1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
|
//===- Sparsification.cpp - Implementation of sparsification --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements converting sparse tensor types to actual sparse code.
//
//===----------------------------------------------------------------------===//
#include "CodegenEnv.h"
#include "CodegenUtils.h"
#include "LoopEmitter.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TensorEncoding.h"
#include "llvm/ADT/SmallBitVector.h"
#include <optional>
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// Declarations
//===----------------------------------------------------------------------===//
namespace {
/// Iteration graph sorting.
enum class SortMask : unsigned {
// The individual mask bits.
kIncludeDenseOutput = 0x1, // b001
kIncludeDenseInput = 0x2, // b010
kIncludeUndef = 0x4, // b100
// The subsets of mask bits.
kIncludeAll = 0x7, // b111
kIncludeDense = 0x3, // b011
kSparseOnly = 0x0, // b000
};
inline static bool includesAny(SortMask mask1, SortMask mask2) {
return static_cast<unsigned>(mask1) & static_cast<unsigned>(mask2);
}
inline static bool includesDenseInput(SortMask mask) {
return includesAny(mask, SortMask::kIncludeDenseInput);
}
inline static bool includesDenseOutput(SortMask mask) {
return includesAny(mask, SortMask::kIncludeDenseOutput);
}
inline static bool includesDense(SortMask mask) {
return includesAny(mask, SortMask::kIncludeDense);
}
inline static bool includesUndef(SortMask mask) {
return includesAny(mask, SortMask::kIncludeUndef);
}
/// A helper class that visits an affine expression and tries to find an
/// AffineDimExpr to which the corresponding iterator from a GenericOp matches
/// the desired iterator type.
class AffineDimFinder : public AffineExprVisitor<AffineDimFinder> {
public:
explicit AffineDimFinder(linalg::GenericOp op)
: iterTypes(op.getIteratorTypes()) {}
// Overrides method from AffineExprVisitor.
void visitDimExpr(AffineDimExpr expr) {
if (pickedDim == nullptr ||
pickIterType ==
cast<linalg::IteratorTypeAttr>(iterTypes[expr.getPosition()])
.getValue()) {
pickedDim = expr;
}
}
/// Set the desired iterator type that we want to pick.
void setPickedIterType(utils::IteratorType iterType) {
pickIterType = iterType;
}
/// Get the desired AffineDimExpr.
AffineDimExpr getDimExpr() const { return pickedDim.cast<AffineDimExpr>(); }
private:
/// The picked AffineDimExpr after visit. This must be stored as
/// `AffineExpr` rather than `AffineDimExpr`, because the latter
/// doesn't have a default ctor.
AffineExpr pickedDim;
/// The iterator type that we want.
utils::IteratorType pickIterType;
/// The mapping between dim=>iterator type.
ArrayAttr iterTypes;
};
// Flattens an affine expression into a list of AffineDimExprs.
struct AffineDimCollector : public AffineExprVisitor<AffineDimCollector> {
// Overrides method from AffineExprVisitor.
void visitDimExpr(AffineDimExpr expr) { dims.push_back(expr); }
SmallVector<AffineDimExpr> dims;
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse compiler analysis methods.
//===----------------------------------------------------------------------===//
// TODO: the "idx"-vs-"ldx" naming convention is not self-explanatory,
// and those letters are too easy to confuse visually. We should switch
// to a more self-explanatory naming convention like "curLoop"-vs-"prevLoop"
// (assuming that's the actual meaning behind the "idx"-vs-"ldx" convention).
/// Determines if affine expression is invariant.
static bool isInvariantAffine(AffineExpr a, ArrayRef<LoopId> loopStack,
LoopId ldx, bool &isAtLoop) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
const LoopId i = a.cast<AffineDimExpr>().getPosition();
if (i == ldx) {
isAtLoop = true;
// Must be invariant if we are at the given loop.
return true;
}
bool isInvariant = false;
for (LoopId l : loopStack) {
isInvariant = (l == i);
if (isInvariant)
break;
}
return isInvariant;
}
case AffineExprKind::Add:
case AffineExprKind::Mul: {
auto binOp = a.cast<AffineBinaryOpExpr>();
return isInvariantAffine(binOp.getLHS(), loopStack, ldx, isAtLoop) &&
isInvariantAffine(binOp.getRHS(), loopStack, ldx, isAtLoop);
}
default: {
assert(a.isa<AffineConstantExpr>());
return true;
}
}
}
/// Determines if affine expression is invariant.
static bool isInvariantAffine(CodegenEnv &env, AffineExpr a, LoopId ldx,
bool &isAtLoop) {
return isInvariantAffine(a, env.getCurrentLoopStack(), ldx, isAtLoop);
}
/// Helper method to construct a permuted dimension ordering
/// that adheres to the given topological sort.
//
// FIXME: does the above actually mean "dimensions", or should it say
// "level ordering"? The same dim/lvl confusion applies to all the code
// and comments in the definition below.
static AffineMap permute(CodegenEnv &env, AffineMap m) {
assert(m.getNumDims() + env.merger().getNumFilterLoops() ==
env.topSortSize() &&
"size mismatch");
// Construct the inverse of `m`; to avoid the asymptotic complexity
// of calling `m.getPermutedPosition` repeatedly.
//
// The variable `perm` must use `unsigned` rather than `Dimension`/`Level`,
// because that's what `AffineMap::getPermutationMap` requires.
// TODO: however, `perm` should be renamed to make clear what exactly
// it's storing a permutation of.
SmallVector<unsigned> perm;
const unsigned numResults = m.getNumResults();
BitVector worklist(numResults, true);
LoopOrd loopDepth = 1;
// Construct the permutation.
while (worklist.any() && loopDepth <= env.topSortSize()) {
const unsigned preSize = perm.size();
for (unsigned dim : worklist.set_bits()) {
bool isAtLoop = false;
if (m.getResult(dim).isa<AffineConstantExpr>() ||
(isInvariantAffine(m.getResult(dim), env.getLoopStackUpTo(loopDepth),
env.topSortAt(loopDepth - 1), isAtLoop) &&
isAtLoop)) {
// If the matching affine is constant expression or just become
// invariant. We can visit the dimension now without breaking the
// topSort constraint.
perm.push_back(dim);
}
}
// Removes resolved dimension.
for (unsigned i = preSize, e = perm.size(); i < e; i++)
worklist.reset(perm[i]);
// Try entering the next loop in the stack.
loopDepth++;
}
assert(perm.size() == numResults);
return AffineMap::getPermutationMap(perm, env.op().getContext());
}
/// Helper method to inspect affine expressions. Rejects cases where the
/// same index is used more than once. Also rejects compound affine
/// expressions in sparse dimensions.
/// filterIdx stores the current filter loop idx should be used for the next
/// compound affine sparse level, and it will be incremented by one when
/// used.
static bool findAffine(Merger &merger, TensorId tid, Level lvl, AffineExpr a,
DimLevelType dlt, LoopId &filterLdx,
bool setLvlFormat = true) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
const LoopId idx = merger.makeLoopId(a.cast<AffineDimExpr>().getPosition());
if (!isUndefDLT(merger.getLvlType(tid, idx)))
return false; // used more than once
if (setLvlFormat)
merger.setLevelAndType(tid, idx, lvl, dlt);
return true;
}
case AffineExprKind::Add:
case AffineExprKind::Mul:
case AffineExprKind::Constant: {
if (!isDenseDLT(dlt) && setLvlFormat) {
assert(isUndefDLT(merger.getLvlType(tid, filterLdx)));
// Use a filter loop for sparse affine expression.
merger.setLevelAndType(tid, filterLdx, lvl, dlt);
++filterLdx;
}
if (auto binOp = a.dyn_cast<AffineBinaryOpExpr>()) {
// We do not set dim level format for affine expresssion like d0 + d1 on
// either loop index at d0 or d1.
// We continue the recursion merely to check whether current affine is
// admissible or not.
return findAffine(merger, tid, lvl, binOp.getLHS(), dlt, filterLdx,
false) &&
findAffine(merger, tid, lvl, binOp.getRHS(), dlt, filterLdx,
false);
}
// Falls through when it is a constant Affine
return true;
}
default:
return false;
}
}
/// Helper method to inspect affine expressions for index variable reduction
/// based codegen. It finds the dependent index set for all tensor levels in the
/// current expression we are generating.
///
/// For example, when handling A[i+j][j+k], we build the two way mapping in
/// merger between (tensor, level) pairs and their dependent index variable set:
/// A_0 <=> [i, j] and A_1 <=> [j, k]
///
/// It rejects cases (returns false)
/// 1st, when the same index is used more than once, e.g., A[i+j][i]
/// 2nd, when multiplication is used in the non-trivial index expression.
/// 3rd, when a constant operand is used in the non-trivial index expression.
///
/// TODO: constant should be easy to handle.
static bool findDepIdxSet(Merger &merger, TensorId tensor, Level lvl,
AffineExpr a, DimLevelType dlt,
bool isSubExp = false) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
const LoopId ldx = merger.makeLoopId(a.cast<AffineDimExpr>().getPosition());
if (!isUndefDLT(merger.getLvlType(tensor, ldx)))
return false; // used more than once, e.g., A[i][i]
// TODO: Generalizes the following two cases. A[i] (with trivial index
// expression) can be treated as a special affine index expression. We do
// not necessarily need to differentiate them.
if (!isSubExp)
merger.setLevelAndType(tensor, ldx, lvl, dlt);
if (isSubExp) {
// The current loops appears in more than one affine expressions on the
// same tensor. We can not handle this case. e.g., A[i+j][i+k], `i` is
// used twice.
if (merger.hasDependentLvl(ldx, tensor)) {
// TODO: This can be supported by coiterate slices if the loop idx is
// appeared on affine index for different tensor, or take slice on
// mulitple dimensions when it is on the same tensor.
// E.g.,
// `d0 + d1` for indexing t0[lvl0] and `d0 + d2` for indexing t1[lvl0]
// d0_1 = getNextSliceOffset t0 along lvl0
// d0_2 = getNextSliceOffset t1 along lvl0
// if d0_1 == d0_2 then d0 = d0_1 = d0_1
// else increase min(d0_1, d0_2).
return false;
}
merger.setLoopDependentTensorLevel(ldx, tensor, lvl, dlt);
}
return true;
}
case AffineExprKind::Constant:
case AffineExprKind::Mul:
// TODO: Support Mul and Constant AffineExp for slice-based codegen
return false;
case AffineExprKind::Add: {
auto binOp = a.cast<AffineBinaryOpExpr>();
return findDepIdxSet(merger, tensor, lvl, binOp.getLHS(), dlt, true) &&
findDepIdxSet(merger, tensor, lvl, binOp.getRHS(), dlt, true);
}
default:
return false;
}
}
/// Get the total number of compound affine expressions in the
/// `getMatchingIndexingMap` for the given tensor. For the following inputs:
///
/// map = (d0, d1, d2) => (d0 + d1, d2)
/// lvlTypes = ["compressed", "compressed"]
///
/// Returns 1 (because the first level is compressed and its corresponding
/// indexing-expression is `d0 + d1`)
static unsigned getNumNonTrivialIdxExpOnSparseLvls(AffineMap map,
Value tensor) {
// The `tensor` is not guaranted to have `RankedTensorType`, therefore
// we can't use `getRankedTensorType`/`getSparseTensorType` here.
// However, we don't need to handle `StorageSpecifierType`, so we
// can use `SparseTensorType` once we guard against non-tensors.
const auto rtp = dyn_cast<RankedTensorType>(tensor.getType());
if (!rtp)
return 0;
const SparseTensorType stt(rtp);
// FIXME: There's some dim/lvl confusion here. The previous version of
// the code asserted that there are `lvlRank`-many expressions, but then
// the `exprs[d]` expression assumes there are in fact `dimRank`-many
// expressions. Even though `ArrayRef::operator[]` will check for OOB,
// the mismatch between the assertion and the usage belies that this code
// cannot support non-permutations.
//
// Elsewhere in this file the maps returned by
// `linalg::GenericOp::getMatchingIndexingMap` are inconsistent about
// whether they're expected to have `lvlRank`-many or `dimRank`-many
// expressions (cf., `genSubscript` vs `findSparseAnnotations`);
// so those are no help in determining which is actually intended.
//
// For now we work around this problem by asserting the two ranks agree.
const Dimension dimRank = stt.getDimRank();
const Level lvlRank = stt.getLvlRank();
assert(dimRank == lvlRank && "Non-permutations not currently supported");
const auto exprs = map.getResults();
assert(static_cast<Dimension>(exprs.size()) == dimRank &&
"AffineMap does not have dimension-rank many results");
(void)dimRank;
unsigned num = 0;
for (Level l = 0; l < lvlRank; l++) {
// FIXME: `toOrigDim` is deprecated.
const Dimension d = toOrigDim(stt.getEncoding(), l);
if (!exprs[d].isa<AffineDimExpr>() && !stt.isDenseLvl(l))
num++;
}
return num;
}
/// Get the total number of sparse levels with compound affine
/// expressions, summed over all operands of the `GenericOp`.
static unsigned getNumNonTrivialIdxExpOnSparseLvls(linalg::GenericOp op) {
unsigned num = 0;
for (OpOperand &t : op->getOpOperands())
num += getNumNonTrivialIdxExpOnSparseLvls(op.getMatchingIndexingMap(&t),
t.get());
return num;
}
static bool hasNonTrivialAffineOnSparseOut(linalg::GenericOp op) {
OpOperand *out = op.getDpsInitOperand(0);
if (getSparseTensorType(out->get()).isAllDense())
return false;
return getNumNonTrivialIdxExpOnSparseLvls(op.getMatchingIndexingMap(out),
out->get());
}
/// Helper method to inspect sparse encodings in the tensor types.
/// Fills the per-dimension sparsity information for all tensors.
/// Returns true if the sparse annotations and affine subscript
/// expressions of all tensors are admissible. Returns false if
/// no annotations are found or inadmissible constructs occur.
/// We currently support two different ways to handle non-trivial index
/// expression on sparse tensors, and they accept different affine expressions.
/// When using filter-loop-based approach, it accept (almost) arbitrary affine
/// index expression on sparse tensor but it is much less efficient, and will be
/// gradually removed from the codebase.
/// When using dependent index reducton-based approach, it currently only
/// supports affine addition index expression.
static bool findSparseAnnotations(CodegenEnv &env, bool idxReducBased) {
bool annotated = false;
// `filterLdx` may be mutated by `findAffine`.
LoopId filterLdx = env.merger().getStartingFilterLoopId();
for (OpOperand &t : env.op()->getOpOperands()) {
const TensorId tid = env.makeTensorId(t.getOperandNumber());
const auto map = env.op().getMatchingIndexingMap(&t);
const auto enc = getSparseTensorEncoding(t.get().getType());
if (enc)
annotated = true;
const Level lvlRank = map.getNumResults();
assert(!enc || lvlRank == enc.getLvlRank());
assert(static_cast<Level>(env.op().getRank(&t)) == lvlRank);
// We only need to do index reduction if there is at least one non-trivial
// index expression on sparse levels.
// If all non-trivial index expression is on dense levels, we can
// efficiently rely on the random access to locate the element.
bool needIdxReduc =
enc && getNumNonTrivialIdxExpOnSparseLvls(map, t.get()) != 0;
// If then current tensor being inspected requires affine index, it need
// to be sliced.
for (Level l = 0; l < lvlRank; l++) {
// FIXME: `toOrigDim` is deprecated.
const AffineExpr a = map.getResult(toOrigDim(enc, l));
const DimLevelType dlt = enc.getLvlType(l);
if (idxReducBased && needIdxReduc) {
if (!findDepIdxSet(env.merger(), tid, l, a, dlt))
return false; // inadmissible affine expression
} else {
if (!findAffine(env.merger(), tid, l, a, dlt, filterLdx))
return false; // inadmissible affine expression
}
}
}
assert(filterLdx == env.merger().getNumLoops());
return annotated;
}
/// A helper to compute a topological sort. O(n^2) time complexity
/// as we use adj matrix for the graph.
/// The sorted result will put the first Reduction iterator to the
/// latest possible `LoopOrd`.
///
/// The `inDegree` is indexed by `LoopId`, and the `adjM` is indexed by
/// `(LoopId,LoopId)`.
static bool topSortOptimal(CodegenEnv &env,
ArrayRef<utils::IteratorType> iteratorTypes,
std::vector<unsigned> &inDegree,
std::vector<std::vector<bool>> &adjM) {
std::vector<LoopId> redIt; // reduce iterator with 0 degree
std::vector<LoopId> parIt; // parallel iterator with 0 degree
std::vector<LoopId> filterIt; // filter loop with 0 degree
const LoopId numLoops = env.merger().getNumLoops();
for (LoopId i = 0; i < numLoops; i++) {
if (inDegree[i] == 0) {
if (env.merger().isFilterLoop(i))
filterIt.push_back(i);
else if (linalg::isReductionIterator(iteratorTypes[i]))
redIt.push_back(i);
else
parIt.push_back(i);
}
}
while (!redIt.empty() || !parIt.empty() || !filterIt.empty()) {
// We always choose in order of filter loop -> parallel loop -> reduction
// loop because
// 1. Putting reduction loop early might make the loop sequence
// inadmissible.
// 2. Filter loops should be put as early as possible for better
// performance, since only one (if any) iteration will carry the
// computation. E.g., for (1 to N)
// for (1 to M)
// for (1 to K)
// if (xxx)
// O(X) computation => O(NMK+NMX) time complexity
//
// By putting the filter loop one level up, we got
//
// for (1 to N)
// for (1 to K)
// if (xxx)
// for (1 to M)
// O(X) computation => O(NK+NMX) time complexity
auto &it = !filterIt.empty() ? filterIt : (!parIt.empty() ? parIt : redIt);
auto src = it.back();
env.topSortPushBack(src);
it.pop_back();
// Update in-degree, and push 0-degree node into worklist.
for (LoopId dst = 0; dst < numLoops; dst++) {
if (adjM[src][dst] && --inDegree[dst] == 0) {
if (env.merger().isFilterLoop(dst))
filterIt.push_back(dst);
else if (linalg::isReductionIterator(iteratorTypes[dst]))
redIt.push_back(dst);
else
parIt.push_back(dst);
}
}
}
return env.topSortSize() == numLoops;
}
static void addIterOrdering(LoopId f, LoopId t,
std::vector<std::vector<bool>> &adjM,
std::vector<unsigned> &inDegree) {
if (!adjM[f][t] && f != t) {
adjM[f][t] = true;
inDegree[t]++;
}
}
/// Helper method to add all constraints from the indices in one affine
/// expression before all indices in the other affine expression. For
/// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
/// The affine expression `a` is empty iff `fidx` have a value, leading to
/// b = (i0 + i1) < fidx => i0 < fidx, i1 < fidx.
/// The affine expression `b` is empty iff `tidx` have a value, leading to
/// tidx < a = (i0 + i1) => tidx < i0, tidx < i1.
///
/// The `inDegree` is indexed by `LoopId`, and the `adjM` is indexed by
/// `(LoopId,LoopId)`.
static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
std::vector<unsigned> &inDegree, AffineExpr a,
AffineExpr b, std::optional<LoopId> fidx,
std::optional<LoopId> tidx) {
if (!a && !b) {
// Recursion leaf.
assert(fidx && tidx);
const LoopId f = *fidx, t = *tidx;
addIterOrdering(f, t, adjM, inDegree);
return;
}
// Picks an affine expression and expand (recurse into) it.
const auto toExpand = a ? a : b;
switch (toExpand.getKind()) {
case AffineExprKind::DimId: {
const std::optional<LoopId> idx{
toExpand.cast<AffineDimExpr>().getPosition()};
if (toExpand == a)
addAffineOrderings(adjM, inDegree, AffineExpr(), b, idx, tidx);
else // toExpand == b
addAffineOrderings(adjM, inDegree, a, AffineExpr(), fidx, idx);
break;
}
case AffineExprKind::Add:
case AffineExprKind::Mul: {
auto binOp = toExpand.cast<AffineBinaryOpExpr>();
if (toExpand == a) {
addAffineOrderings(adjM, inDegree, binOp.getLHS(), b, fidx, tidx);
addAffineOrderings(adjM, inDegree, binOp.getRHS(), b, fidx, tidx);
} else {
addAffineOrderings(adjM, inDegree, a, binOp.getLHS(), fidx, tidx);
addAffineOrderings(adjM, inDegree, a, binOp.getRHS(), fidx, tidx);
}
break;
}
default:
break;
}
}
static void tryRelaxAffineConstraints(linalg::GenericOp op,
std::optional<LoopId> &fldx,
AffineExpr &fa,
std::optional<LoopId> &tldx,
AffineExpr &ta) {
// We use a heuristic here to only pick one dim expression from each
// compound affine expression to establish the order between two dense
// dimensions.
if (!tldx) {
AffineDimFinder finder(op);
// NOTE: The ordering can only be loosen when the destination level is
// dense (when !tldx), for [dense, sparse] -> (d0 + d1, d2), we still
// require both d0 < d2 and d1 < d2 to ensure correct ordering (i.e.,
// no ordering like d0->d2->d1).
// TODO: this is obviously a sub optimal solution.
if (!fldx && !fa.isa<AffineConstantExpr>()) {
// Heuristic: we prefer parallel loop for lhs to reduce the chance
// we add reduce < parallel ordering.
finder.setPickedIterType(utils::IteratorType::parallel);
finder.walkPostOrder(fa);
fa = finder.getDimExpr();
fldx = finder.getDimExpr().getPosition();
}
if (!ta.isa<AffineConstantExpr>()) {
// Heuristic: we prefer reduction loop for rhs to reduce the chance
// adding reduce < parallel ordering.
finder.setPickedIterType(utils::IteratorType::reduction);
finder.walkPostOrder(ta);
ta = finder.getDimExpr();
tldx = finder.getDimExpr().getPosition();
}
}
}
static void addFilterLoopBasedConstraints(CodegenEnv &env, OpOperand &t,
OpOperand *skip, SortMask mask,
std::vector<std::vector<bool>> &adjM,
std::vector<unsigned> &inDegree) {
// Get map, encoding, and tensor-identifier.
const auto map = env.op().getMatchingIndexingMap(&t);
const auto enc = getSparseTensorEncoding(t.get().getType());
const TensorId tid = env.makeTensorId(t.getOperandNumber());
// Each tensor expression and optional dimension ordering (row-major
// by default) puts an ordering constraint on the loop indices. For
// example, the tensor expresion A_ijk forces the ordering i < j < k
// on the loop indices if no explicit dimension ordering is given.
const Level lvlRank = map.getNumResults();
assert(!enc || lvlRank == enc.getLvlRank());
for (Level lvl = 0; lvl < lvlRank; lvl++) {
// FIXME: `toOrigDim` is deprecated.
AffineExpr ta = map.getResult(toOrigDim(enc, lvl));
std::optional<LoopId> tldx = env.merger().getLoopId(tid, lvl);
// Filter loops should be constructed after all the dependent loops,
// i.e., d0 + d1 < filter_loop(d0 + d1)
if (tldx && env.merger().isFilterLoop(*tldx)) {
assert(!ta.isa<AffineDimExpr>() && !isDenseDLT(enc.getLvlTypes()[lvl]));
addAffineOrderings(adjM, inDegree, ta, AffineExpr(), std::nullopt, tldx);
// Now that the ordering of affine expression is captured by filter
// loop idx, we only need to ensure the affine ordering against filter
// loop. Thus, we reset the affine express to nil here to mark it as
// resolved.
ta = AffineExpr();
}
// Skip tensor during cycle resolution, though order between filter loop
// and dependent loops need to be guaranteed unconditionally.
if (&t == skip)
continue;
if (lvl > 0) {
// FIXME: `toOrigDim` is deprecated.
AffineExpr fa = map.getResult(toOrigDim(enc, lvl - 1));
std::optional<LoopId> fldx = env.merger().getLoopId(tid, lvl - 1);
// Applying order constraints on every pair of dimExpr between two
// compound affine expressions can sometime too strict:
// E.g, for [dense, dense] -> (d0 + d1, d2 + d3).
// It is totally fine to have loop sequence d0->d2->d1->d3 instead of
// requiring d0 < d2, d1 < d2, d0 < d3, d1 < d3.
// We also relax the affine constraint when use slice-based algorithm
// as there is no filter loop for affine index on sparse dimension.
// TODO: do we really need the condition?
if (!includesDense(mask))
tryRelaxAffineConstraints(env.op(), fldx, fa, tldx, ta);
// (d0 + d1) < (d2 + d3), or
// filter_loop_d-1 < (d2 + d3), or
// (d0 + d1) < filter_loop_d, or
// filter_loop_d-1 < filter_loop_d depending on whether fa/ta is reset
// above.
addAffineOrderings(adjM, inDegree, fa, ta, fldx, tldx);
}
}
}
static void addSliceBasedConstraints(CodegenEnv &env, OpOperand &t,
OpOperand *skip, SortMask mask,
std::vector<std::vector<bool>> &adjM,
std::vector<unsigned> &inDegree) {
// Get map and encoding.
const auto map = env.op().getMatchingIndexingMap(&t);
const auto enc = getSparseTensorEncoding(t.get().getType());
// No special treatment for simple indices.
if (getNumNonTrivialIdxExpOnSparseLvls(map, t.get()) == 0)
return addFilterLoopBasedConstraints(env, t, skip, mask, adjM, inDegree);
// Skip tensor during cycle resolution, though order between filter loop
// and dependent loops need to be guaranteed unconditionally.
if (&t == skip)
return;
AffineDimFinder finder(env.op());
finder.setPickedIterType(utils::IteratorType::reduction);
// To compute iteration graph for tensor[d0 + d1 + d3, d4 + d5 + d6],
// we requires there exist d_x \in {d0, d1, d3} and d_y \in {d4, d5, d6},
// and d_x > d_y && {d0, d1, d3} - d_x > {d4, d5, d6} - d_y
const Level lvlRank = map.getNumResults();
assert(!enc || lvlRank == enc.getLvlRank());
for (Level lvl = 1; lvl < lvlRank; lvl++) {
// FIXME: `toOrigDim` is deprecated.
const AffineExpr fa = map.getResult(toOrigDim(enc, lvl - 1));
const AffineExpr ta = map.getResult(toOrigDim(enc, lvl));
if (fa.isa<AffineDimExpr>() || ta.isa<AffineDimExpr>()) {
AffineDimCollector fCollector;
fCollector.walkPostOrder(fa);
AffineDimCollector tCollector;
tCollector.walkPostOrder(ta);
for (auto fd : fCollector.dims) {
for (auto td : tCollector.dims) {
const LoopId f = env.makeLoopId(fd.getPosition());
const LoopId t = env.makeLoopId(td.getPosition());
addIterOrdering(f, t, adjM, inDegree);
}
}
continue;
}
// This is a heuristic, we pick an abitrary reduction loop from lhs and
// rhs and use them as d_x and d_y.
finder.walkPostOrder(fa);
const AffineDimExpr fexp = finder.getDimExpr();
const LoopId fldx = env.makeLoopId(fexp.getPosition());
finder.walkPostOrder(ta);
const AffineDimExpr texp = finder.getDimExpr();
const LoopId tldx = env.makeLoopId(texp.getPosition());
// d_x > d_y
addIterOrdering(fldx, tldx, adjM, inDegree);
AffineDimCollector fCollector;
fCollector.walkPostOrder(fa);
AffineDimCollector tCollector;
tCollector.walkPostOrder(ta);
// make sure dx and dy is the last;
for (auto fd : fCollector.dims) {
const LoopId f = env.makeLoopId(fd.getPosition());
addIterOrdering(f, fldx, adjM, inDegree);
}
for (auto td : tCollector.dims) {
const LoopId t = env.makeLoopId(td.getPosition());
addIterOrdering(t, tldx, adjM, inDegree);
}
// Since we only support affine addition, the order between two dim
// expression does not really matters.
// {d0, d1, d3} - d_x > {d4, d5, d6} - d_y
// This is to ensure that the affine expressions are reduced in sparse
// tensor level ordering.
// TODO: this ordering could probably be loosen if we support out-of-order
// reduction.
// TODO: the evaluation order need to be ensure to
// support affine multiplication.
for (auto fd : fCollector.dims) {
const LoopId f = env.makeLoopId(fd.getPosition());
if (f == fldx) // skip d_x
continue;
for (auto td : tCollector.dims) {
const LoopId t = env.makeLoopId(td.getPosition());
if (t == tldx) // skip d_y
continue;
addIterOrdering(f, t, adjM, inDegree);
}
}
}
}
/// Computes a topologically sorted iteration graph for the linalg operation.
/// Ensures all tensors are visited in natural index order. This is
/// essential for sparse storage formats since these only support access
/// along fixed dimensions. Even for dense storage formats, however, the natural
/// index order yields innermost unit-stride access with better spatial
/// locality.
static bool computeIterationGraph(CodegenEnv &env, SortMask mask,
OpOperand *skip, bool idxReducBased = false) {
// Set up an n x n from/to adjacency matrix of the iteration graph
// for the implicit loop indices i_0 .. i_n-1.
const unsigned numLoops = env.merger().getNumLoops();
std::vector<std::vector<bool>> adjM(numLoops,
std::vector<bool>(numLoops, false));
std::vector<unsigned> inDegree(numLoops, 0); // in-degree of each node.
const auto iteratorTypes = env.op().getIteratorTypesArray();
// Iterate over the indexing maps of every tensor in the tensor expression.
for (OpOperand &t : env.op()->getOpOperands()) {
// Get map and encoding.
const auto enc = getSparseTensorEncoding(t.get().getType());
// Skips dense inputs/outputs when not requested.
const bool isDenseInput = !enc && env.op().isDpsInput(&t);
const bool isDenseOutput = !enc && !isDenseInput;
if ((isDenseInput && !includesDenseInput(mask)) ||
(isDenseOutput && !includesDenseOutput(mask)))
continue;
// Push unrelated loops into sparse iteration space, so these
// will be skipped more often.
// TODO: Do we really need this?
if (includesUndef(mask)) {
const TensorId tid = env.makeTensorId(t.getOperandNumber());
for (LoopId i = 0; i < numLoops; i++) {
const auto dltI = env.dlt(tid, i);
if (isCompressedDLT(dltI) || isCompressedWithHiDLT(dltI) ||
isSingletonDLT(dltI)) {
for (LoopId j = 0; j < numLoops; j++)
if (isUndefDLT(env.dlt(tid, j))) {
addIterOrdering(i, j, adjM, inDegree);
}
} else {
assert(isDenseDLT(dltI) || isUndefDLT(dltI));
}
}
}
// Push unrelated loops into sparse iteration space, so these
// will be skipped more often.
if (idxReducBased)
addSliceBasedConstraints(env, t, skip, mask, adjM, inDegree);
else
addFilterLoopBasedConstraints(env, t, skip, mask, adjM, inDegree);
}
// Topologically sort the iteration graph to determine loop order.
// Report failure for a cyclic iteration graph.
env.topSortClear(numLoops);
return topSortOptimal(env, iteratorTypes, inDegree, adjM);
}
//===----------------------------------------------------------------------===//
// Sparse compiler synthesis methods (statements and expressions).
//===----------------------------------------------------------------------===//
/// Local bufferization of all dense and sparse data structures.
static void genBuffers(CodegenEnv &env, OpBuilder &builder) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
assert(op.getNumOperands() == op.getNumDpsInputs() + 1);
SmallVector<Range, 4> loopRange =
llvm::cast<linalg::LinalgOp>(op.getOperation())
.createLoopRanges(builder, loc);
assert(loopRange.size() == env.merger().getStartingFilterLoopId());
SmallVector<Range, 4> sortedRange;
for (unsigned i = 0, e = env.topSortSize(); i < e; i++) {
LoopId ldx = env.topSortAt(i);
// FIXME: Gets rid of filter loops since we have a better algorithm to deal
// with affine index expression.
if (ldx < env.merger().getStartingFilterLoopId()) {
sortedRange.push_back(loopRange[ldx]);
}
}
env.emitter().initializeLoopEmit(
builder, loc,
/// Generates buffer for the output tensor.
/// Note that all sparse kernels assume that when all elements are written
/// to (viz. x(i) = y(i) * z(i)), the output buffer is already initialized
/// to all zeroes and only nonzeroes values are computed and written out.
/// For updates (viz. x(i) += y(i) * z(i)), only nonzeroes values are used
/// for the updates and no assumption on the original contents of the
/// output buffer is necessary.
[&op](OpBuilder &builder, Location loc, Value memref,
Value tensor) -> Value {
// Must not be a sparse tensor.
assert(!getSparseTensorEncoding(tensor.getType()));
// Two output tensor references should point to the same object.
OpOperand *lhs = op.getDpsInitOperand(0);
assert(lhs->get() == tensor);
// An output tensor can simply materialize from the buffer of the tensor
// that appears in the outs() clause. For updates, this has the
// advantage that only the nonzero value are involved in the
// computation, keeping the operation O(nnz). In all other cases, we are
// forced to zero out the buffer to enforce the assumption above, which
// may negatively impact running complexity (viz. O(n^2 + nnz) vs.
// O(nnz) for matrices).
// TODO: use better analysis to avoid zeroing out the buffer?
bool isInit = op.isInitTensor(lhs);
Value init = memref;
if (!isInit) {
Value zero = constantZero(builder, loc,
getElementTypeOrSelf(tensor.getType()));
builder.create<linalg::FillOp>(loc, ValueRange{zero},
ValueRange{init});
}
return init;
},
[&sortedRange, &env](OpBuilder &b, Location loc, Level l) {
assert(l < env.topSortSize());
// FIXME: Remove filter loop since we have a better algorithm to
// deal with affine index expression.
if (l >= env.merger().getStartingFilterLoopId())
return Value();
return mlir::getValueOrCreateConstantIndexOp(b, loc,
sortedRange[l].size);
});
}
/// Generates index for load/store on sparse tensor.
// FIXME: It's not entirely clear what "index" means here (i.e., is it
// a "coordinate", or "Ldx", or what). So the function should be renamed
// and/or the documentation expanded in order to clarify.
static Value genIndex(CodegenEnv &env, OpOperand *t) {
const auto map = env.op().getMatchingIndexingMap(t);
const auto stt = getSparseTensorType(t->get());
const Level lvlRank = stt.getLvlRank();
assert(static_cast<Level>(map.getNumResults()) == lvlRank);
// FIXME: `toOrigDim` is deprecated.
// FIXME: above we asserted that there are `lvlRank` many results,
// but this is assuming there are in fact `dimRank` many results instead.
const AffineExpr a = map.getResult(toOrigDim(stt.getEncoding(), lvlRank - 1));
assert(a.getKind() == AffineExprKind::DimId);
const LoopId idx = env.makeLoopId(a.cast<AffineDimExpr>().getPosition());
return env.getLoopVar(idx);
}
/// Generates subscript for load/store on a dense or sparse tensor.
static Value genSubscript(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
SmallVectorImpl<Value> &args) {
const Location loc = env.op().getLoc();
const TensorId tid = env.makeTensorId(t->getOperandNumber());
const auto map = env.op().getMatchingIndexingMap(t);
const auto stt = getSparseTensorType(t->get());
if (stt.hasEncoding()) {
// For sparse tensors we only push the last-level's position onto `args`.
const auto pos = env.emitter().getPosits()[tid].back();
assert(pos);
args.push_back(pos);
} else {
// For dense tensors we push all level's coordinates onto `args`.
const Level lvlRank = stt.getLvlRank();
assert(static_cast<Level>(map.getNumResults()) == lvlRank);
for (Level l = 0; l < lvlRank; l++) {
const auto lvlExpr = map.getResult(l);
const auto lvlCrd = env.emitter().genAffine(builder, loc, lvlExpr);
args.push_back(lvlCrd);
}
}
return env.emitter().getValBuffer()[tid];
}
/// Generates insertion code to implement dynamic tensor load.
static Value genInsertionLoad(CodegenEnv &env, OpBuilder &builder,
OpOperand *t) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
// Direct lexicographic coordinate order, tensor loads as zero.
if (!env.isExpand()) {
Type tp = getElementTypeOrSelf(t->get().getType());
return constantZero(builder, loc, tp);
}
// Load from expanded access pattern.
Value index = genIndex(env, t);
return builder.create<memref::LoadOp>(loc, env.getExpandValues(), index);
}
/// Generates insertion code to implement dynamic tensor load for reduction.
static Value genInsertionLoadReduce(CodegenEnv &env, OpBuilder &builder,
OpOperand *t) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
Value identity = env.getCustomRedId();
// Direct lexicographic coordinate order, tensor loads as identity.
if (!env.isExpand())
return identity;
// Load from expanded access pattern if filled, identity otherwise.
Value values = env.getExpandValues();
Value filled = env.getExpandFilled();
Value index = genIndex(env, t);
Value isFilled = builder.create<memref::LoadOp>(loc, filled, index);
Value valAtIndex = builder.create<memref::LoadOp>(loc, values, index);
return builder.create<arith::SelectOp>(loc, isFilled, valAtIndex, identity);
}
/// Generates insertion code to implement dynamic tensor store.
static void genInsertionStore(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
Value rhs) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
// Direct insertion in lexicographic coordinate order.
if (!env.isExpand()) {
const LoopOrd numLoops = op.getRank(t);
// TODO: rewrite this to use `env.emitter().getLoopIVs(ivs)`
// instead. We just need to either assert that `numLoops ==
// env.emitter().getCurrentDepth()`, or else update the `getLoopIVs`
// method to take an optional parameter to restrict to a smaller depth.
SmallVector<Value> ivs;
ivs.reserve(numLoops);
for (LoopOrd n = 0; n < numLoops; n++) {
const auto iv = env.emitter().getLoopIV(n);
assert(iv);
ivs.push_back(iv);
}
Value chain = env.getInsertionChain();
if (!env.getValidLexInsert()) {
env.updateInsertionChain(builder.create<InsertOp>(loc, rhs, chain, ivs));
} else {
// Generates runtime check for a valid lex during reduction,
// to avoid inserting the identity value for empty reductions.
// if (validLexInsert) then
// insert(rhs) into chain
// return updated chain
// else
// return unmodified chain
scf::IfOp ifValidLexInsert = builder.create<scf::IfOp>(
loc, chain.getType(), env.getValidLexInsert(),
/*else=*/true);
// True branch.
builder.setInsertionPointToStart(ifValidLexInsert.thenBlock());
Value res = builder.create<InsertOp>(loc, rhs, chain, ivs);
builder.create<scf::YieldOp>(loc, res);
// False branch.
builder.setInsertionPointToStart(ifValidLexInsert.elseBlock());
builder.create<scf::YieldOp>(loc, chain);
// Value assignment.
builder.setInsertionPointAfter(ifValidLexInsert);
env.updateInsertionChain(ifValidLexInsert.getResult(0));
}
return;
}
// Generates insertion code along expanded access pattern.
// if (!expFilled[i]) then
// expFilled[i] = true
// expAdded[inserts++] = i
// endif
// values[i] = rhs
Value values = env.getExpandValues();
Value filled = env.getExpandFilled();
Value added = env.getExpandAdded();
Value count = env.getExpandCount();
Value index = genIndex(env, t);
Value fval = constantI1(builder, loc, false);
Value tval = constantI1(builder, loc, true);
// If statement.
Value isFilled = builder.create<memref::LoadOp>(loc, filled, index);
Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
isFilled, fval);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIndexType(), cond,
/*else=*/true);
// True branch.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
builder.create<memref::StoreOp>(loc, tval, filled, index);
builder.create<memref::StoreOp>(loc, index, added, count);
Value one = constantIndex(builder, loc, 1);
Value add = builder.create<arith::AddIOp>(loc, count, one);
builder.create<scf::YieldOp>(loc, add);
// False branch.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, count);
builder.setInsertionPointAfter(ifOp);
// Value assignment.
env.updateExpandCount(ifOp.getResult(0));
builder.create<memref::StoreOp>(loc, rhs, values, index);
}
/// Generates a load on a dense or sparse tensor.
static Value genTensorLoad(CodegenEnv &env, OpBuilder &builder, ExprId exp) {
// Test if the load was hoisted to a higher loop nest.
Value val = env.exp(exp).val;
if (val)
return val;
// Load during insertion.
linalg::GenericOp op = env.op();
OpOperand *t = &op->getOpOperand(env.exp(exp).tensor);
if (env.isSparseOutput(t)) {
if (env.isCustomReduc())
return genInsertionLoadReduce(env, builder, t);
return genInsertionLoad(env, builder, t);
}
// Actual load.
SmallVector<Value> args;
Value ptr = genSubscript(env, builder, t, args);
return builder.create<memref::LoadOp>(op.getLoc(), ptr, args);
}
/// Generates a store on a dense or sparse tensor.
static void genTensorStore(CodegenEnv &env, OpBuilder &builder, ExprId exp,
Value rhs) {
// Only unary and binary are allowed to return an uninitialized rhs
// to indicate missing output. Or otherwise a custom reduction that
// received no value to accumulate.
if (!rhs) {
assert(env.exp(exp).kind == TensorExp::Kind::kUnary ||
env.exp(exp).kind == TensorExp::Kind::kBinary ||
env.exp(exp).kind == TensorExp::Kind::kReduce);
return;
}
// Test if this is a scalarized reduction.
if (env.isReduc()) {
env.updateReduc(rhs);
return;
}
// Regular store.
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
OpOperand *t = op.getDpsInitOperand(0);
if (!env.isSparseOutput(t)) {
SmallVector<Value> args;
Value ptr = genSubscript(env, builder, t, args);
builder.create<memref::StoreOp>(loc, rhs, ptr, args);
return;
}
// Store during sparse insertion.
if (env.exp(exp).kind != TensorExp::Kind::kSelect) {
genInsertionStore(env, builder, t, rhs);
return;
}
// Select operation insertion.
Value chain = env.getInsertionChain();
scf::IfOp ifOp =
builder.create<scf::IfOp>(loc, chain.getType(), rhs, /*else=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
// Existing value was preserved to be used here.
assert(env.exp(exp).val);
Value v0 = env.exp(exp).val;
genInsertionStore(env, builder, t, v0);
env.merger().clearExprValue(exp);
// Yield modified insertion chain along true branch.
Value mchain = env.getInsertionChain();
builder.create<scf::YieldOp>(op.getLoc(), mchain);
// Yield original insertion chain along false branch.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, chain);
// Done with if statement.
env.updateInsertionChain(ifOp->getResult(0));
builder.setInsertionPointAfter(ifOp);
}
/// Generates an invariant value.
inline static Value genInvariantValue(CodegenEnv &env, ExprId exp) {
return env.exp(exp).val;
}
/// Semi-ring branches are simply inlined by the sparse compiler. Prior
/// analysis has verified that all computations are "local" to the inlined
/// branch or otherwise invariantly defined outside the loop nest, with the
/// exception of index computations, which need to be relinked to actual
/// inlined cloned code.
static Value relinkBranch(CodegenEnv &env, RewriterBase &rewriter, Block *block,
Value e, LoopId ldx) {
if (auto arg = dyn_cast<BlockArgument>(e)) {
// Direct arguments of the original linalg op must be converted
// into dense tensor loads. Note that we should not encounter
// anything else. This needs to be verified by semi-ring ops.
linalg::GenericOp op = env.op();
if (arg.getOwner()->getParentOp() == op) {
const TensorId tid = env.makeTensorId(arg.getArgNumber());
OpOperand *t = &op->getOpOperand(tid);
assert(!getSparseTensorType(t->get()).hasEncoding()); // dense!
SmallVector<Value> args;
Value ptr = genSubscript(env, rewriter, t, args);
return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args);
}
} else if (Operation *def = e.getDefiningOp()) {
// Handle index computation.
if (auto indexOp = dyn_cast<linalg::IndexOp>(def))
return env.getLoopVar(env.makeLoopId(indexOp.getDim()));
// When still defined in new body, recurse into operands.
if (def->getBlock() == block) {
rewriter.setInsertionPoint(def);
for (unsigned i = 0, n = def->getNumOperands(); i < n; i++) {
rewriter.updateRootInPlace(def, [&]() {
def->setOperand(
i, relinkBranch(env, rewriter, block, def->getOperand(i), ldx));
});
}
}
}
return e;
}
/// Recursively generates tensor expression.
static Value genExp(CodegenEnv &env, RewriterBase &rewriter, ExprId e,
LoopId ldx) {
if (e == ::mlir::sparse_tensor::detail::kInvalidId)
return Value();
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
const TensorExp &exp = env.exp(e);
const auto kind = exp.kind;
if (kind == TensorExp::Kind::kTensor)
return genTensorLoad(env, rewriter, e);
if (kind == TensorExp::Kind::kInvariant)
return genInvariantValue(env, e);
if (kind == TensorExp::Kind::kLoopVar)
return env.getLoopVar(exp.loop);
if (kind == TensorExp::Kind::kReduce)
env.startCustomReduc(e); // enter custom
Value v0, v1;
// If either lhs/rhs is a synthetic zero, we infer the type for the zero value
// based on the type of the other operand.
if (exp.children.e0 != ::mlir::sparse_tensor::detail::kInvalidId &&
env.exp(exp.children.e0).kind == TensorExp::Kind::kSynZero) {
v1 = genExp(env, rewriter, exp.children.e1, ldx);
v0 = constantZero(rewriter, loc, v1.getType());
} else if (exp.children.e1 != ::mlir::sparse_tensor::detail::kInvalidId &&
env.exp(exp.children.e1).kind == TensorExp::Kind::kSynZero) {
v0 = genExp(env, rewriter, exp.children.e0, ldx);
v1 = constantZero(rewriter, loc, v0.getType());
} else {
v0 = genExp(env, rewriter, exp.children.e0, ldx);
v1 = genExp(env, rewriter, exp.children.e1, ldx);
}
Value ee;
if (kind == TensorExp::Kind::kReduce && (!v0 || !v1)) {
// custom reduce did not receive a value
} else {
ee = env.merger().buildExp(rewriter, loc, e, v0, v1);
if (ee &&
(kind == TensorExp::Kind::kUnary || kind == TensorExp::Kind::kBinary ||
kind == TensorExp::Kind::kBinaryBranch ||
kind == TensorExp::Kind::kReduce ||
kind == TensorExp::Kind::kSelect)) {
OpBuilder::InsertionGuard guard(rewriter);
ee = relinkBranch(env, rewriter, ee.getParentBlock(), ee, ldx);
}
}
if (kind == TensorExp::Kind::kReduce)
env.endCustomReduc(); // exit custom
if (kind == TensorExp::Kind::kSelect)
env.merger().setExprValue(e, v0); // Preserve value for later use.
return ee;
}
/// Hoists loop invariant tensor loads for which indices have been exhausted.
static void genInvariants(CodegenEnv &env, OpBuilder &builder, ExprId exp,
LoopId ldx, bool atStart) {
if (exp == ::mlir::sparse_tensor::detail::kInvalidId)
return;
if (env.exp(exp).kind == TensorExp::Kind::kTensor) {
// Inspect tensor indices.
bool isAtLoop = ldx == ::mlir::sparse_tensor::detail::kInvalidId;
linalg::GenericOp op = env.op();
OpOperand &t = op->getOpOperand(env.exp(exp).tensor);
const auto map = op.getMatchingIndexingMap(&t);
const auto stt = getSparseTensorType(t.get());
const Level lvlRank = stt.getLvlRank();
assert(static_cast<Level>(map.getNumResults()) == lvlRank);
for (Level l = 0; l < lvlRank; l++) {
// FIXME: `toOrigDim` is deprecated.
// FIXME: above we asserted that there are `lvlRank` many results,
// but this is assuming there are in fact `dimRank` many results instead.
const AffineExpr a = map.getResult(toOrigDim(stt.getEncoding(), l));
const auto sldx =
env.merger().getLoopId(env.makeTensorId(t.getOperandNumber()), l);
if (sldx && env.merger().isFilterLoop(*sldx)) {
if (!env.getLoopVar(*sldx))
// The filter loops has not been constructed.
return;
if (*sldx == ldx)
isAtLoop = true;
} else if (!isInvariantAffine(env, a, ldx, isAtLoop))
return; // still in play
}
// All exhausted at this level (isAtLoop denotes exactly at this LoopId).
if (!isAtLoop)
return;
OpOperand *lhs = op.getDpsInitOperand(0);
if (lhs == &t) {
// Start or end a scalarized reduction.
if (atStart) {
Value load = env.isCustomReduc() ? env.getCustomRedId()
: genTensorLoad(env, builder, exp);
env.startReduc(exp, load);
if (env.hasSparseOutput())
env.setValidLexInsert(constantI1(builder, env.op().getLoc(), false));
} else {
genTensorStore(env, builder, exp, env.endReduc());
env.clearValidLexInsert();
}
} else {
// Start or end loop invariant hoisting of a tensor load.
if (atStart)
env.merger().setExprValue(exp, genTensorLoad(env, builder, exp));
else
env.merger().clearExprValue(exp);
}
} else if (env.exp(exp).kind != TensorExp::Kind::kInvariant &&
env.exp(exp).kind != TensorExp::Kind::kLoopVar &&
env.exp(exp).kind != TensorExp::Kind::kSynZero) {
// Traverse into the binary operations. Note that we only hoist
// tensor loads, since subsequent MLIR/LLVM passes know how to
// deal with all other kinds of derived loop invariants.
if (env.exp(exp).kind == TensorExp::Kind::kReduce)
env.startCustomReduc(exp); // enter custom
const ExprId e0 = env.exp(exp).children.e0;
const ExprId e1 = env.exp(exp).children.e1;
genInvariants(env, builder, e0, ldx, atStart);
genInvariants(env, builder, e1, ldx, atStart);
if (env.exp(exp).kind == TensorExp::Kind::kReduce)
env.endCustomReduc(); // exit custom
}
}
/// Generates an expanded access pattern in innermost dimension.
static void genExpand(CodegenEnv &env, OpBuilder &builder, LoopOrd at,
bool atStart) {
linalg::GenericOp op = env.op();
OpOperand *lhs = op.getDpsInitOperand(0);
if (!env.atExpandLevel(lhs, op.getRank(lhs), at))
return; // not needed at this level
assert(!env.isReduc());
// Generate start or end of an expanded access pattern. Note that because
// an expension does not rely on the ongoing contents of the sparse storage
// scheme, we can use the original tensor as incoming SSA value (which
// simplifies codegen a bit). If expansion on the actual contents is ever
// needed, we will need to use the SSA value in the insertion chain instead.
Value tensor = lhs->get();
Location loc = op.getLoc();
if (atStart) {
auto dynShape = {ShapedType::kDynamic};
Type etp = cast<ShapedType>(tensor.getType()).getElementType();
Type t1 = MemRefType::get(dynShape, etp);
Type t2 = MemRefType::get(dynShape, builder.getI1Type());
Type t3 = MemRefType::get(dynShape, builder.getIndexType());
Type t4 = builder.getIndexType();
auto r = builder.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
assert(r.getNumResults() == 4);
env.startExpand(r.getResult(0), r.getResult(1), r.getResult(2),
r.getResult(3));
} else {
SmallVector<Value> indices;
for (LoopOrd i = 0; i < at; i++)
indices.push_back(env.emitter().getLoopIV(i));
Value values = env.getExpandValues();
Value filled = env.getExpandFilled();
Value added = env.getExpandAdded();
Value count = env.getExpandCount();
Value chain = env.getInsertionChain();
Value compress = builder.create<CompressOp>(loc, values, filled, added,
count, chain, indices);
env.updateInsertionChain(compress);
env.endExpand();
}
}
/// Returns parallelization strategy. Any implicit loop in the Linalg
/// operation that is marked "parallel" is a candidate. Whether it is actually
/// converted to a parallel operation depends on the requested strategy.
static bool isParallelFor(CodegenEnv &env, bool isOuter, bool isSparse) {
// Reject parallelization of sparse output.
if (env.hasSparseOutput())
return false;
// Parallel loops on tensor expansion can cause data races.
if (env.isExpand())
return false;
// Inspect strategy.
switch (env.options().parallelizationStrategy) {
case SparseParallelizationStrategy::kNone:
return false;
case SparseParallelizationStrategy::kDenseOuterLoop:
return isOuter && !isSparse;
case SparseParallelizationStrategy::kAnyStorageOuterLoop:
return isOuter;
case SparseParallelizationStrategy::kDenseAnyLoop:
return !isSparse;
case SparseParallelizationStrategy::kAnyStorageAnyLoop:
return true;
}
llvm_unreachable("unexpected parallelization strategy");
}
/// Whether or not the current loop being generated should be parallized (if
/// possible) according to the configuration.
static bool shouldTryParallize(CodegenEnv &env, LoopId ldx, bool isOuter,
ArrayRef<TensorLevel> tidLvls) {
linalg::GenericOp op = env.op();
auto iteratorTypes = op.getIteratorTypesArray();
bool isSparse = llvm::any_of(tidLvls, [ldx, &env](TensorLevel tidLvl) {
// Queries the DLT based on the tensor id and loop idx, as requested by
// `CodegenEnv::dlt(TensorId, LoopIdx)`. The returned DLT from CodegenEnv
// should be consistent with the DLT indexed by <TensorId, Level>.
const auto dlt = env.dlt(env.unpackTensorLevel(tidLvl).first, ldx);
return isCompressedDLT(dlt) || isSingletonDLT(dlt);
});
return isParallelFor(env, isOuter, isSparse);
}
/// Generates a "filter loop" on the given tid level to locate a coordinate that
/// is of the same value as evaluated by the affine expression in its matching
/// indexing map.
static Operation *genFilterLoop(CodegenEnv &env, OpBuilder &builder, LoopId ldx,
TensorLevel tidLvl) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
Operation *loop = *env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
assert(env.merger().isFilterLoop(ldx));
const auto [tid, lvl] = env.unpackTensorLevel(tidLvl);
// tids/lvls must only have one value because filter loops only
// corresponding to the one and only sparse tensor level.
OpOperand *t = &op->getOpOperand(tid);
auto enc = getSparseTensorEncoding(t->get().getType());
// Retrieves the affine expression for the filter loop.
// FIXME: `toOrigDim` is deprecated.
AffineExpr a = op.getMatchingIndexingMap(t).getResult(toOrigDim(enc, lvl));
return env.emitter().enterFilterLoopOverTensorAtLvl(builder, loc, tid, lvl,
a, reduc);
});
return loop;
}
/// Emit a loop to coiterate over the list of tensor levels. The generated loop
/// can either be a for loop or while loop depending on whether there is at most
/// one sparse level in the list.
static Operation *genCoIteration(CodegenEnv &env, OpBuilder &builder,
LoopId idx, ArrayRef<TensorLevel> tidLvls,
bool tryParallel, bool needsUniv) {
Operation *loop = *env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
// Construct the while-loop with a parameter for each
// index.
return env.emitter().enterCoIterationOverTensorsAtLvls(
builder, env.op().getLoc(), tidLvls, reduc, tryParallel,
/*genDedup=*/true, needsUniv);
});
assert(loop);
return loop;
}
/// Generates a for-loop or a while-loop, depending on whether it implements
/// singleton iteration or co-iteration over the given conjunction.
static Operation *genLoop(CodegenEnv &env, OpBuilder &builder, LoopOrd at,
bool needsUniv, ArrayRef<TensorLevel> tidLvls) {
const LoopId ldx = env.topSortAt(at);
if (env.merger().isFilterLoop(ldx)) {
assert(tidLvls.size() == 1);
return genFilterLoop(env, builder, ldx, tidLvls.front());
}
bool tryParallel = shouldTryParallize(env, ldx, at == 0, tidLvls);
return genCoIteration(env, builder, ldx, tidLvls, tryParallel, needsUniv);
}
/// Generates the induction structure for a while-loop.
static void finalizeWhileOp(CodegenEnv &env, OpBuilder &builder, LoopId idx,
bool needsUniv, scf::WhileOp whileOp) {
Location loc = env.op().getLoc();
// Finalize each else branch of all if statements.
if (env.isReduc() || env.isExpand() || env.getInsertionChain()) {
while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
builder.getInsertionBlock()->getParentOp())) {
// Break on IfOp for slicing filtering.
if (ifOp->getAttr(LoopEmitter::getLoopEmitterLoopAttrName()) ==
StringAttr::get(ifOp->getContext(), "slice"))
break;
unsigned y = 0;
SmallVector<Value> yields;
if (env.isReduc()) {
yields.push_back(env.getReduc());
env.updateReduc(ifOp.getResult(y++));
if (env.getValidLexInsert()) {
yields.push_back(env.getValidLexInsert());
env.setValidLexInsert(ifOp.getResult(y++));
}
}
if (env.isExpand()) {
yields.push_back(env.getExpandCount());
env.updateExpandCount(ifOp->getResult(y++));
}
if (env.getInsertionChain()) {
yields.push_back(env.getInsertionChain());
env.updateInsertionChain(ifOp->getResult(y++));
}
assert(y == yields.size());
builder.create<scf::YieldOp>(loc, yields);
builder.setInsertionPointAfter(ifOp);
}
}
builder.setInsertionPointToEnd(&whileOp.getAfter().front());
}
/// Generates a single if-statement within a while-loop.
static scf::IfOp genIf(CodegenEnv &env, OpBuilder &builder, LoopId ldx,
LatPointId p) {
Location loc = env.op().getLoc();
SmallVector<Type> types;
Value cond;
env.merger().foreachTensorLoopId(
p, /*simple=*/true,
[&](TensorLoopId b, TensorId tid, std::optional<Level> lvl,
DimLevelType dlt, bool isIdxRed) {
if (isIdxRed) {
// Since there is no 1:1 mapping from loop to level (multiple loops
// are required to resolve one level with non-trivial index
// expression), we need to reconstruct the tensor level types if this
// loop requires index reduction condition.
assert(lvl.has_value() && isUndefDLT(dlt));
auto stt = getSparseTensorType(env.op().getInputs()[tid]);
dlt = stt.getLvlType(*lvl);
}
assert(ldx == env.merger().loop(b));
Value clause;
if (isCompressedDLT(dlt) || isSingletonDLT(dlt) ||
isCompressedWithHiDLT(dlt)) {
assert(lvl.has_value());
const Value crd = env.emitter().getCoords()[tid][*lvl];
const Value lvar = env.getLoopVar(ldx);
clause = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
crd, lvar);
} else {
assert(isDenseDLT(dlt) || isUndefDLT(dlt));
clause = constantI1(builder, loc, true);
}
cond = cond ? builder.create<arith::AndIOp>(loc, cond, clause) : clause;
});
if (env.isReduc()) {
types.push_back(env.getReduc().getType());
if (env.getValidLexInsert())
types.push_back(env.getValidLexInsert().getType());
}
if (env.isExpand())
types.push_back(builder.getIndexType());
if (env.getInsertionChain())
types.push_back(env.getInsertionChain().getType());
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
return ifOp;
}
/// Generates end of true branch of if-statement within a while-loop.
static void endIf(CodegenEnv &env, OpBuilder &builder, scf::IfOp ifOp,
Operation *loop, Value redInput, Value cntInput,
Value insInput, Value validIns) {
SmallVector<Value> operands;
if (env.isReduc()) {
operands.push_back(env.getReduc());
env.updateReduc(redInput);
if (env.getValidLexInsert()) {
// Any overlapping indices during a reduction creates a valid lex insert.
operands.push_back(constantI1(builder, env.op().getLoc(), true));
env.setValidLexInsert(validIns);
}
}
if (env.isExpand()) {
operands.push_back(env.getExpandCount());
env.updateExpandCount(cntInput);
}
if (env.getInsertionChain()) {
operands.push_back(env.getInsertionChain());
env.updateInsertionChain(insInput);
}
if (!operands.empty())
builder.create<scf::YieldOp>(env.op().getLoc(), operands);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
}
//===----------------------------------------------------------------------===//
// Sparse compiler synthesis methods (loop sequence).
//===----------------------------------------------------------------------===//
/// Starts a loop sequence at given level. Returns true if
/// the universal loop index must be maintained at this level.
static bool startLoopSeq(CodegenEnv &env, OpBuilder &builder, ExprId exp,
LoopOrd at, LoopId idx, LoopId ldx, LatSetId lts) {
assert(!env.getLoopVar(idx));
// Emit invariants at this loop sequence level.
genInvariants(env, builder, exp, ldx, /*atStart=*/true);
// Emit access pattern expansion for sparse tensor output.
genExpand(env, builder, at, /*atStart=*/true);
// Emit further intitialization at this loop sequence level.
const LatPointId l0 = env.set(lts)[0];
bool needsUniv = false;
SmallVector<TensorLevel> tidLvls;
env.merger().foreachTensorLoopId(l0, [&](TensorLoopId b, TensorId tid,
std::optional<Level> lvl,
DimLevelType dlt, bool isIdxReduc) {
assert(env.merger().loop(b) == idx);
if (isDenseDLT(dlt) || isUndefDLT(dlt)) {
if (tid == env.merger().getSynTensorID()) {
// Needs loop emitter to set up loop bounds for synthetic tensor too if
// there is a loop condition imposed on the synthetic tensor.
tidLvls.push_back(
env.makeTensorLevel(tid, env.emitter().getCurrentDepth()));
}
needsUniv = true;
}
if (isCompressedDLT(dlt) || isSingletonDLT(dlt) ||
isCompressedWithHiDLT(dlt) || isIdxReduc) {
// Only when this is a index reduction loop, can the dlt be undefined.
assert(!isUndefDLT(dlt) || isIdxReduc);
// sparse/singleton levels, or a dense/sparse index reduction loop.
tidLvls.push_back(env.makeTensorLevel(tid, *lvl));
}
});
env.emitter().enterNewLoopSeq(builder, env.op().getLoc(), tidLvls);
// Maintain the universal index only if it is actually
// consumed by a subsequent lattice point.
if (needsUniv) {
for (const LatPointId li : env.set(lts).drop_front())
if (!env.merger().hasAnySparse(env.lat(li).simple))
return true;
}
return false;
}
static void genConstantDenseAddressFromLevel(CodegenEnv &env,
OpBuilder &builder, TensorId tid,
Level startLvl) {
// TODO: Handle affine expression on output tensor.
linalg::GenericOp op = env.op();
assert(tid < op.getNumDpsInputs());
OpOperand *input = op.getDpsInputOperands()[tid];
const auto lvlExprs = op.getMatchingIndexingMap(input).getResults();
const auto enc = getSparseTensorEncoding(input->get().getType());
if (enc) {
const Location loc = op.getLoc();
const TensorId tid = env.makeTensorId(input->getOperandNumber());
const Level lvlRank = enc.getLvlRank();
assert(lvlExprs.size() == static_cast<size_t>(lvlRank));
// FIXME: there is dim/lvl confusion here
for (Level l = startLvl; l < lvlRank; l++) {
// FIXME: `toOrigDim` is deprecated.
AffineExpr lvlExpr = lvlExprs[toOrigDim(enc, l)];
if (enc.isDenseLvl(l) && lvlExpr.isa<AffineConstantExpr>())
env.emitter().genDenseAffineAddress(
builder, loc, env.makeTensorLevel(tid, l), lvlExpr);
else
return; // break on first non-dense non-constant level
}
}
}
static void genInitConstantDenseAddress(CodegenEnv &env,
RewriterBase &rewriter) {
// We can generate address for constant affine expression before any loops
// starting from the first level as they do not depend on any thing.
// E.g., [Dense, Dense, Sparse] -> (1, 2, d0), the addresses for the first two
// levels can be determined before loops.
for (TensorId tid = 0, e = env.op().getNumDpsInputs(); tid < e; tid++)
genConstantDenseAddressFromLevel(env, rewriter, tid, 0);
}
/// Return true if the lattices bit can be iterated by a for loop.
static bool translateBitsToTidLvlPairs(
CodegenEnv &env, LatPointId li, LoopId ldx,
SmallVectorImpl<TensorLevel> &tidLvls,
SmallVectorImpl<std::pair<TensorLevel, AffineExpr>> &affineTidLvls) {
const BitVector &simple = env.lat(li).simple;
const TensorId outTid = env.merger().getOutTensorID();
const std::optional<Level> outLvl = env.merger().getLvl(outTid, ldx);
unsigned numloopCond = 0;
bool hasNonUnique = false;
env.merger().foreachTensorLoopId(
li, [&, ldx](TensorLoopId b, TensorId tid, std::optional<Level> lvl,
DimLevelType dlt, bool isIdxReduc) {
if (simple[b]) {
if (isIdxReduc) {
tidLvls.push_back(env.makeTensorLevel(tid, *lvl));
numloopCond++;
return;
}
if (isUndefDLT(dlt)) {
// An undefined dlt in the lattices, we probably mean to
// iterate based on the level of output tensor. E.g., this
// could be a synthetic tensor (for invariants and sparse
// output tensor).
auto itType = env.op().getIteratorTypesArray()[ldx];
if (linalg::isReductionIterator(itType) &&
env.merger().getSynTensorID() == tid) {
// Coiterating with an invariant, and this is a reduction loop
// e.g., out = prod(in[i][j] op invariant);
// In this case, we can not infer the loop bound from output
// (whose level is reduced). Instead we use the synthetic tensor
// to infer the bound.
// The level of the synthetic tensor is the current loop depth;
// the rank of the synthetic tensor equals to number of loops.
lvl = env.emitter().getCurrentDepth();
} else {
// or a broadcast
// out[i][j] = in[i] (j is undef for input)
tid = outTid;
lvl = outLvl;
// Skips invalid lvl (e.g., when this is a zero ranked tensor).
if (!lvl)
return;
}
}
hasNonUnique = !isUniqueDLT(dlt) || hasNonUnique;
tidLvls.push_back(env.makeTensorLevel(tid, *lvl));
numloopCond++;
} else if (isDenseDLT(dlt) || isIdxReduc) {
tidLvls.push_back(env.makeTensorLevel(tid, *lvl));
} else {
assert(isUndefDLT(dlt));
linalg::GenericOp op = env.op();
if (tid >= op.getNumDpsInputs())
// We only handle affine expression on input tensors (for now).
return;
OpOperand *operand = &op->getOpOperand(tid);
const auto stt = getSparseTensorType(operand->get());
// Non-annotated dense tensors requires no special handling.
if (!stt.hasEncoding())
return;
ArrayRef<AffineExpr> affines =
op.getMatchingIndexingMap(operand).getResults();
const Level lvlRank = stt.getLvlRank();
assert(affines.size() == static_cast<size_t>(lvlRank));
for (Level l = 0; l < lvlRank; l++) {
// FIXME: `toOrigDim` is deprecated.
AffineExpr exp = affines[toOrigDim(stt.getEncoding(), l)];
// Skip simple affine expression and non-dense levels (which
// have their own filter loop).
if (exp.isa<AffineDimExpr>() || !stt.isDenseLvl(l))
continue;
// Constant affine expression are handled in genLoop
if (!exp.isa<AffineConstantExpr>()) {
bool isAtLoop = false;
if (isInvariantAffine(env, exp, ldx, isAtLoop) && isAtLoop) {
// If the compound affine is invariant and we are right at the
// level. We need to generate the address according to the
// affine expression. This is also the best place we can do it
// to avoid putting it inside inner loops.
// NOTE: It assumes that the levels of the input tensor are
// initialized in order (and it is also currently guaranteed by
// computeIterationGraph), another more admissible approach
// might be accepting out-of-order access between consecutive
// dense levels.
affineTidLvls.emplace_back(env.makeTensorLevel(tid, l), exp);
}
}
}
}
});
if (isDenseDLT(env.dlt(outTid, ldx))) {
// Note that we generate dense indices of the output tensor
// unconditionally, since they may not appear in the lattice, but may be
// needed for linearized env.
tidLvls.push_back(env.makeTensorLevel(outTid, *outLvl));
}
if (numloopCond == 0) {
// Corner cases where the loop bound is defined by a *unused* operand, in
// this case, we just generate a dense "fake" loop by iterating over the
// synthetic tensor.
tidLvls.push_back(env.makeTensorLevel(env.merger().getSynTensorID(),
env.emitter().getCurrentDepth()));
numloopCond++;
}
// If we just need to one loop conditions and the conditions is not imposed on
// non-unique level, the loop can be generated by a for loop.
return numloopCond == 1 && !hasNonUnique;
}
/// Starts a single loop in current sequence.
static std::pair<Operation *, bool> startLoop(CodegenEnv &env,
OpBuilder &builder, LoopOrd at,
LatPointId li, bool needsUniv) {
// The set of tensors + lvls to generate loops on
SmallVector<TensorLevel> tidLvls;
// The set of dense tensors with non-trivial affine expression that just
// becomes invariant and the address shall now be generated at the current
// level.
SmallVector<std::pair<TensorLevel, AffineExpr>> affineTidLvls;
bool isSingleCond = translateBitsToTidLvlPairs(env, li, env.topSortAt(at),
tidLvls, affineTidLvls);
// Emit the for/while-loop control.
Operation *loop = genLoop(env, builder, at, needsUniv, tidLvls);
Location loc = env.op().getLoc();
for (auto [tidLvl, exp] : affineTidLvls) {
env.emitter().genDenseAffineAddress(builder, loc, tidLvl, exp);
}
// Until now, we have entered every <tid, lvl> pair in {cond, extra,
// affine}Tids/Lvls. The addresses of the upcoming levels which are dependent
// on constant affines expression may now be determined.
auto allTidLvls =
llvm::concat<TensorLevel>(tidLvls, llvm::make_first_range(affineTidLvls));
for (auto [tid, lvl] : env.unpackTensorLevelRange(allTidLvls)) {
if (tid != env.merger().getOutTensorID() &&
tid != env.merger().getSynTensorID())
genConstantDenseAddressFromLevel(env, builder, tid, lvl + 1);
}
return std::make_pair(loop, isSingleCond);
}
/// Ends a single loop in current sequence. Returns new values for needsUniv.
static bool endLoop(CodegenEnv &env, RewriterBase &rewriter, Operation *loop,
LoopId idx, LatPointId li, bool needsUniv,
bool isSingleCond) {
if (isSingleCond) {
// Either a for-loop or a while-loop that iterates over a slice.
// Any iteration creates a valid lex insert.
if (env.isReduc() && env.getValidLexInsert())
env.setValidLexInsert(constantI1(rewriter, env.op().getLoc(), true));
} else if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
// End a while-loop.
finalizeWhileOp(env, rewriter, idx, needsUniv, whileOp);
} else {
needsUniv = false;
}
env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
env.emitter().exitCurrentLoop(rewriter, env.op().getLoc(), reduc);
return std::nullopt;
});
return needsUniv;
}
/// Ends a loop sequence at given level.
static void endLoopSeq(CodegenEnv &env, OpBuilder &builder, unsigned exp,
unsigned at, unsigned idx, unsigned ldx) {
assert(!env.getLoopVar(idx));
env.emitter().exitCurrentLoopSeq(builder, env.op().getLoc());
// Unmark bookkeeping of invariants and loop index.
genInvariants(env, builder, exp, ldx, /*atStart=*/false);
// Finalize access pattern expansion for sparse tensor output.
genExpand(env, builder, at, /*atStart=*/false);
}
/// Recursively generates code while computing iteration lattices in order
/// to manage the complexity of implementing co-iteration over unions
/// and intersections of sparse iterations spaces.
static void genStmt(CodegenEnv &env, RewriterBase &rewriter, ExprId exp,
LoopOrd at) {
// At each leaf, assign remaining tensor (sub)expression to output tensor.
if (at == env.topSortSize()) {
const LoopId ldx = env.topSortAt(at - 1);
Value rhs = genExp(env, rewriter, exp, ldx);
genTensorStore(env, rewriter, exp, rhs);
return;
}
// Construct iteration lattices for current loop index, with L0 at top.
const LoopId idx = env.topSortAt(at);
const LoopId ldx = at == 0 ? ::mlir::sparse_tensor::detail::kInvalidId
: env.topSortAt(at - 1);
const LatSetId lts =
env.merger().optimizeSet(env.merger().buildLattices(exp, idx));
// Start a loop sequence.
bool needsUniv = startLoopSeq(env, rewriter, exp, at, idx, ldx, lts);
// Emit a loop for every lattice point L0 >= Li in this loop sequence.
//
// NOTE: We cannot change this to `for (const LatPointId li : env.set(lts))`
// because the loop body causes data-movement which invalidates
// the iterator.
const unsigned lsize = env.set(lts).size();
for (unsigned i = 0; i < lsize; i++) {
const LatPointId li = env.set(lts)[i];
// Start a loop.
auto [loop, isSingleCond] = startLoop(env, rewriter, at, li, needsUniv);
// Visit all lattices points with Li >= Lj to generate the
// loop-body, possibly with if statements for coiteration.
Value redInput = env.getReduc();
Value cntInput = env.getExpandCount();
Value insInput = env.getInsertionChain();
Value validIns = env.getValidLexInsert();
// NOTE: We cannot change this to `for (const LatPointId lj : env.set(lts))`
// because the loop body causes data-movement which invalidates the
// iterator.
for (unsigned j = 0; j < lsize; j++) {
const LatPointId lj = env.set(lts)[j];
const ExprId ej = env.lat(lj).exp;
if (li == lj || env.merger().latGT(li, lj)) {
// Recurse into body of each branch.
if (!isSingleCond) {
scf::IfOp ifOp = genIf(env, rewriter, idx, lj);
genStmt(env, rewriter, ej, at + 1);
endIf(env, rewriter, ifOp, loop, redInput, cntInput, insInput,
validIns);
} else {
genStmt(env, rewriter, ej, at + 1);
}
}
}
// End a loop.
needsUniv = endLoop(env, rewriter, loop, idx, li, needsUniv, isSingleCond);
}
// End a loop sequence.
endLoopSeq(env, rewriter, exp, at, idx, ldx);
}
/// Converts the result computed by the sparse kernel into the required form.
static void genResult(CodegenEnv &env, RewriterBase &rewriter) {
linalg::GenericOp op = env.op();
OpOperand *lhs = op.getDpsInitOperand(0);
Value tensor = lhs->get();
Type resType = tensor.getType();
if (getSparseTensorEncoding(resType)) {
// The sparse tensor rematerializes from the original sparse tensor's
// underlying sparse storage format. For an insertion chain, the
// tensor materializes from the chain with 'hasInserts' enabled.
bool hasInserts = false;
if (Value chain = env.getInsertionChain()) {
hasInserts = true;
tensor = chain;
}
rewriter.replaceOpWithNewOp<LoadOp>(op, resType, tensor, hasInserts);
} else {
// To rematerialize an non-annotated tensor, simply load it
// from the bufferized value.
Value val = env.emitter().getValBuffer()[env.merger().getOutTensorID()];
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
}
}
//===----------------------------------------------------------------------===//
// Sparse compiler rewriting methods.
//===----------------------------------------------------------------------===//
namespace {
/// Sparse rewriting rule for generic Lingalg operation.
struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
public:
GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
: OpRewritePattern<linalg::GenericOp>(context), options(o) {}
LogicalResult matchAndRewrite(linalg::GenericOp op,
PatternRewriter &rewriter) const override {
// Only accept single output operations without affine index on sparse
// output.
if (op.getNumDpsInits() != 1 || hasNonTrivialAffineOnSparseOut(op))
return failure();
// Sets up a code generation environment.
const unsigned numTensors = op->getNumOperands();
const unsigned numLoops = op.getNumLoops();
const unsigned numFilterLoops = getNumNonTrivialIdxExpOnSparseLvls(op);
// TODO: we should probably always use slice-based codegen whenever
// possible, we can even intermix slice-based and filter-loop based codegen.
bool idxReducBased = options.enableIndexReduction && numFilterLoops != 0;
// If we have indexing map like (d0) -> (0, d0), there might be more
// levels then loops because of the constant index, that means we can not
// use numLoops as the upper bound for ranks of all tensors.
// TODO: Constant indices are currently not support on sparse tensor, but
// are allowed in non-annotated dense tensor. Support it, it would be
// required for sparse tensor slice rank reducing too.
Level maxLvlRank = 0;
for (auto operand : op.getOperands()) {
if (auto rtp = dyn_cast<RankedTensorType>(operand.getType())) {
maxLvlRank = std::max(maxLvlRank, SparseTensorType(rtp).getLvlRank());
}
}
// If we uses slice based algorithm for affine index, we do not need filter
// loop.
CodegenEnv env(op, options, numTensors, numLoops,
/*numFilterLoops=*/idxReducBased ? 0 : numFilterLoops,
maxLvlRank);
// Detects sparse annotations and translates the per-level sparsity
// information for all tensors to loop indices in the kernel.
if (!findSparseAnnotations(env, idxReducBased))
return failure();
// Only standard reduction operations (add, sub, or, xor) that can be
// sparsified by merely reducing the stored values are admissible. More
// elaborate reduction operations (such as mul, and, min, max) would need
// to know whether implicit zeros occur as well. They can still be
// implemented with a custom reduction operation, accepted here as well.
if (op.getNumReductionLoops() > 0) {
Operation *yield = op.getRegion().front().getTerminator();
assert(isa<linalg::YieldOp>(yield));
Operation *redop = yield->getOperand(0).getDefiningOp();
if (!isa<arith::AddFOp>(redop) && !isa<complex::AddOp>(redop) &&
!isa<arith::AddIOp>(redop) && !isa<arith::SubFOp>(redop) &&
!isa<complex::SubOp>(redop) && !isa<arith::SubIOp>(redop) &&
!isa<arith::OrIOp>(redop) && !isa<arith::XOrIOp>(redop) &&
!isa<ReduceOp>(redop)) {
return failure();
}
}
// Constructs the tensor expressions tree from `op`, returns failure if the
// tree can not be built or the tensor expression is inadmissible.
if (failed(env.initTensorExp()))
return failure();
// Computes a topologically sorted iteration graph to ensure tensors
// are visited in natural index order. Gradually relaxes the considered
// constraints until an acyclic iteration graph results, such that sparse
// code generation can proceed. As a last resort, an attempt is made
// to resolve cycles by inserting a conversion.
bool isAdmissible = false;
bool hasCycle = true;
// An const list of all masks that we used for interation graph
// computation. Must be ordered from more strict to less strict.
// Ideally (though might not be guaranteed), the eariler a constraint mask
// can be satisfied, the faster the generated kernel will be.
const auto allMasks = {
SortMask::kIncludeAll, SortMask::kIncludeDense,
SortMask::kIncludeDenseInput, SortMask::kIncludeDenseOutput,
SortMask::kIncludeUndef, SortMask::kSparseOnly};
for (const SortMask mask : allMasks) {
if (computeIterationGraph(env, mask, nullptr, idxReducBased)) {
hasCycle = false;
if (env.isAdmissibleTopoOrder()) {
isAdmissible = true;
break;
}
// else try a set of less strict constraints.
}
}
if (hasCycle) {
return idxReducBased
? failure() // TODO: should cycle be resolved differently?
: resolveCycle(env, rewriter); // one last shot
}
if (!isAdmissible)
return failure(); // inadmissible expression, reject
// Recursively generates code if admissible.
env.startEmit();
genBuffers(env, rewriter);
// TODO: Constant affine expression should be handled differently when using
// slice-based codegen, it does not matter now becasue we already reject the
// constant expression at a earlier stage.
genInitConstantDenseAddress(env, rewriter);
genStmt(env, rewriter, env.getExprId(), 0);
genResult(env, rewriter);
return success();
}
private:
// Last resort cycle resolution.
LogicalResult resolveCycle(CodegenEnv &env, PatternRewriter &rewriter) const {
// Compute topological sort while leaving out every
// sparse input tensor in succession until an acylic
// iteration graph results.
for (OpOperand *t : env.op().getDpsInputOperands()) {
const TensorId tid = env.makeTensorId(t->getOperandNumber());
Value tval = t->get();
auto srcEnc = getSparseTensorEncoding(tval.getType());
if (!srcEnc || !computeIterationGraph(env, SortMask::kSparseOnly, t))
continue;
// Found an input tensor that resolves the cycle by inserting a
// conversion into a sparse tensor that adheres to the iteration
// graph order. Also releases the temporary sparse tensor.
//
// TODO: investigate fusing the conversion with computation,
// especially if it is a direct yield!
//
auto srcTp = getRankedTensorType(tval);
// TODO: This assertion is to match the behavior from prior to
// merging dimOrdering and higherOrdering into dimToLvl. However,
// since `permute` returns a permutation, we can remove this
// restriction by instead composing the result of `permute`
// with `srcEnc.getDimToLvl`.
assert(srcEnc.isPermutation());
auto dstEnc =
srcEnc.withDimToLvl(permute(env, env.op().getMatchingIndexingMap(t)));
auto dstTp = RankedTensorType::get(srcTp.getShape(),
srcTp.getElementType(), dstEnc);
auto convert = rewriter.create<ConvertOp>(tval.getLoc(), dstTp, tval);
rewriter.updateRootInPlace(env.op(),
[&]() { env.op()->setOperand(tid, convert); });
rewriter.setInsertionPointAfter(env.op());
rewriter.create<bufferization::DeallocTensorOp>(tval.getLoc(), convert);
return success();
}
// Cannot be resolved with a single conversion.
// TODO: convert more than one?
return failure();
}
/// Options to control sparse code generation.
SparsificationOptions options;
};
} // namespace
/// Populates the given patterns list with rewriting rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparsificationPatterns(
RewritePatternSet &patterns, const SparsificationOptions &options) {
patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
}
|