSparseTensorReader` is unsafe.
    Value reader = createFuncCall(rewriter, loc, "createSparseTensorReader",
                                  {opaqueTp}, {fileName}, EmitCInterface::Off)
                       .getResult(0);

    const Type indexTp = rewriter.getIndexType();
    const Dimension dimRank = dstTp.getDimRank();
    const Level lvlRank = dstTp.getLvlRank();

    // If the result tensor has dynamic dimensions, get the dynamic sizes from
    // the sparse tensor reader.
    SmallVector<Value> dynSizes;
    if (dstTp.hasDynamicDimShape()) {
      // FIXME: call `getSparseTensorReaderDimSizes` instead, because
      // `copySparseTensorReaderDimSizes` copies the memref over,
      // instead of just accessing the reader's memory directly.
      Value dimSizes = genAlloca(rewriter, loc, dimRank, indexTp);
      createFuncCall(rewriter, loc, "copySparseTensorReaderDimSizes", {},
                     {reader, dimSizes}, EmitCInterface::On);
      for (const auto &d : llvm::enumerate(dstTp.getDimShape()))
        if (ShapedType::isDynamic(d.value()))
          dynSizes.push_back(rewriter.create<memref::LoadOp>(
              loc, dimSizes, constantIndex(rewriter, loc, d.index())));
    }

    Value nse = createFuncCall(rewriter, loc, "getSparseTensorReaderNSE",
                               {indexTp}, {reader}, EmitCInterface::Off)
                    .getResult(0);
    // Construct allocation for each field.
    SmallVector<Value> fields;
    createAllocFields(rewriter, loc, dstTp, dynSizes, /*enableInit=*/false,
                      fields, nse);
    MutSparseTensorDescriptor desc(dstTp, fields);

    // Construct the `dimToLvl` buffer for handing off to the runtime library.
    // FIXME: This code is (mostly) copied from the SparseTensorConversion.cpp
    // handling of `NewOp`, and only handles permutations.  Fixing this
    // requires waiting for wrengr to finish redoing the CL that handles
    // all dim<->lvl stuff more robustly.
    SmallVector<Value> dimToLvlValues(dimRank);
    if (!dstTp.isIdentity()) {
      const auto dimToLvl = dstTp.getDimToLvl();
      assert(dimToLvl.isPermutation() && "Got non-permutation");
      for (Level l = 0; l < lvlRank; l++) {
        const Dimension d = dimToLvl.getDimPosition(l);
        dimToLvlValues[d] = constantIndex(rewriter, loc, l);
      }
    } else {
      // The `SparseTensorType` ctor already ensures `dimRank == lvlRank`
      // when `isIdentity`; so no need to re-assert it here.
      for (Dimension d = 0; d < dimRank; d++)
        dimToLvlValues[d] = constantIndex(rewriter, loc, d);
    }
    Value dimToLvl = allocaBuffer(rewriter, loc, dimToLvlValues);

    // Read the COO tensor data.
    Value xs = desc.getAOSMemRef();
    Value ys = desc.getValMemRef();

    const Type boolTp = rewriter.getIntegerType(1);
    const Type elemTp = dstTp.getElementType();
    const Type crdTp = dstTp.getCrdType();
    // FIXME: This function name is weird; should rename to
    // "sparseTensorReaderReadToBuffers".
    SmallString<32> readToBuffersFuncName{"getSparseTensorReaderRead",
                                          overheadTypeFunctionSuffix(crdTp),
                                          primaryTypeFunctionSuffix(elemTp)};
    Value isSorted =
        createFuncCall(rewriter, loc, readToBuffersFuncName, {boolTp},
                       {reader, dimToLvl, xs, ys}, EmitCInterface::On)
            .getResult(0);

    // If the destination tensor is a sorted COO, we need to sort the COO tensor
    // data if the input elements aren't sorted yet.
    if (dstTp.isOrderedLvl(lvlRank - 1)) {
      Value kFalse = constantI1(rewriter, loc, false);
      Value notSorted = rewriter.create<arith::CmpIOp>(
          loc, arith::CmpIPredicate::eq, isSorted, kFalse);
      scf::IfOp ifOp =
          rewriter.create<scf::IfOp>(loc, notSorted, /*else*/ false);
      rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
      rewriter.create<SortCooOp>(
          loc, nse, xs, ValueRange{ys}, rewriter.getIndexAttr(lvlRank),
          rewriter.getIndexAttr(0), SparseTensorSortKind::HybridQuickSort);
      rewriter.setInsertionPointAfter(ifOp);
    }

    // Set PosMemRef0[1] = nse.
    const Value c1 = constantIndex(rewriter, loc, 1);
    const Value posMemref0 = desc.getPosMemRef(0);
    const Type posTp = dstTp.getPosType();
    const Value posNse = genCast(rewriter, loc, nse, posTp);
    rewriter.create<memref::StoreOp>(loc, posNse, posMemref0, c1);

    // Update storage specifier.
    Value coordinatesSize = rewriter.create<arith::MulIOp>(
        loc, nse, constantIndex(rewriter, loc, lvlRank));
    desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::CrdMemSize, 0,
                           coordinatesSize);
    desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::ValMemSize,
                           std::nullopt, nse);

    // Release the sparse tensor reader.
    createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
                   EmitCInterface::Off);

    // Replace operation with resulting memrefs.
    rewriter.replaceOp(op, genTuple(rewriter, loc, dstTp, fields));
    return success();
  }
};

} // namespace

//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//

/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorCodegenPatterns(
    TypeConverter &typeConverter, RewritePatternSet &patterns,
    bool createSparseDeallocs, bool enableBufferInitialization) {
  patterns.add<SparsePackOpConverter, SparseUnpackOpConverter,
               SparseReturnConverter, SparseCallConverter, SparseDimOpConverter,
               SparseCastConverter, SparseExtractSliceConverter,
               SparseTensorLoadConverter, SparseExpandConverter,
               SparseCompressConverter, SparseInsertConverter,
               SparseSliceGetterOpConverter<ToSliceOffsetOp,
                                            StorageSpecifierKind::DimOffset>,
               SparseSliceGetterOpConverter<ToSliceStrideOp,
                                            StorageSpecifierKind::DimStride>,
               SparseToPositionsConverter, SparseToCoordinatesConverter,
               SparseToCoordinatesBufferConverter, SparseToValuesConverter,
               SparseConvertConverter, SparseNewOpConverter,
               SparseNumberOfEntriesConverter>(typeConverter,
                                               patterns.getContext());
  patterns.add<SparseTensorDeallocConverter>(
      typeConverter, patterns.getContext(), createSparseDeallocs);
  patterns.add<SparseTensorAllocConverter>(typeConverter, patterns.getContext(),
                                           enableBufferInitialization);
}