1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
//===- SparsificationAndBufferizationPass.cpp - Tensor to Memref Lowering -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/Passes.h"
using namespace mlir;
using namespace mlir::func;
namespace mlir {
namespace sparse_tensor {
/// Return `true` if one of the given types is a sparse tensor type.
static bool containsSparseTensor(TypeRange types) {
for (Type t : types)
if (getSparseTensorEncoding(t))
return true;
return false;
}
/// A pass that lowers tensor ops to memref ops, regardless of whether they are
/// dense or sparse.
///
/// One-Shot Analysis is used to detect RaW conflicts and to insert buffer
/// copies of the tensor level (`insertTensorCopies`). Afterwards, the lowering
/// of tensor ops to memref ops follows a different code path depending on
/// whether the op is sparse or dense:
///
/// * Sparse tensor ops are lowered through Sparsification and follow-up pass
/// that lowers sparse_tensor dialect ops.
/// * Dense tensor ops are lowered through BufferizableOpInterface
/// implementations.
class SparsificationAndBufferizationPass
: public PassWrapper<SparsificationAndBufferizationPass,
OperationPass<ModuleOp>> {
public:
SparsificationAndBufferizationPass(
const bufferization::OneShotBufferizationOptions &bufferizationOptions,
const SparsificationOptions &sparsificationOptions,
const SparseTensorConversionOptions &sparseTensorConversionOptions,
bool createSparseDeallocs, bool enableRuntimeLibrary,
bool enableBufferInitialization, unsigned vectorLength,
bool enableVLAVectorization, bool enableSIMDIndex32)
: bufferizationOptions(bufferizationOptions),
sparsificationOptions(sparsificationOptions),
sparseTensorConversionOptions(sparseTensorConversionOptions),
createSparseDeallocs(createSparseDeallocs),
enableRuntimeLibrary(enableRuntimeLibrary),
enableBufferInitialization(enableBufferInitialization),
vectorLength(vectorLength),
enableVLAVectorization(enableVLAVectorization),
enableSIMDIndex32(enableSIMDIndex32) {}
/// Bufferize all dense ops. This assumes that no further analysis is needed
/// and that all required buffer copies were already inserted by
/// `insertTensorCopies` in the form of `bufferization.alloc_tensor` ops.
LogicalResult runDenseBufferization() {
bufferization::OpFilter denseOpFilter;
denseOpFilter.allowOperation([&](Operation *op) {
if (containsSparseTensor(TypeRange(op->getResults())) ||
containsSparseTensor(TypeRange(op->getOperands())))
return false;
if (auto funcOp = dyn_cast<func::FuncOp>(op)) {
FunctionType funcType = funcOp.getFunctionType();
if (containsSparseTensor(funcType.getInputs()) ||
containsSparseTensor(funcType.getResults()))
return false;
}
return true;
});
if (failed(bufferization::bufferizeOp(getOperation(), bufferizationOptions,
/*copyBeforeWrite=*/false,
&denseOpFilter)))
return failure();
bufferization::removeBufferizationAttributesInModule(getOperation());
return success();
}
void getDependentDialects(::mlir::DialectRegistry ®istry) const override {
registry.insert<bufferization::BufferizationDialect>();
registry.insert<gpu::GPUDialect>();
registry.insert<LLVM::LLVMDialect>();
}
void runOnOperation() override {
{
// Run enabling transformations.
OpPassManager pm("builtin.module");
pm.addPass(createPreSparsificationRewritePass());
pm.addNestedPass<func::FuncOp>(
bufferization::createEmptyTensorToAllocTensorPass());
if (failed(runPipeline(pm, getOperation())))
return signalPassFailure();
}
// Insert tensor copies. This step runs One-Shot Analysis (which analyzes
// SSA use-def chains of tensor IR) and decides where buffer copies are
// needed and where buffers can be written to in-place. These decisions are
// materialized in the IR in the form of `bufferization.alloc_tensor` ops.
//
// Note: All following steps in this pass must be careful not to modify the
// structure of the IR (i.e., tensor use-def chains), as that could
// invalidate the results of the analysis. From now on, only small and
// localized rewrites are allowed, such as replacing a tensor op with its
// memref equivalent.
if (failed(bufferization::insertTensorCopies(getOperation(),
bufferizationOptions)))
return signalPassFailure();
// `testAnalysisOnly` is a debug/testing flag. If set, the results of
// OneShotAnalysis are added to the IR via attributes. In that case, do not
// continue with the remaining pipeline.
if (bufferizationOptions.testAnalysisOnly)
return;
// Bufferize all sparse ops. No further analysis is needed. All required
// buffer copies were already inserted by `insertTensorCopies` in the form
// of `bufferization.alloc_tensor` ops.
{
OpPassManager pm("builtin.module");
pm.addPass(createSparsificationPass(sparsificationOptions));
pm.addPass(createPostSparsificationRewritePass(enableRuntimeLibrary));
if (vectorLength > 0) {
pm.addPass(mlir::createLoopInvariantCodeMotionPass());
pm.addPass(createSparseVectorizationPass(
vectorLength, enableVLAVectorization, enableSIMDIndex32));
}
if (enableRuntimeLibrary) {
pm.addPass(
createSparseTensorConversionPass(sparseTensorConversionOptions));
} else {
pm.addPass(createSparseTensorCodegenPass(createSparseDeallocs,
enableBufferInitialization));
pm.addPass(createSparseBufferRewritePass(enableBufferInitialization));
pm.addPass(createStorageSpecifierToLLVMPass());
}
if (failed(runPipeline(pm, getOperation())))
return signalPassFailure();
}
// Bufferize all dense ops.
if (failed(runDenseBufferization()))
signalPassFailure();
}
private:
bufferization::OneShotBufferizationOptions bufferizationOptions;
SparsificationOptions sparsificationOptions;
SparseTensorConversionOptions sparseTensorConversionOptions;
bool createSparseDeallocs;
bool enableRuntimeLibrary;
bool enableBufferInitialization;
unsigned vectorLength;
bool enableVLAVectorization;
bool enableSIMDIndex32;
};
} // namespace sparse_tensor
} // namespace mlir
std::unique_ptr<Pass> mlir::createSparsificationAndBufferizationPass(
const bufferization::OneShotBufferizationOptions &bufferizationOptions,
const SparsificationOptions &sparsificationOptions,
const SparseTensorConversionOptions &sparseTensorConversionOptions,
bool createSparseDeallocs, bool enableRuntimeLibrary,
bool enableBufferInitialization, unsigned vectorLength,
bool enableVLAVectorization, bool enableSIMDIndex32) {
return std::make_unique<
mlir::sparse_tensor::SparsificationAndBufferizationPass>(
bufferizationOptions, sparsificationOptions,
sparseTensorConversionOptions, createSparseDeallocs, enableRuntimeLibrary,
enableBufferInitialization, vectorLength, enableVLAVectorization,
enableSIMDIndex32);
}
|