1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
|
//===- TensorTilingInterface.cpp - Tiling Interface models *- C++ ------*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Interfaces/TilingInterface.h"
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
using namespace mlir;
using namespace mlir::tensor;
namespace {
struct PadOpTiling : public TilingInterface::ExternalModel<PadOpTiling, PadOp> {
SmallVector<utils::IteratorType> getLoopIteratorTypes(Operation *op) const {
auto padOp = cast<PadOp>(op);
SmallVector<utils::IteratorType> iteratorTypes(
padOp.getResultType().getRank(), utils::IteratorType::parallel);
return iteratorTypes;
}
SmallVector<Range> getIterationDomain(Operation *op, OpBuilder &b) const {
ReifiedRankedShapedTypeDims reifiedShapes;
(void)reifyResultShapes(b, op, reifiedShapes);
OpFoldResult zero = b.getIndexAttr(0);
OpFoldResult one = b.getIndexAttr(1);
// Initialize all the ranges to {zero, one, one}. All the `ub`s are
// overwritten.
SmallVector<Range> loopRanges(reifiedShapes[0].size(), {zero, one, one});
for (const auto &ub : enumerate(reifiedShapes[0]))
loopRanges[ub.index()].size = ub.value();
return loopRanges;
}
FailureOr<TilingResult>
getTiledImplementation(Operation *op, OpBuilder &b,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes) const {
FailureOr<TilingResult> result =
tensor::bubbleUpPadSlice(b, cast<PadOp>(op), offsets, sizes);
if (failed(result))
return failure();
return result.value();
}
LogicalResult
getResultTilePosition(Operation *op, OpBuilder &b, unsigned resultNumber,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
SmallVector<OpFoldResult> &resultOffsets,
SmallVector<OpFoldResult> &resultSizes) const {
resultOffsets.assign(offsets.begin(), offsets.end());
resultSizes.assign(sizes.begin(), sizes.end());
return success();
}
};
template <typename OpTy>
static SmallVector<Range> getPackUnPackIterationDomain(OpTy op,
OpBuilder &builder) {
static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value,
"applies to only pack or unpack operations");
OpBuilder::InsertionGuard g(builder);
int64_t rank = (std::is_same<OpTy, PackOp>::value) ? op.getSourceRank()
: op.getDestRank();
OpFoldResult zero = builder.getIndexAttr(0);
OpFoldResult one = builder.getIndexAttr(1);
ReifiedRankedShapedTypeDims resultShape;
(void)reifyResultShapes(builder, op, resultShape);
SmallVector<Range> loopBounds(rank);
for (auto dim : llvm::seq<int64_t>(0, rank)) {
loopBounds[dim].offset = zero;
loopBounds[dim].stride = one;
loopBounds[dim].size = resultShape[0][dim];
}
return loopBounds;
}
static void applyPermToRange(SmallVector<OpFoldResult> &offsets,
SmallVector<OpFoldResult> &sizes,
ArrayRef<int64_t> permutation) {
if (permutation.empty())
return;
applyPermutationToVector<OpFoldResult>(offsets, permutation);
applyPermutationToVector<OpFoldResult>(sizes, permutation);
}
struct PackOpTiling
: public TilingInterface::ExternalModel<PackOpTiling, PackOp> {
SmallVector<utils::IteratorType> getLoopIteratorTypes(Operation *op) const {
// Note that here we only consider untiled dimensions and outer tiled data
// dimensions, the inner tiled data dimensions are materialized when
// building the body of the operation.
auto packOp = cast<PackOp>(op);
SmallVector<utils::IteratorType> iteratorTypes(
packOp.getSourceRank(), utils::IteratorType::parallel);
return iteratorTypes;
}
SmallVector<Range> getIterationDomain(Operation *op, OpBuilder &b) const {
return getPackUnPackIterationDomain<PackOp>(cast<PackOp>(op), b);
}
FailureOr<TilingResult>
getTiledImplementation(Operation *op, OpBuilder &b,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes) const {
auto packOp = cast<PackOp>(op);
Location loc = packOp.getLoc();
// The tiling is applied on interchanged dimensions. We have to undo the
// interchange to map sizes and offsets to the original input.
int64_t inputRank = packOp.getSourceRank();
SmallVector<OpFoldResult> origOffsets(offsets.begin(), offsets.end());
SmallVector<OpFoldResult> origSizes(sizes.begin(), sizes.end());
applyPermToRange(origOffsets, origSizes,
invertPermutationVector(packOp.getOuterDimsPerm()));
DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
packOp.getDimAndTileMapping();
SmallVector<OpFoldResult> srcDimValues =
tensor::getMixedSizes(b, loc, packOp.getSource());
SmallVector<OpFoldResult> inputIndices, inputSizes;
for (auto dim : llvm::seq<int64_t>(0, inputRank)) {
using AV = affine::AffineValueExpr;
affine::AffineBuilder ab(b, loc);
AffineExpr dim0, dim1, sym;
bindDims(b.getContext(), dim0, dim1);
bindSymbols(b.getContext(), sym);
if (dimAndTileMapping.count(dim)) {
// If the data dimension is tiled, the i-th index is the product of
// offset_i and tile_i, and the i-th size is the product of sizes_i and
// tile_i.
auto avOffset = AV(dim0).bind(origOffsets[dim]);
auto avSize = AV(dim0).bind(origSizes[dim]);
auto avTileSize = AV(sym).bind(dimAndTileMapping[dim]);
inputIndices.push_back(ab.mul(avOffset, avTileSize));
inputSizes.push_back(ab.mul(avSize, avTileSize));
} else {
inputIndices.push_back(origOffsets[dim]);
inputSizes.push_back(origSizes[dim]);
}
// Limit the size of the input operand for incomplete tiles.
if (packOp.getPaddingValue()) {
OpFoldResult dimSize = srcDimValues[dim];
auto avDimSize = AV(dim0).bind(dimSize);
auto avInputIdx = AV(dim1).bind(inputIndices.back());
inputSizes.back() =
ab.min({inputSizes.back(), ab.sub(avDimSize, avInputIdx)});
}
}
auto oneAttr = b.getI64IntegerAttr(1);
SmallVector<OpFoldResult> strides(inputRank, oneAttr);
SmallVector<Value> tiledOperands;
tiledOperands.push_back(b.create<ExtractSliceOp>(
loc, packOp.getSource(), inputIndices, inputSizes, strides));
SmallVector<OpFoldResult> outputOffsets, outputSizes;
if (failed(getResultTilePosition(op, b, 0, offsets, sizes, outputOffsets,
outputSizes)))
return {};
strides.append(packOp.getDestRank() - inputRank, oneAttr);
auto extractSlice = b.create<ExtractSliceOp>(
loc, packOp.getDest(), outputOffsets, outputSizes, strides);
tiledOperands.push_back(extractSlice);
if (auto val = packOp.getPaddingValue())
tiledOperands.push_back(val);
for (auto tile : packOp.getInnerTiles())
tiledOperands.push_back(tile);
Operation *tiledPackOp = b.create<PackOp>(
loc, TypeRange{extractSlice.getType()}, tiledOperands, op->getAttrs());
return TilingResult{{tiledPackOp},
SmallVector<Value>(tiledPackOp->getResults())};
}
LogicalResult
getResultTilePosition(Operation *op, OpBuilder &b, unsigned resultNumber,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
SmallVector<OpFoldResult> &resultOffsets,
SmallVector<OpFoldResult> &resultSizes) const {
// The iteration domain is over outer dimensions of packed layout. In this
// context, the outer dimensions of `resultOffsets` are `offsets`. The
// inner dimensions of `resultOffsets` are zeros because tiling is not
// applied to them.
auto packOp = cast<PackOp>(op);
int64_t inputRank = packOp.getSourceRank();
int64_t outputRank = packOp.getDestRank();
auto zeroAttr = b.getI64IntegerAttr(0);
resultOffsets.assign(offsets.begin(), offsets.end());
resultOffsets.append(outputRank - inputRank, zeroAttr);
ReifiedRankedShapedTypeDims outputShape;
(void)reifyResultShapes(b, packOp, outputShape);
resultSizes.assign(sizes.begin(), sizes.end());
for (auto dataTileDim : llvm::seq<unsigned>(inputRank, outputRank))
resultSizes.push_back(outputShape[0][dataTileDim]);
return success();
}
};
struct UnpackTileDimInfo {
bool isAlignedToInnerTileSize;
OpFoldResult sourceOffset;
OpFoldResult sourceSize;
OpFoldResult resultOffset;
OpFoldResult destExpandedSize;
};
/// Returns the needed information for tiling unpack op on `tileDim` with given
/// `tileOffset` and `tileSize`. For more details, see the comment of the
/// `getTiledImplementation`.
static UnpackTileDimInfo getUnpackTileDimInfo(OpBuilder &b, UnPackOp unpackOp,
int64_t tileDim,
OpFoldResult tileOffset,
OpFoldResult tileSize) {
UnpackTileDimInfo info;
Attribute zeroAttr = b.getIndexAttr(0);
Attribute oneAttr = b.getIndexAttr(1);
DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
unpackOp.getDimAndTileMapping();
// The dimension is not one of packed data dimension.
if (!dimAndTileMapping.count(tileDim)) {
info.isAlignedToInnerTileSize = true;
info.sourceOffset = tileOffset;
info.sourceSize = tileSize;
info.resultOffset = zeroAttr;
info.destExpandedSize = tileSize;
return info;
}
Location loc = unpackOp.getLoc();
using AV = affine::AffineValueExpr;
affine::AffineBuilder ab(b, loc);
AffineExpr dim0, dim1, sym0;
bindDims(b.getContext(), dim0, dim1);
bindSymbols(b.getContext(), sym0);
OpFoldResult innerTileSize = dimAndTileMapping[tileDim];
info.isAlignedToInnerTileSize = false;
FailureOr<int64_t> cstSize = ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType::UB,
getValueOrCreateConstantIndexOp(b, loc, tileSize), /*dim=*/std::nullopt,
/*stopCondition=*/nullptr, /*closedUB=*/true);
std::optional<int64_t> cstInnerSize = getConstantIntValue(innerTileSize);
if (!failed(cstSize) && cstInnerSize) {
if (*cstSize % *cstInnerSize == 0)
info.isAlignedToInnerTileSize = true;
// If the tiling size equals to the inner tiling size, the outer dims are
// always 1.
if (*cstInnerSize == *cstSize) {
auto lhs = AV(dim0).bind(tileOffset);
auto rhs = AV(dim1).bind(innerTileSize);
info.sourceOffset = ab.floor(lhs, rhs);
info.sourceSize = oneAttr;
info.resultOffset = zeroAttr;
info.destExpandedSize = tileSize;
return info;
}
}
if (info.isAlignedToInnerTileSize) {
info.sourceOffset =
ab.floor(AV(dim0).bind(tileOffset), AV(dim1).bind(innerTileSize));
info.resultOffset = zeroAttr;
info.destExpandedSize = tileSize;
// The ceilDiv is needed here because there could be incomplete tile even
// it is perfect tiling cases. E.g.,
// %0 = unpack tensor<33x2xf32> into tensor<64xf32>
// If the tiling size is 32, there will be 3 tiles. Two of them have
// size=32; one of them have size=2. The size is represented using
// affine_min op; we need ceilDiv.
info.sourceSize =
ab.ceil(AV(dim0).bind(tileSize), AV(dim1).bind(innerTileSize));
return info;
}
affine::DivModValue firstCoord = affine::getDivMod(
b, loc, getValueOrCreateConstantIndexOp(b, loc, tileOffset),
getValueOrCreateConstantIndexOp(b, loc, innerTileSize));
OpFoldResult tileExclusiveBound =
ab.add(AV(dim0).bind(tileOffset), AV(dim1).bind(tileSize));
affine::DivModValue lastCoord = affine::getDivMod(
b, loc,
getValueOrCreateConstantIndexOp(
b, loc,
ab.sub(AV(dim0).bind(tileExclusiveBound), AV(dim1).bind(oneAttr))),
getValueOrCreateConstantIndexOp(b, loc, innerTileSize));
OpFoldResult lengthMinusOne = ab.sub(AV(dim0).bind(lastCoord.quotient),
AV(dim1).bind(firstCoord.quotient));
info.sourceSize =
ab.add(AV(dim0).bind(lengthMinusOne), AV(dim1).bind(oneAttr));
info.sourceOffset = firstCoord.quotient;
info.resultOffset = firstCoord.remainder;
// Do not create an Affine ops for expanded size because the affine op is too
// complicated which would trigger an issue in affine ops simplification.
info.destExpandedSize = b.createOrFold<arith::MulIOp>(
loc, getValueOrCreateConstantIndexOp(b, loc, info.sourceSize),
getValueOrCreateConstantIndexOp(b, loc, innerTileSize));
return info;
}
struct UnPackOpTiling
: public TilingInterface::ExternalModel<UnPackOpTiling, UnPackOp> {
SmallVector<utils::IteratorType> getLoopIteratorTypes(Operation *op) const {
auto unpackOp = cast<UnPackOp>(op);
SmallVector<utils::IteratorType> iteratorTypes(
unpackOp.getDestRank(), utils::IteratorType::parallel);
return iteratorTypes;
}
SmallVector<Range> getIterationDomain(Operation *op, OpBuilder &b) const {
return getPackUnPackIterationDomain<UnPackOp>(cast<UnPackOp>(op), b);
}
/// There are two cases in tiling unpack ops. If the tiling size is aligned to
/// the inner tile size, the corresponding tiles of source are all complete.
/// Otherwise, there are in-complete tiles. We will need to expand the slice
/// of source for getting complete tiles. The tiled unpack op unpacks more
/// data from source, so We'll need an extract_slice op to shift and truncate
/// the output.
/// Take Nn_to_N as an example. Say that N=32, n=8, and tiling_size=15. The
/// coordinates of second tile (i.e., result[15..31]) are
/// [(1, 7), (2, 0,), (2, 1) ... (3, 6), (3, 7)]. The first row and the last
/// row are incomplete tiles. To represent the unpack op, we have to complete
/// the rows. I.e., the input coordinates would start with (1, 0); end with
/// (3, 7). In this context, the tiled unpack produces a (3 * n) elements
/// because there are 3 rows in total. Follow by a tensor.extract_slice op, we
/// can get the actual result.
FailureOr<TilingResult>
getTiledImplementation(Operation *op, OpBuilder &b,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes) const {
auto unpackOp = cast<UnPackOp>(op);
int64_t srcRank = unpackOp.getSourceRank();
int64_t destRank = unpackOp.getDestRank();
int64_t numInnerTiles = srcRank - destRank;
Location loc = unpackOp.getLoc();
// The perfect tiling case indicates that the tiling sizes are multiple of
// inner_tile_size. In this context, no extra data is needed when
// representing the tiled unpack op.
bool isPerfectTilingCase = true;
Attribute oneAttr = b.getIndexAttr(1);
SmallVector<OpFoldResult> sliceSrcStrides(destRank, oneAttr);
SmallVector<OpFoldResult> sliceSrcIndices, sliceSrcSizes;
SmallVector<OpFoldResult> destExpandedSizes, resultOffsetsFromDest;
for (auto dim : llvm::seq<int64_t>(0, destRank)) {
UnpackTileDimInfo info =
getUnpackTileDimInfo(b, unpackOp, dim, offsets[dim], sizes[dim]);
if (!info.isAlignedToInnerTileSize)
isPerfectTilingCase = false;
sliceSrcIndices.push_back(info.sourceOffset);
sliceSrcSizes.push_back(info.sourceSize);
destExpandedSizes.push_back(info.destExpandedSize);
resultOffsetsFromDest.push_back(info.resultOffset);
}
// The tiling is applied on destination dimensions. We have to apply the
// interchange on source dimensions if outer_dims_perm is set.
applyPermToRange(sliceSrcIndices, sliceSrcSizes,
unpackOp.getOuterDimsPerm());
Attribute zeroAttr = b.getIndexAttr(0);
sliceSrcIndices.append(numInnerTiles, zeroAttr);
sliceSrcSizes.append(unpackOp.getMixedTiles());
sliceSrcStrides.append(numInnerTiles, oneAttr);
Value sliceSource =
b.create<ExtractSliceOp>(loc, unpackOp.getSource(), sliceSrcIndices,
sliceSrcSizes, sliceSrcStrides);
SmallVector<OpFoldResult> destStrides(destRank, oneAttr);
Value sliceDest;
if (isPerfectTilingCase) {
sliceDest = b.create<ExtractSliceOp>(loc, unpackOp.getDest(), offsets,
sizes, destStrides);
} else {
sliceDest = b.create<EmptyOp>(loc, destExpandedSizes,
unpackOp.getDestType().getElementType());
}
SmallVector<Value> tiledOperands = {sliceSource, sliceDest};
for (auto tile : unpackOp.getInnerTiles())
tiledOperands.push_back(tile);
Operation *tiledUnpackOp = b.create<UnPackOp>(
loc, TypeRange{sliceDest.getType()}, tiledOperands, op->getAttrs());
if (isPerfectTilingCase)
return TilingResult{{tiledUnpackOp},
SmallVector<Value>(tiledUnpackOp->getResults())};
auto extractSlice =
b.create<ExtractSliceOp>(loc, tiledUnpackOp->getResult(0),
resultOffsetsFromDest, sizes, destStrides);
return TilingResult{{tiledUnpackOp}, {extractSlice.getResult()}};
}
LogicalResult
getResultTilePosition(Operation *op, OpBuilder &b, unsigned resultNumber,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
SmallVector<OpFoldResult> &resultOffsets,
SmallVector<OpFoldResult> &resultSizes) const {
resultOffsets = llvm::to_vector(offsets);
resultSizes = llvm::to_vector(sizes);
return success();
}
FailureOr<TilingResult>
generateResultTileValue(Operation *op, OpBuilder &b, unsigned resultNumber,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes) const {
FailureOr<TilingResult> tilingResult =
getTiledImplementation(op, b, offsets, sizes);
if (failed(tilingResult))
return failure();
return tilingResult.value();
}
};
} // namespace
FailureOr<TilingResult> tensor::bubbleUpPadSlice(OpBuilder &b,
tensor::PadOp padOp,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
bool generateZeroSliceGuard) {
// Only constant padding value supported.
Value padValue = padOp.getConstantPaddingValue();
if (!padValue)
return failure();
// Helper variables and functions for various arithmetic operations. These
// are used extensively for computing new offset/length and padding values.
Location loc = padOp->getLoc();
AffineExpr dim0, dim1;
bindDims(b.getContext(), dim0, dim1);
// Add two integers.
auto addMap = AffineMap::get(2, 0, {dim0 + dim1});
auto add = [&](OpFoldResult v1, OpFoldResult v2) {
return affine::makeComposedFoldedAffineApply(b, loc, addMap, {v1, v2});
};
// Subtract two integers.
auto subMap = AffineMap::get(2, 0, {dim0 - dim1});
auto sub = [&](OpFoldResult v1, OpFoldResult v2) {
return affine::makeComposedFoldedAffineApply(b, loc, subMap, {v1, v2});
};
// Take the minimum of two integers.
auto idMap = AffineMap::getMultiDimIdentityMap(2, b.getContext());
auto min = [&](OpFoldResult v1, OpFoldResult v2) {
return affine::makeComposedFoldedAffineMin(b, loc, idMap, {v1, v2});
};
// Take the maximum of two integers.
auto max = [&](OpFoldResult v1, OpFoldResult v2) {
return affine::makeComposedFoldedAffineMax(b, loc, idMap, {v1, v2});
};
// Zero index-typed integer.
OpFoldResult zero = b.getIndexAttr(0);
// Compute new offsets, lengths, low padding, high padding.
SmallVector<OpFoldResult> newOffsets, newLengths, newStrides;
SmallVector<OpFoldResult> newLows, newHighs;
// Set to true if the original data source is not read at all.
bool hasZeroLen = false;
// Same as hasZeroLen, but for dynamic dimension sizes. This condition
// is true if the original data source turns out to be unused at runtime.
Value dynHasZeroLenCond;
int64_t rank = padOp.getSourceType().getRank();
for (unsigned dim = 0; dim < rank; ++dim) {
auto low = padOp.getMixedLowPad()[dim];
bool hasLowPad = !isConstantIntValue(low, 0);
auto high = padOp.getMixedHighPad()[dim];
bool hasHighPad = !isConstantIntValue(high, 0);
auto offset = offsets[dim];
auto length = sizes[dim];
auto srcSize = tensor::getMixedSize(b, loc, padOp.getSource(), dim);
// The new amount of low padding is `low - offset`. Except for the case
// where none of the low padding is read. In that case, the new amount of
// low padding is zero.
//
// Optimization: If low = 0, then newLow = 0.
OpFoldResult newLow = hasLowPad ? max(zero, sub(low, offset)) : zero;
newLows.push_back(newLow);
// Start reading the data from position `offset - low`. Since the original
// read may have started in the low padding zone, this value could be
// negative. Therefore, start reading from:
//
// max(offset - low, 0)
//
// The original read could also have started in the high padding zone.
// In that case, set the offset to the end of source tensor. The new
// ExtractSliceOp length will be zero in that case. (Effectively reading
// no data from the source.)
//
// Optimization: If low = 0, then the formula can be simplified.
OpFoldResult newOffset = hasLowPad
? min(max(sub(offset, low), zero), srcSize)
: min(offset, srcSize);
newOffsets.push_back(newOffset);
// The original ExtractSliceOp was reading until position `offset +
// length`. Therefore, the corresponding position within the source tensor
// is:
//
// offset + length - low
//
// In case the original ExtractSliceOp stopped reading within the low
// padding zone, this value can be negative. In that case, the end
// position of the read should be zero. (Similar to newOffset.)
//
// The original read could also have stopped in the high padding zone.
// In that case, set the end positition of the read should be the end of
// the source tensor. (Similar to newOffset.)
//
// endLoc = min(max(offset - low + length, 0), srcSize)
//
// The new ExtractSliceOp length is `endLoc - newOffset`.
//
// Optimization: If low = 0, then the formula can be simplified.
OpFoldResult endLoc =
hasLowPad ? min(max(add(sub(offset, low), length), zero), srcSize)
: min(add(offset, length), srcSize);
OpFoldResult newLength = sub(endLoc, newOffset);
newLengths.push_back(newLength);
// Check if newLength is zero. In that case, no SubTensorOp should be
// executed.
if (isConstantIntValue(newLength, 0)) {
hasZeroLen = true;
} else if (!hasZeroLen) {
Value check = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq,
getValueOrCreateConstantIndexOp(b, loc, newLength),
getValueOrCreateConstantIndexOp(b, loc, zero));
dynHasZeroLenCond =
dynHasZeroLenCond
? b.create<arith::OrIOp>(loc, check, dynHasZeroLenCond)
: check;
}
// The amount of high padding is simply the number of elements remaining,
// so that the result has the same length as the original ExtractSliceOp.
// As an optimization, if the original high padding is zero, then the new
// high padding must also be zero.
OpFoldResult newHigh =
hasHighPad ? sub(sub(length, newLength), newLow) : zero;
newHighs.push_back(newHigh);
// Only unit stride supported.
newStrides.push_back(b.getIndexAttr(1));
}
// The shape of the result can be obtained from the sizes passed in.
SmallVector<Value> dynDims;
SmallVector<int64_t> shape;
dispatchIndexOpFoldResults(sizes, dynDims, shape);
RankedTensorType resultType =
RankedTensorType::get(shape, padOp.getResultType().getElementType());
// Insert cast to ensure that types match. (May be folded away.)
auto castResult = [&](Value val) -> Value {
if (resultType == val.getType())
return val;
return b.create<tensor::CastOp>(loc, resultType, val);
};
// In cases where the original data source is unused: Emit a GenerateOp and
// do not generate a SliceOp. (The result shape of the SliceOp would
// have a dimension of size 0, the semantics of which is unclear.)
auto createGenerateOp = [&]() {
// Create GenerateOp.
auto generateOp = b.create<tensor::GenerateOp>(
loc, resultType, dynDims,
[&](OpBuilder &builder, Location gLoc, ValueRange indices) {
builder.create<tensor::YieldOp>(gLoc, padValue);
});
return generateOp;
};
// Emit a SliceOp and a PadOp. Should not be used in cases where
// the result shape of the new SliceOp has a zero dimension.
auto createPadOfExtractSlice = [&]() {
// Create pad(extract_slice(x)).
Value newSliceOp = b.create<tensor::ExtractSliceOp>(
loc, padOp.getSource(), newOffsets, newLengths, newStrides);
auto newPadOp = b.create<PadOp>(
loc, Type(), newSliceOp, newLows, newHighs,
/*nofold=*/padOp.getNofold(),
getPrunedAttributeList(padOp, PadOp::getAttributeNames()));
// Copy region to new PadOp.
IRMapping bvm;
padOp.getRegion().cloneInto(&newPadOp.getRegion(), bvm);
// Cast result and return.
return newPadOp;
};
// Rewrite extract_slice(pad(x)) into a GenerateOp it is statically known that
// the original data source x is not used.
if (hasZeroLen) {
Operation *generateOp = createGenerateOp();
return TilingResult{{generateOp}, {castResult(generateOp->getResult(0))}};
}
// If there are dynamic dimensions: Generate an scf.if check to avoid
// creating SliceOps with result dimensions of size 0 at runtime.
if (generateZeroSliceGuard && dynHasZeroLenCond) {
Operation *thenOp;
Operation *elseOp;
auto result = b.create<scf::IfOp>(
loc, dynHasZeroLenCond,
/*thenBuilder=*/
[&](OpBuilder &b, Location loc) {
thenOp = createGenerateOp();
b.create<scf::YieldOp>(loc, castResult(thenOp->getResult(0)));
},
/*elseBuilder=*/
[&](OpBuilder &b, Location loc) {
elseOp = createPadOfExtractSlice();
b.create<scf::YieldOp>(loc, castResult(elseOp->getResult(0)));
});
return TilingResult{{elseOp}, SmallVector<Value>(result->getResults())};
}
Operation *newPadOp = createPadOfExtractSlice();
return TilingResult{{newPadOp}, {castResult(newPadOp->getResult(0))}};
}
void mlir::tensor::registerTilingInterfaceExternalModels(
DialectRegistry ®istry) {
registry.addExtension(+[](MLIRContext *ctx, TensorDialect *dialect) {
tensor::PadOp::attachInterface<PadOpTiling>(*ctx);
tensor::PackOp::attachInterface<PackOpTiling>(*ctx);
tensor::UnPackOp::attachInterface<UnPackOpTiling>(*ctx);
});
}
void mlir::tensor::registerTilingInterfaceExternalModelsForPackUnPackOps(
DialectRegistry ®istry) {
registry.addExtension(+[](MLIRContext *ctx, TensorDialect *dialect) {
tensor::PackOp::attachInterface<PackOpTiling>(*ctx);
tensor::UnPackOp::attachInterface<UnPackOpTiling>(*ctx);
});
}
|