1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
//===- SparseTensorPasses.cpp - Pass for autogen sparse tensor code -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Func/Transforms/FuncConversions.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
#define GEN_PASS_DEF_PRESPARSIFICATIONREWRITE
#define GEN_PASS_DEF_SPARSIFICATIONPASS
#define GEN_PASS_DEF_POSTSPARSIFICATIONREWRITE
#define GEN_PASS_DEF_SPARSETENSORCONVERSIONPASS
#define GEN_PASS_DEF_SPARSETENSORCODEGEN
#define GEN_PASS_DEF_SPARSEBUFFERREWRITE
#define GEN_PASS_DEF_SPARSEVECTORIZATION
#define GEN_PASS_DEF_SPARSEGPUCODEGEN
#define GEN_PASS_DEF_STORAGESPECIFIERTOLLVM
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Passes implementation.
//===----------------------------------------------------------------------===//
struct PreSparsificationRewritePass
: public impl::PreSparsificationRewriteBase<PreSparsificationRewritePass> {
PreSparsificationRewritePass() = default;
PreSparsificationRewritePass(const PreSparsificationRewritePass &pass) =
default;
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
populatePreSparsificationRewriting(patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct SparsificationPass
: public impl::SparsificationPassBase<SparsificationPass> {
SparsificationPass() = default;
SparsificationPass(const SparsificationPass &pass) = default;
SparsificationPass(const SparsificationOptions &options) {
parallelization = options.parallelizationStrategy;
enableIndexReduction = options.enableIndexReduction;
enableGPULibgen = options.enableGPULibgen;
enableRuntimeLibrary = options.enableRuntimeLibrary;
}
void runOnOperation() override {
auto *ctx = &getContext();
// Translate strategy flags to strategy options.
SparsificationOptions options(parallelization, enableIndexReduction,
enableGPULibgen, enableRuntimeLibrary);
// Apply GPU libgen (if requested), sparsification, and cleanup rewriting.
RewritePatternSet patterns(ctx);
if (enableGPULibgen) {
populateSparseGPULibgenPatterns(patterns, enableRuntimeLibrary);
}
populateSparsificationPatterns(patterns, options);
scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct PostSparsificationRewritePass
: public impl::PostSparsificationRewriteBase<
PostSparsificationRewritePass> {
PostSparsificationRewritePass() = default;
PostSparsificationRewritePass(const PostSparsificationRewritePass &pass) =
default;
PostSparsificationRewritePass(bool enableRT, bool foreach, bool convert) {
enableRuntimeLibrary = enableRT;
enableForeach = foreach;
enableConvert = convert;
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
populatePostSparsificationRewriting(patterns, enableRuntimeLibrary,
enableForeach, enableConvert);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct SparseTensorConversionPass
: public impl::SparseTensorConversionPassBase<SparseTensorConversionPass> {
SparseTensorConversionPass() = default;
SparseTensorConversionPass(const SparseTensorConversionPass &pass) = default;
SparseTensorConversionPass(const SparseTensorConversionOptions &options) {
sparseToSparse = static_cast<int32_t>(options.sparseToSparseStrategy);
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
SparseTensorTypeToPtrConverter converter;
ConversionTarget target(*ctx);
// Everything in the sparse dialect must go!
target.addIllegalDialect<SparseTensorDialect>();
// All dynamic rules below accept new function, call, return, and various
// tensor and bufferization operations as legal output of the rewriting
// provided that all sparse tensor types have been fully rewritten.
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType());
});
target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) {
return converter.isSignatureLegal(op.getCalleeType());
});
target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addDynamicallyLegalOp<tensor::DimOp>([&](tensor::DimOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addDynamicallyLegalOp<tensor::CastOp>([&](tensor::CastOp op) {
return converter.isLegal(op.getSource().getType()) &&
converter.isLegal(op.getDest().getType());
});
target.addDynamicallyLegalOp<tensor::ExpandShapeOp>(
[&](tensor::ExpandShapeOp op) {
return converter.isLegal(op.getSrc().getType()) &&
converter.isLegal(op.getResult().getType());
});
target.addDynamicallyLegalOp<tensor::CollapseShapeOp>(
[&](tensor::CollapseShapeOp op) {
return converter.isLegal(op.getSrc().getType()) &&
converter.isLegal(op.getResult().getType());
});
target.addDynamicallyLegalOp<bufferization::AllocTensorOp>(
[&](bufferization::AllocTensorOp op) {
return converter.isLegal(op.getType());
});
target.addDynamicallyLegalOp<bufferization::DeallocTensorOp>(
[&](bufferization::DeallocTensorOp op) {
return converter.isLegal(op.getTensor().getType());
});
// The following operations and dialects may be introduced by the
// rewriting rules, and are therefore marked as legal.
target.addLegalOp<complex::ConstantOp, complex::NotEqualOp, linalg::FillOp,
linalg::YieldOp, tensor::ExtractOp>();
target.addLegalDialect<
arith::ArithDialect, bufferization::BufferizationDialect,
LLVM::LLVMDialect, memref::MemRefDialect, scf::SCFDialect>();
// Translate strategy flags to strategy options.
SparseTensorConversionOptions options(
sparseToSparseConversionStrategy(sparseToSparse));
// Populate with rules and apply rewriting rules.
populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>(patterns,
converter);
populateCallOpTypeConversionPattern(patterns, converter);
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns,
target);
populateSparseTensorConversionPatterns(converter, patterns, options);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
struct SparseTensorCodegenPass
: public impl::SparseTensorCodegenBase<SparseTensorCodegenPass> {
SparseTensorCodegenPass() = default;
SparseTensorCodegenPass(const SparseTensorCodegenPass &pass) = default;
SparseTensorCodegenPass(bool createDeallocs, bool enableInit) {
createSparseDeallocs = createDeallocs;
enableBufferInitialization = enableInit;
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
SparseTensorTypeToBufferConverter converter;
ConversionTarget target(*ctx);
// Most ops in the sparse dialect must go!
target.addIllegalDialect<SparseTensorDialect>();
target.addLegalOp<SortOp>();
target.addLegalOp<SortCooOp>();
target.addLegalOp<PushBackOp>();
// Storage specifier outlives sparse tensor pipeline.
target.addLegalOp<GetStorageSpecifierOp>();
target.addLegalOp<SetStorageSpecifierOp>();
target.addLegalOp<StorageSpecifierInitOp>();
// All dynamic rules below accept new function, call, return, and
// various tensor and bufferization operations as legal output of the
// rewriting provided that all sparse tensor types have been fully
// rewritten.
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType());
});
target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) {
return converter.isSignatureLegal(op.getCalleeType());
});
target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addDynamicallyLegalOp<bufferization::AllocTensorOp>(
[&](bufferization::AllocTensorOp op) {
return converter.isLegal(op.getType());
});
target.addDynamicallyLegalOp<bufferization::DeallocTensorOp>(
[&](bufferization::DeallocTensorOp op) {
return converter.isLegal(op.getTensor().getType());
});
// The following operations and dialects may be introduced by the
// codegen rules, and are therefore marked as legal.
target.addLegalOp<linalg::FillOp>();
target.addLegalDialect<
arith::ArithDialect, bufferization::BufferizationDialect,
complex::ComplexDialect, memref::MemRefDialect, scf::SCFDialect>();
target.addLegalOp<UnrealizedConversionCastOp>();
// Populate with rules and apply rewriting rules.
populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>(patterns,
converter);
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns,
target);
populateSparseTensorCodegenPatterns(
converter, patterns, createSparseDeallocs, enableBufferInitialization);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
struct SparseBufferRewritePass
: public impl::SparseBufferRewriteBase<SparseBufferRewritePass> {
SparseBufferRewritePass() = default;
SparseBufferRewritePass(const SparseBufferRewritePass &pass) = default;
SparseBufferRewritePass(bool enableInit) {
enableBufferInitialization = enableInit;
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
populateSparseBufferRewriting(patterns, enableBufferInitialization);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct SparseVectorizationPass
: public impl::SparseVectorizationBase<SparseVectorizationPass> {
SparseVectorizationPass() = default;
SparseVectorizationPass(const SparseVectorizationPass &pass) = default;
SparseVectorizationPass(unsigned vl, bool vla, bool sidx32) {
vectorLength = vl;
enableVLAVectorization = vla;
enableSIMDIndex32 = sidx32;
}
void runOnOperation() override {
if (vectorLength == 0)
return signalPassFailure();
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
populateSparseVectorizationPatterns(
patterns, vectorLength, enableVLAVectorization, enableSIMDIndex32);
vector::populateVectorToVectorCanonicalizationPatterns(patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct SparseGPUCodegenPass
: public impl::SparseGPUCodegenBase<SparseGPUCodegenPass> {
SparseGPUCodegenPass() = default;
SparseGPUCodegenPass(const SparseGPUCodegenPass &pass) = default;
SparseGPUCodegenPass(unsigned nT) { numThreads = nT; }
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
populateSparseGPUCodegenPatterns(patterns, numThreads);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct StorageSpecifierToLLVMPass
: public impl::StorageSpecifierToLLVMBase<StorageSpecifierToLLVMPass> {
StorageSpecifierToLLVMPass() = default;
void runOnOperation() override {
auto *ctx = &getContext();
ConversionTarget target(*ctx);
RewritePatternSet patterns(ctx);
StorageSpecifierToLLVMTypeConverter converter;
// All ops in the sparse dialect must go!
target.addIllegalDialect<SparseTensorDialect>();
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType());
});
target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) {
return converter.isSignatureLegal(op.getCalleeType());
});
target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addLegalDialect<arith::ArithDialect, LLVM::LLVMDialect>();
populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>(patterns,
converter);
populateCallOpTypeConversionPattern(patterns, converter);
populateBranchOpInterfaceTypeConversionPattern(patterns, converter);
populateReturnOpTypeConversionPattern(patterns, converter);
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns,
target);
populateStorageSpecifierToLLVMPatterns(converter, patterns);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Strategy flag methods.
//===----------------------------------------------------------------------===//
SparseToSparseConversionStrategy
mlir::sparseToSparseConversionStrategy(int32_t flag) {
switch (flag) {
default:
return SparseToSparseConversionStrategy::kAuto;
case 1:
return SparseToSparseConversionStrategy::kViaCOO;
case 2:
return SparseToSparseConversionStrategy::kDirect;
}
}
//===----------------------------------------------------------------------===//
// Pass creation methods.
//===----------------------------------------------------------------------===//
std::unique_ptr<Pass> mlir::createPreSparsificationRewritePass() {
return std::make_unique<PreSparsificationRewritePass>();
}
std::unique_ptr<Pass> mlir::createSparsificationPass() {
return std::make_unique<SparsificationPass>();
}
std::unique_ptr<Pass>
mlir::createSparsificationPass(const SparsificationOptions &options) {
return std::make_unique<SparsificationPass>(options);
}
std::unique_ptr<Pass> mlir::createPostSparsificationRewritePass() {
return std::make_unique<PostSparsificationRewritePass>();
}
std::unique_ptr<Pass>
mlir::createPostSparsificationRewritePass(bool enableRT, bool enableForeach,
bool enableConvert) {
return std::make_unique<PostSparsificationRewritePass>(
enableRT, enableForeach, enableConvert);
}
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass() {
return std::make_unique<SparseTensorConversionPass>();
}
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass(
const SparseTensorConversionOptions &options) {
return std::make_unique<SparseTensorConversionPass>(options);
}
std::unique_ptr<Pass> mlir::createSparseTensorCodegenPass() {
return std::make_unique<SparseTensorCodegenPass>();
}
std::unique_ptr<Pass>
mlir::createSparseTensorCodegenPass(bool createSparseDeallocs,
bool enableBufferInitialization) {
return std::make_unique<SparseTensorCodegenPass>(createSparseDeallocs,
enableBufferInitialization);
}
std::unique_ptr<Pass> mlir::createSparseBufferRewritePass() {
return std::make_unique<SparseBufferRewritePass>();
}
std::unique_ptr<Pass>
mlir::createSparseBufferRewritePass(bool enableBufferInitialization) {
return std::make_unique<SparseBufferRewritePass>(enableBufferInitialization);
}
std::unique_ptr<Pass> mlir::createSparseVectorizationPass() {
return std::make_unique<SparseVectorizationPass>();
}
std::unique_ptr<Pass>
mlir::createSparseVectorizationPass(unsigned vectorLength,
bool enableVLAVectorization,
bool enableSIMDIndex32) {
return std::make_unique<SparseVectorizationPass>(
vectorLength, enableVLAVectorization, enableSIMDIndex32);
}
std::unique_ptr<Pass> mlir::createSparseGPUCodegenPass() {
return std::make_unique<SparseGPUCodegenPass>();
}
std::unique_ptr<Pass> mlir::createSparseGPUCodegenPass(unsigned numThreads) {
return std::make_unique<SparseGPUCodegenPass>(numThreads);
}
std::unique_ptr<Pass> mlir::createStorageSpecifierToLLVMPass() {
return std::make_unique<StorageSpecifierToLLVMPass>();
}
|