1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
|
//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/IR/DstBufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
using namespace mlir::bufferization;
using namespace mlir::tensor;
namespace mlir {
namespace tensor {
namespace {
struct CastOpInterface
: public BufferizableOpInterface::ExternalModel<CastOpInterface,
tensor::CastOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {{op->getResult(0), BufferRelation::Equivalent}};
}
FailureOr<BaseMemRefType>
getBufferType(Operation *op, Value value, const BufferizationOptions &options,
const DenseMap<Value, BaseMemRefType> &fixedTypes) const {
auto castOp = cast<tensor::CastOp>(op);
auto maybeSrcBufferType =
bufferization::getBufferType(castOp.getSource(), options, fixedTypes);
if (failed(maybeSrcBufferType))
return failure();
Attribute memorySpace = maybeSrcBufferType->getMemorySpace();
// Note: `getMemRefTypeWithFullyDynamicLayout` returns an unranked memref
// type in case the input is an unranked tensor type.
// Case 1: Casting an unranked tensor
if (isa<UnrankedTensorType>(castOp.getSource().getType())) {
// When casting to a ranked tensor, we cannot infer any static offset or
// strides from the source. Assume fully dynamic.
return getMemRefTypeWithFullyDynamicLayout(castOp.getType(), memorySpace);
}
// Case 2: Casting to an unranked tensor type
if (isa<UnrankedTensorType>(castOp.getType())) {
return getMemRefTypeWithFullyDynamicLayout(castOp.getType(), memorySpace);
}
// Case 3: Ranked tensor -> ranked tensor. The offsets and strides do not
// change.
auto rankedResultType = cast<RankedTensorType>(castOp.getType());
return MemRefType::get(
rankedResultType.getShape(), rankedResultType.getElementType(),
llvm::cast<MemRefType>(*maybeSrcBufferType).getLayout(), memorySpace);
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto castOp = cast<tensor::CastOp>(op);
// The result buffer still has the old (pre-cast) type.
FailureOr<Value> resultBuffer =
getBuffer(rewriter, castOp.getSource(), options);
if (failed(resultBuffer))
return failure();
// Compute the new type.
auto resultMemRefType =
bufferization::getBufferType(castOp.getResult(), options);
if (failed(resultMemRefType))
return failure();
if (resultBuffer->getType() == *resultMemRefType) {
// This cast is a no-op.
replaceOpWithBufferizedValues(rewriter, op, *resultBuffer);
return success();
}
// Replace the op with a memref.cast.
assert(memref::CastOp::areCastCompatible(resultBuffer->getType(),
*resultMemRefType) &&
"CallOp::bufferize: cast incompatible");
replaceOpWithNewBufferizedOp<memref::CastOp>(
rewriter, op, *resultMemRefType, *resultBuffer);
return success();
}
};
/// Bufferization of tensor.collapse_shape. Replace with memref.collapse_shape.
struct CollapseShapeOpInterface
: public BufferizableOpInterface::ExternalModel<CollapseShapeOpInterface,
tensor::CollapseShapeOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
// TODO: CollapseShapeOp may allocate at runtime.
return {{op->getOpResult(0), BufferRelation::Equivalent}};
}
FailureOr<BaseMemRefType>
getBufferType(Operation *op, Value value, const BufferizationOptions &options,
const DenseMap<Value, BaseMemRefType> &fixedTypes) const {
auto collapseShapeOp = cast<tensor::CollapseShapeOp>(op);
auto maybeSrcBufferType = bufferization::getBufferType(
collapseShapeOp.getSrc(), options, fixedTypes);
if (failed(maybeSrcBufferType))
return failure();
auto srcBufferType = llvm::cast<MemRefType>(*maybeSrcBufferType);
bool canBeCollapsed = memref::CollapseShapeOp::isGuaranteedCollapsible(
srcBufferType, collapseShapeOp.getReassociationIndices());
if (!canBeCollapsed) {
// If dims cannot be collapsed, this op bufferizes to a new allocation.
RankedTensorType tensorResultType = collapseShapeOp.getResultType();
return bufferization::getMemRefTypeWithStaticIdentityLayout(
tensorResultType, srcBufferType.getMemorySpace());
}
return memref::CollapseShapeOp::computeCollapsedType(
srcBufferType, collapseShapeOp.getReassociationIndices());
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto collapseShapeOp = cast<tensor::CollapseShapeOp>(op);
RankedTensorType tensorResultType = collapseShapeOp.getResultType();
FailureOr<Value> maybeBuffer =
getBuffer(rewriter, collapseShapeOp.getSrc(), options);
if (failed(maybeBuffer))
return failure();
Value buffer = *maybeBuffer;
auto bufferType = cast<MemRefType>(buffer.getType());
if (tensorResultType.getRank() == 0) {
// 0-d collapses must go through a different op builder.
MemRefType resultType;
if (bufferType.getLayout().isIdentity()) {
// Standard layout: result type has no offset.
MemRefLayoutAttrInterface layout;
resultType = MemRefType::get({}, tensorResultType.getElementType(),
layout, bufferType.getMemorySpace());
} else {
// Source memref has a layout map: result type has the same offset as
// the source type.
SmallVector<int64_t> strides;
int64_t offset;
if (failed(getStridesAndOffset(bufferType, strides, offset)))
return failure();
resultType = MemRefType::get(
{}, tensorResultType.getElementType(),
StridedLayoutAttr::get(op->getContext(), offset, {}),
bufferType.getMemorySpace());
}
replaceOpWithNewBufferizedOp<memref::CollapseShapeOp>(
rewriter, op, resultType, buffer, collapseShapeOp.getReassociation());
return success();
}
// If the dims are not collapsible (due to an incompatible source layout
// map), force an out-of-place bufferization, i.e., a buffer copy. This
// newly allocated buffer will have no layout map and thus be collapsible.
bool canBeCollapsed = memref::CollapseShapeOp::isGuaranteedCollapsible(
bufferType, collapseShapeOp.getReassociationIndices());
if (!canBeCollapsed) {
// TODO: Create alloc_tensor ops during TensorCopyInsertion.
AnalysisState analysisState(options);
FailureOr<Value> tensorAlloc = allocateTensorForShapedValue(
rewriter, op->getLoc(), collapseShapeOp.getSrc(),
analysisState.isTensorYielded(collapseShapeOp.getResult()), options);
if (failed(tensorAlloc))
return failure();
auto memrefType =
MemRefType::get(collapseShapeOp.getSrcType().getShape(),
collapseShapeOp.getSrcType().getElementType(),
AffineMap(), bufferType.getMemorySpace());
buffer = rewriter.create<bufferization::ToMemrefOp>(
op->getLoc(), memrefType, *tensorAlloc);
}
// Result type is inferred by the builder.
replaceOpWithNewBufferizedOp<memref::CollapseShapeOp>(
rewriter, op, buffer, collapseShapeOp.getReassociationIndices());
return success();
}
};
/// Bufferization of tensor.dim. Replace with memref.dim.
struct DimOpInterface
: public BufferizableOpInterface::ExternalModel<DimOpInterface,
tensor::DimOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
// The op reads the tensor's metadata but not its contents.
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto dimOp = cast<tensor::DimOp>(op);
FailureOr<Value> v = getBuffer(rewriter, dimOp.getSource(), options);
if (failed(v))
return failure();
replaceOpWithNewBufferizedOp<memref::DimOp>(rewriter, op, *v,
dimOp.getIndex());
return success();
}
};
/// Bufferization of tensor.empty. This op does not bufferize, but we need an
/// interface implementation, so that the result of this op is considered
/// "writable" (default impl. of `isWritable`). Results of ops that do not
/// implement `BufferizableOpInterface` are not writable.
struct EmptyOpInterface
: public BufferizableOpInterface::ExternalModel<EmptyOpInterface,
tensor::EmptyOp> {
bool resultBufferizesToMemoryWrite(Operation *op, OpResult opResult,
const AnalysisState &state) const {
// The returned tensor does not have specified contents.
return false;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
if (op->getUses().empty()) {
rewriter.eraseOp(op);
return success();
}
// tensor.empty ops are used to indicate the shape of a tensor. They have
// no defined contents and cannot be bufferized. However, they can be
// converted to bufferization.alloc_tensor ops, which then bufferize to an
// allocation (--empty-tensor-to-alloc-tensor).
return op->emitOpError("cannot be bufferized, but can be converted to "
"bufferization.alloc_tensor");
}
};
/// Bufferization of tensor.expand_shape. Replace with memref.expand_shape.
struct ExpandShapeOpInterface
: public BufferizableOpInterface::ExternalModel<ExpandShapeOpInterface,
tensor::ExpandShapeOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {{op->getOpResult(0), BufferRelation::Equivalent}};
}
FailureOr<BaseMemRefType>
getBufferType(Operation *op, Value value, const BufferizationOptions &options,
const DenseMap<Value, BaseMemRefType> &fixedTypes) const {
auto expandShapeOp = cast<tensor::ExpandShapeOp>(op);
auto maybeSrcBufferType = bufferization::getBufferType(
expandShapeOp.getSrc(), options, fixedTypes);
if (failed(maybeSrcBufferType))
return failure();
auto srcBufferType = llvm::cast<MemRefType>(*maybeSrcBufferType);
auto maybeResultType = memref::ExpandShapeOp::computeExpandedType(
srcBufferType, expandShapeOp.getResultType().getShape(),
expandShapeOp.getReassociationIndices());
if (failed(maybeResultType))
return failure();
return *maybeResultType;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto expandShapeOp = cast<tensor::ExpandShapeOp>(op);
auto tensorResultType = expandShapeOp.getResultType();
FailureOr<Value> buffer =
getBuffer(rewriter, expandShapeOp.getSrc(), options);
if (failed(buffer))
return failure();
// Memref result type is inferred by the builder based on reassociation
// indices and result shape.
replaceOpWithNewBufferizedOp<memref::ExpandShapeOp>(
rewriter, op, tensorResultType.getShape(), *buffer,
expandShapeOp.getReassociationIndices());
return success();
}
};
/// Bufferization of tensor.extract_slice. Replace with memref.subview.
struct ExtractSliceOpInterface
: public BufferizableOpInterface::ExternalModel<ExtractSliceOpInterface,
tensor::ExtractSliceOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {{op->getOpResult(0), BufferRelation::Unknown}};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto extractSliceOp = cast<tensor::ExtractSliceOp>(op);
SmallVector<OpFoldResult> mixedOffsets = extractSliceOp.getMixedOffsets();
SmallVector<OpFoldResult> mixedSizes = extractSliceOp.getMixedSizes();
SmallVector<OpFoldResult> mixedStrides = extractSliceOp.getMixedStrides();
Location loc = extractSliceOp.getLoc();
// Get source buffer.
FailureOr<Value> srcMemref =
getBuffer(rewriter, extractSliceOp.getSource(), options);
if (failed(srcMemref))
return failure();
// Take a subview of the source buffer.
auto resultMemrefType =
bufferization::getBufferType(extractSliceOp.getResult(), options);
if (failed(resultMemrefType))
return failure();
Value subView = rewriter.create<memref::SubViewOp>(
loc, llvm::cast<MemRefType>(*resultMemrefType), *srcMemref, mixedOffsets,
mixedSizes, mixedStrides);
replaceOpWithBufferizedValues(rewriter, op, subView);
return success();
}
FailureOr<BaseMemRefType>
getBufferType(Operation *op, Value value, const BufferizationOptions &options,
const DenseMap<Value, BaseMemRefType> &fixedTypes) const {
auto extractSliceOp = cast<tensor::ExtractSliceOp>(op);
assert(value == extractSliceOp.getResult() && "invalid value");
auto srcMemrefType = bufferization::getBufferType(
extractSliceOp.getSource(), options, fixedTypes);
if (failed(srcMemrefType))
return failure();
SmallVector<OpFoldResult> mixedOffsets = extractSliceOp.getMixedOffsets();
SmallVector<OpFoldResult> mixedSizes = extractSliceOp.getMixedSizes();
SmallVector<OpFoldResult> mixedStrides = extractSliceOp.getMixedStrides();
return cast<BaseMemRefType>(memref::SubViewOp::inferRankReducedResultType(
extractSliceOp.getType().getShape(), llvm::cast<MemRefType>(*srcMemrefType),
mixedOffsets, mixedSizes, mixedStrides));
}
};
/// Bufferization of tensor.extract. Replace with memref.load.
struct ExtractOpInterface
: public BufferizableOpInterface::ExternalModel<ExtractOpInterface,
tensor::ExtractOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return true;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto extractOp = cast<tensor::ExtractOp>(op);
FailureOr<Value> srcMemref =
getBuffer(rewriter, extractOp.getTensor(), options);
if (failed(srcMemref))
return failure();
replaceOpWithNewBufferizedOp<memref::LoadOp>(rewriter, op, *srcMemref,
extractOp.getIndices());
return success();
}
};
// Implements backtracking to traverse indices of the output buffer while
// iterating over op.elements().
static void createStores(RewriterBase &rewriter, Location loc, int dim,
Value buffer, ArrayRef<int64_t> shape,
ArrayRef<Value> constants,
OperandRange::iterator &elementIt,
SmallVectorImpl<Value> &indices) {
if (dim == static_cast<int>(shape.size()) - 1) {
for (int i = 0; i < shape.back(); ++i) {
indices.back() = constants[i];
rewriter.create<memref::StoreOp>(loc, *elementIt, buffer, indices);
++elementIt;
}
return;
}
for (int i = 0; i < shape[dim]; ++i) {
indices[dim] = constants[i];
createStores(rewriter, loc, dim + 1, buffer, shape, constants, elementIt,
indices);
}
}
/// Bufferization of tensor.from_elements.
struct FromElementsOpInterface
: public BufferizableOpInterface::ExternalModel<FromElementsOpInterface,
tensor::FromElementsOp> {
bool bufferizesToAllocation(Operation *op, OpResult opResult) const {
return true;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto fromElementsOp = cast<tensor::FromElementsOp>(op);
// Should the buffer be deallocated?
bool dealloc = shouldDeallocateOpResult(
cast<OpResult>(fromElementsOp.getResult()), options);
// TODO: Implement memory space for this op.
if (options.defaultMemorySpace != Attribute())
return op->emitError("memory space not implemented yet");
// Allocate a buffer for the result.
Location loc = op->getLoc();
auto tensorType = cast<RankedTensorType>(fromElementsOp.getType());
auto shape = tensorType.getShape();
// TODO: Create alloc_tensor ops during TensorCopyInsertion.
FailureOr<Value> tensorAlloc =
allocateTensorForShapedValue(rewriter, loc, fromElementsOp.getResult(),
/*escape=*/!dealloc, options,
/*copy=*/false);
if (failed(tensorAlloc))
return failure();
auto memrefType =
MemRefType::get(tensorType.getShape(), tensorType.getElementType());
Value buffer = rewriter.create<bufferization::ToMemrefOp>(
op->getLoc(), memrefType, *tensorAlloc);
// Case: tensor<0xelem_type>.
if (fromElementsOp.getElements().empty()) {
replaceOpWithBufferizedValues(rewriter, op, buffer);
return success();
}
// Case: tensor<elem_type>.
if (shape.empty()) {
rewriter.create<memref::StoreOp>(
loc, fromElementsOp.getElements().front(), buffer);
replaceOpWithBufferizedValues(rewriter, op, buffer);
return success();
}
// Create constants for the range of possible indices [0, max{shape_i}).
auto maxDim = *std::max_element(shape.begin(), shape.end());
SmallVector<Value, 2> constants;
constants.reserve(maxDim);
for (int i = 0; i < maxDim; ++i)
constants.push_back(rewriter.create<arith::ConstantIndexOp>(loc, i));
// Traverse all `elements` and create `memref.store` ops.
auto elementIt = fromElementsOp.getElements().begin();
SmallVector<Value, 2> indices(tensorType.getRank(), constants[0]);
createStores(rewriter, loc, /*dim=*/0, buffer, shape, constants, elementIt,
indices);
replaceOpWithBufferizedValues(rewriter, op, buffer);
return success();
}
};
/// Lower the body of a tensor.generate like op (one index-typed bbArg per dim).
/// Such ops are lowered to linalg.map with the given tensor as a destination.
///
/// Example:
/// ```
/// %r = tensor.generate %x, %y {
/// ^bb0(%arg0: index, %arg1: index):
/// %0 = "some_op"(%arg0, %arg1) : (index, index) -> (index)
/// tensor.yield %0 : index
/// } : tensor<?x?xindex>
/// ```
///
/// Is lowered to:
/// ```
/// linalg.map ins() outs(%dest) {
/// %d0 = linalg.index 0 : index
/// %d1 = linalg.index 1 : index
/// %0 = "some_op"(%d0, %d1) : (index, index) -> (index)
/// linalg.yield %0 : index
/// }
/// ```
static Value lowerGenerateLikeOpBody(RewriterBase &rewriter, Location loc,
Value tensorDestination,
ValueRange dynamicSizes,
Region &generateBody) {
assert(generateBody.hasOneBlock() && "expected body with single block");
auto tensorType = cast<RankedTensorType>(tensorDestination.getType());
assert(generateBody.getNumArguments() == tensorType.getRank() &&
"rank mismatch");
// Create linalg::MapOp.
OpBuilder::InsertionGuard g(rewriter);
auto linalgOp =
rewriter.create<linalg::MapOp>(loc, tensorType, /*inputs=*/ValueRange(),
/*init=*/tensorDestination);
Block &linalgBody = linalgOp.getMapper().emplaceBlock();
// Create linalg::IndexOps.
rewriter.setInsertionPointToStart(&linalgBody);
SmallVector<Value> indices;
for (int64_t dim = 0; dim < tensorType.getRank(); ++dim)
indices.push_back(rewriter.create<linalg::IndexOp>(loc, dim));
// Move over body.
rewriter.mergeBlocks(&generateBody.front(), &linalgBody, indices);
auto yieldOp = cast<tensor::YieldOp>(linalgBody.getTerminator());
rewriter.replaceOpWithNewOp<linalg::YieldOp>(yieldOp, yieldOp.getValue());
return linalgOp.getResult()[0];
}
/// Bufferization of tensor.generate.
struct GenerateOpInterface
: public BufferizableOpInterface::ExternalModel<GenerateOpInterface,
tensor::GenerateOp> {
bool bufferizesToAllocation(Operation *op, OpResult opResult) const {
return true;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto generateOp = cast<tensor::GenerateOp>(op);
// Should the buffer be deallocated?
bool dealloc = shouldDeallocateOpResult(
cast<OpResult>(generateOp.getResult()), options);
// TODO: Implement memory space for this op.
if (options.defaultMemorySpace != Attribute())
return op->emitError("memory space not implemented yet");
// Allocate memory.
Location loc = op->getLoc();
FailureOr<Value> tensorAlloc =
allocateTensorForShapedValue(rewriter, loc, generateOp.getResult(),
/*escape=*/!dealloc, options,
/*copy=*/false);
if (failed(tensorAlloc))
return failure();
Value result = lowerGenerateLikeOpBody(rewriter, loc, *tensorAlloc,
generateOp.getDynamicExtents(),
generateOp.getBody());
rewriter.replaceOp(generateOp, result);
return success();
}
};
/// Bufferization of tensor.insert. Replace with memref.store.
///
/// Note: DstBufferizableOpInterfaceExternalModel provides many default method
/// implementations for DestinationStyle ops.
struct InsertOpInterface
: public DstBufferizableOpInterfaceExternalModel<InsertOpInterface,
tensor::InsertOp> {
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto insertOp = cast<tensor::InsertOp>(op);
FailureOr<Value> destMemref =
getBuffer(rewriter, insertOp.getDest(), options);
if (failed(destMemref))
return failure();
rewriter.create<memref::StoreOp>(insertOp.getLoc(), insertOp.getScalar(),
*destMemref, insertOp.getIndices());
replaceOpWithBufferizedValues(rewriter, op, *destMemref);
return success();
}
};
/// Return true if the (ExtractSliceOp, InsertSliceOp) pair match (i.e.
/// equivalent operand / result and same offset/sizes/strides specification).
template <typename OpTy>
static bool areEquivalentSlices(const AnalysisState &state,
ExtractSliceOp extractSliceOp,
OpTy insertSliceOp) {
if (!extractSliceOp || !insertSliceOp)
return false;
if (extractSliceOp != insertSliceOp &&
!state.areEquivalentBufferizedValues(extractSliceOp.getSource(),
insertSliceOp.getDest()))
return false;
if (!sameOffsetsSizesAndStrides(extractSliceOp, insertSliceOp,
isEqualConstantIntOrValue))
return false;
return true;
}
/// Return true if `value` is originating from an ExtractSliceOp that matches
/// the given InsertSliceOp.
template <typename OpTy>
static bool matchesInsertDestination(const AnalysisState &state, Value value,
OpTy insertSliceOp) {
// Look for matching slices.
auto matchesSlice = [&](Value val) {
if (auto extractSliceOp = val.getDefiningOp<ExtractSliceOp>())
if (areEquivalentSlices(state, extractSliceOp, insertSliceOp))
return true;
return false;
};
return static_cast<bool>(llvm::all_of(
state.findValueInReverseUseDefChain(value, matchesSlice), matchesSlice));
}
template <typename OpTy>
static bool isNotConflictingInsertSliceLikeOp(Operation *op, OpOperand *uRead,
OpOperand *uConflictingWrite,
const AnalysisState &state) {
Operation *readingOp = uRead->getOwner();
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
// Special rules for matching ExtractSliceOp/InsertSliceOp pairs. If
// uRead is an InsertSliceOp...
if (auto insertSliceOp = dyn_cast<OpTy>(readingOp)) {
// As an example, consider the following IR.
//
// %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] }
// %1 = linalg.fill %cst, %0 {inplace= [true] }
// %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1]
// {inplace= [true] }
// TODO: Use insertSliceOp.getDestOpOperand etc. when available.
if (uRead == &insertSliceOp->getOpOperand(1) /*dest*/ &&
matchesInsertDestination(state, uConflictingWrite->get(),
insertSliceOp))
// Case 1: The main insight is that InsertSliceOp reads only part of
// the destination tensor. The overwritten area is not read. If
// uConflictingWrite writes into exactly the memory location that is
// being read by uRead, this is not a conflict.
//
// In the above example:
// uRead = OpOperand 1 (%t) of tensor.insert_slice
// uConflictingWrite = OpOperand 1 (%0) of linalg.fill
//
// The read of %t does not conflict with the write of the FillOp
// (same aliases!) because the area that the FillOp operates on is
// exactly the one that is *not* read via %t.
return true;
if (uRead == &insertSliceOp->getOpOperand(0) /*source*/ &&
uConflictingWrite == &insertSliceOp->getOpOperand(1) /*dest*/ &&
matchesInsertDestination(state, uRead->get(), insertSliceOp))
// Case 2: The read of the source tensor and the write to the dest
// tensor via an InsertSliceOp is not a conflict if the read is
// reading exactly that part of an equivalent tensor that the
// InsertSliceOp is writing.
//
// In the above example:
// uRead = OpOperand 0 (%1) of tensor.insert_slice
// uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice
return true;
}
// If uConflictingWrite is an InsertSliceOp...
if (auto insertSliceOp = dyn_cast<OpTy>(conflictingWritingOp))
// As an example, consider the following IR.
//
// %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] }
// %1 = linalg.fill %cst, %0 {inplace= [true] }
// %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1]
// {inplace= [true] }
// %3 = vector.transfer_read %1, %cst
//
// In the above example:
// uRead = OpOperand 0 (%1) of vector.transfer_read
// uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice
// definition = %1
//
// This is not a conflict because the InsertSliceOp overwrites the
// memory segment of %1 with the exact same data. (Effectively, there
// is no memory write here.)
if (uConflictingWrite == &insertSliceOp->getOpOperand(1) /*dest*/ &&
state.areEquivalentBufferizedValues(uRead->get(),
insertSliceOp.getSource()) &&
matchesInsertDestination(state, insertSliceOp.getSource(),
insertSliceOp))
return true;
return false;
}
/// Bufferization of tensor.insert_slice. Replace with a memory copy. Under
/// certain circumstances, this op can also be a no-op.
///
/// Note: DstBufferizableOpInterfaceExternalModel provides many default method
/// implementations for DestinationStyle ops.
struct InsertSliceOpInterface
: public DstBufferizableOpInterfaceExternalModel<InsertSliceOpInterface,
tensor::InsertSliceOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
auto insertSliceOp = cast<tensor::InsertSliceOp>(op);
RankedTensorType destType = insertSliceOp.getDestType();
// The source is always read.
if (&opOperand == &op->getOpOperand(0) /*src*/)
return true;
// For the destination, it depends...
assert(&opOperand == &insertSliceOp->getOpOperand(1) && "expected dest");
// Dest is not read if it is entirely overwritten. E.g.:
// tensor.insert_slice %a into %t[0][10][1] : ... into tensor<10xf32>
bool allOffsetsZero =
llvm::all_of(insertSliceOp.getMixedOffsets(), [](OpFoldResult ofr) {
return isConstantIntValue(ofr, 0);
});
bool sizesMatchDestSizes = llvm::all_of(
llvm::enumerate(insertSliceOp.getMixedSizes()), [&](const auto &it) {
return getConstantIntValue(it.value()) ==
destType.getDimSize(it.index());
});
bool allStridesOne =
llvm::all_of(insertSliceOp.getMixedStrides(), [](OpFoldResult ofr) {
return isConstantIntValue(ofr, 1);
});
return !(allOffsetsZero && sizesMatchDestSizes && allStridesOne);
}
bool isNotConflicting(Operation *op, OpOperand *uRead,
OpOperand *uConflictingWrite,
const AnalysisState &state) const {
return isNotConflictingInsertSliceLikeOp<tensor::InsertSliceOp>(
op, uRead, uConflictingWrite, state);
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
// insert_slice ops arise from tiling and bufferizing them out-of-place is
// generally a deal breaker. When used with loops, this ends up cloning the
// whole tensor on every single iteration and is a symptom of a
// catastrophically bad scheduling decision.
// TODO: be very loud about it or even consider failing the pass.
auto insertSliceOp = cast<tensor::InsertSliceOp>(op);
SmallVector<OpFoldResult> mixedOffsets = insertSliceOp.getMixedOffsets();
SmallVector<OpFoldResult> mixedSizes = insertSliceOp.getMixedSizes();
SmallVector<OpFoldResult> mixedStrides = insertSliceOp.getMixedStrides();
Location loc = insertSliceOp.getLoc();
// Get destination buffer.
FailureOr<Value> dstMemref =
getBuffer(rewriter, insertSliceOp.getDest(), options);
if (failed(dstMemref))
return failure();
// Take a subview of the destination buffer.
auto dstMemrefType = cast<MemRefType>(dstMemref->getType());
auto subviewMemRefType =
cast<MemRefType>(memref::SubViewOp::inferRankReducedResultType(
insertSliceOp.getSourceType().getShape(), dstMemrefType,
mixedOffsets, mixedSizes, mixedStrides));
Value subView = rewriter.create<memref::SubViewOp>(
loc, subviewMemRefType, *dstMemref, mixedOffsets, mixedSizes,
mixedStrides);
// Copy tensor. If this tensor.insert_slice has a matching
// tensor.extract_slice, the copy operation will eventually fold away.
FailureOr<Value> srcMemref =
getBuffer(rewriter, insertSliceOp.getSource(), options);
if (failed(srcMemref))
return failure();
if (failed(options.createMemCpy(rewriter, loc, *srcMemref, subView)))
return failure();
replaceOpWithBufferizedValues(rewriter, op, *dstMemref);
return success();
}
};
/// Bufferization of tensor.pad. Replace with bufferization.alloc_tensor +
/// linalg.map + insert_slice.
/// For best performance, vectorize before bufferization (better performance in
/// case of padding with a constant).
struct PadOpInterface
: public BufferizableOpInterface::ExternalModel<PadOpInterface,
tensor::PadOp> {
bool bufferizesToAllocation(Operation *op, OpResult opResult) const {
return true;
}
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return true;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {};
}
FailureOr<BaseMemRefType>
getBufferType(Operation *op, Value value, const BufferizationOptions &options,
const DenseMap<Value, BaseMemRefType> &fixedTypes) const {
// Infer memory space from the source tensor.
auto padOp = cast<tensor::PadOp>(op);
auto maybeSrcBufferType =
bufferization::getBufferType(padOp.getSource(), options, fixedTypes);
if (failed(maybeSrcBufferType))
return failure();
MemRefLayoutAttrInterface layout;
return MemRefType::get(padOp.getResultType().getShape(),
padOp.getResultType().getElementType(), layout,
maybeSrcBufferType->getMemorySpace());
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto padOp = cast<tensor::PadOp>(op);
Location loc = padOp.getLoc();
RankedTensorType resultType = padOp.getResultType();
RankedTensorType srcType = padOp.getSourceType();
auto toValue = [&](OpFoldResult ofr) {
if (ofr.is<Value>())
return ofr.get<Value>();
return rewriter
.create<arith::ConstantIndexOp>(loc, *getConstantIntValue(ofr))
.getResult();
};
// Compute dynamic result dimensions.
SmallVector<OpFoldResult> mixedLowPad = padOp.getMixedLowPad();
SmallVector<OpFoldResult> mixedHighPad = padOp.getMixedHighPad();
SmallVector<Value> dynamicSizes;
for (int64_t i = 0; i < resultType.getRank(); ++i) {
if (!resultType.isDynamicDim(i))
continue;
Value srcDim = rewriter.create<tensor::DimOp>(loc, padOp.getSource(), i);
Value lowPad = toValue(mixedLowPad[i]);
Value highPad = toValue(mixedHighPad[i]);
AffineExpr s0, s1, s2;
bindSymbols(op->getContext(), s0, s1, s2);
AffineExpr sumExpr = s0 + s1 + s2;
Value sum = rewriter.create<affine::AffineApplyOp>(
loc, sumExpr, ValueRange{srcDim, lowPad, highPad});
dynamicSizes.push_back(sum);
}
// Should the buffer be deallocated?
bool dealloc =
shouldDeallocateOpResult(cast<OpResult>(padOp.getResult()), options);
// Allocate a buffer for the padded result.
FailureOr<Value> tensorAlloc =
allocateTensorForShapedValue(rewriter, loc, padOp.getResult(),
/*escape=*/!dealloc, options,
/*copy=*/false);
if (failed(tensorAlloc))
return failure();
// tensor::PadOp is like tensor::GenerateOp: The only difference is that
// only a part of the generated tensor is needed. For simplicity, we reuse
// the same functionality here.
Value filledBuffer = lowerGenerateLikeOpBody(
rewriter, loc, *tensorAlloc, dynamicSizes, padOp.getBodyRegion());
// Create tensor::InsertSliceOp.
SmallVector<OpFoldResult> sliceSizes =
getMixedSizes(rewriter, loc, padOp.getSource());
SmallVector<OpFoldResult> sliceStrides(srcType.getRank(),
rewriter.getIndexAttr(1));
rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
padOp, padOp.getSource(), filledBuffer,
/*offsets=*/padOp.getMixedLowPad(), sliceSizes, sliceStrides);
return success();
}
};
/// Bufferization of tensor.rank. Replace with memref.rank.
struct RankOpInterface
: public BufferizableOpInterface::ExternalModel<RankOpInterface,
tensor::RankOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
// The op reads the tensor's metadata but not its contents.
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto rankOp = cast<tensor::RankOp>(op);
FailureOr<Value> v = getBuffer(rewriter, rankOp.getTensor(), options);
if (failed(v))
return failure();
replaceOpWithNewBufferizedOp<memref::RankOp>(rewriter, op, rankOp.getType(),
*v);
return success();
}
};
/// Bufferization of tensor.reshape. Replace with memref.reshape.
struct ReshapeOpInterface
: public BufferizableOpInterface::ExternalModel<ReshapeOpInterface,
tensor::ReshapeOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
if (&opOperand == &op->getOpOperand(1) /* shape */)
return true;
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {{op->getOpResult(0), BufferRelation::Equivalent}};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto reshapeOp = cast<tensor::ReshapeOp>(op);
FailureOr<Value> srcBuffer =
getBuffer(rewriter, reshapeOp.getSource(), options);
FailureOr<Value> shapeBuffer =
getBuffer(rewriter, reshapeOp.getShape(), options);
if (failed(srcBuffer) || failed(shapeBuffer))
return failure();
auto maybeResultMemRefType =
bufferization::getBufferType(reshapeOp.getResult(), options);
if (failed(maybeResultMemRefType))
return failure();
replaceOpWithNewBufferizedOp<memref::ReshapeOp>(
rewriter, op, maybeResultMemRefType.value(), *srcBuffer, *shapeBuffer);
return success();
}
FailureOr<BaseMemRefType>
getBufferType(Operation *op, Value value, const BufferizationOptions &options,
const DenseMap<Value, BaseMemRefType> &fixedTypes) const {
auto reshapeOp = cast<tensor::ReshapeOp>(op);
assert(value == reshapeOp.getResult() && "unexpected value provided");
auto maybeSourceBufferType = bufferization::getBufferType(
reshapeOp.getSource(), options, fixedTypes);
if (failed(maybeSourceBufferType))
return failure();
return getMemRefTypeWithStaticIdentityLayout(
reshapeOp.getResult().getType(),
cast<BaseMemRefType>(maybeSourceBufferType.value()).getMemorySpace());
}
};
/// Analysis of ParallelInsertSliceOp.
struct ParallelInsertSliceOpInterface
: public BufferizableOpInterface::ExternalModel<
ParallelInsertSliceOpInterface, ParallelInsertSliceOp> {
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {};
}
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return true;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return &opOperand == &op->getOpOperand(1) /*dest*/;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
OpBuilder::InsertionGuard g(rewriter);
auto parallelInsertSliceOp = cast<ParallelInsertSliceOp>(op);
ParallelCombiningOpInterface parallelCombiningParent =
parallelInsertSliceOp.getParallelCombiningParent();
// Bufferize the op outside of the parallel combining terminator.
rewriter.setInsertionPoint(parallelCombiningParent);
// Get source and destination buffers.
FailureOr<Value> destBuffer =
getBuffer(rewriter, parallelInsertSliceOp.getDest(), options);
if (failed(destBuffer))
return failure();
FailureOr<Value> srcBuffer =
getBuffer(rewriter, parallelInsertSliceOp.getSource(), options);
if (failed(srcBuffer))
return failure();
// Take a subview of the destination buffer.
auto destBufferType = cast<MemRefType>(destBuffer->getType());
auto subviewMemRefType =
cast<MemRefType>(memref::SubViewOp::inferRankReducedResultType(
parallelInsertSliceOp.getSourceType().getShape(), destBufferType,
parallelInsertSliceOp.getMixedOffsets(),
parallelInsertSliceOp.getMixedSizes(),
parallelInsertSliceOp.getMixedStrides()));
Value subview = rewriter.create<memref::SubViewOp>(
parallelInsertSliceOp.getLoc(), subviewMemRefType, *destBuffer,
parallelInsertSliceOp.getMixedOffsets(),
parallelInsertSliceOp.getMixedSizes(),
parallelInsertSliceOp.getMixedStrides());
// This memcpy will fold away if everything bufferizes in-place.
if (failed(options.createMemCpy(rewriter, parallelInsertSliceOp.getLoc(),
*srcBuffer, subview)))
return failure();
// In case the source was allocated in the same block, make sure that the
// deallocation op (if any) appears after the memcpy. By default, deallocs
// are placed before the terminator, but this does not work for ForallOp
// because the terminator does more than just yielding a value.
//
// Note: This is not a problem for the destination buffer because these are
// assumed to always bufferize in-place.
for (Operation *user : srcBuffer->getUsers()) {
if (hasEffect<MemoryEffects::Free>(user)) {
if (user->getBlock() == parallelCombiningParent->getBlock())
user->moveBefore(user->getBlock()->getTerminator());
break;
}
}
// Delete the op.
rewriter.eraseOp(op);
return success();
}
bool isNotConflicting(Operation *op, OpOperand *uRead,
OpOperand *uConflictingWrite,
const AnalysisState &state) const {
return isNotConflictingInsertSliceLikeOp<tensor::ParallelInsertSliceOp>(
op, uRead, uConflictingWrite, state);
}
};
/// Bufferization of tensor.splat. Bufferizes to a new allocation that is filled
/// with a linalg.map. Similar to tensor.generate.
struct SplatOpInterface
: public BufferizableOpInterface::ExternalModel<SplatOpInterface,
tensor::SplatOp> {
bool bufferizesToAllocation(Operation *op, OpResult opResult) const {
return true;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
OpBuilder::InsertionGuard g(rewriter);
auto splatOp = cast<tensor::SplatOp>(op);
// Should the buffer be deallocated?
bool dealloc =
shouldDeallocateOpResult(cast<OpResult>(splatOp.getResult()), options);
// TODO: Implement memory space for this op.
if (options.defaultMemorySpace != Attribute())
return op->emitError("memory space not implemented yet");
// Allocate memory.
Location loc = op->getLoc();
FailureOr<Value> tensorAlloc =
allocateTensorForShapedValue(rewriter, loc, splatOp.getResult(),
/*escape=*/!dealloc, options,
/*copy=*/false);
if (failed(tensorAlloc))
return failure();
// Create linalg::MapOp.
auto tensorType = cast<RankedTensorType>(tensorAlloc->getType());
auto linalgOp =
rewriter.create<linalg::MapOp>(loc, tensorType, /*inputs=*/ValueRange(),
/*init=*/*tensorAlloc);
Block &linalgBody = linalgOp.getMapper().emplaceBlock();
// Create linalg::IndexOps.
rewriter.setInsertionPointToStart(&linalgBody);
rewriter.create<linalg::YieldOp>(loc, splatOp.getInput());
rewriter.replaceOp(splatOp, linalgOp.getResult()[0]);
return success();
}
};
} // namespace
} // namespace tensor
} // namespace mlir
void mlir::tensor::registerBufferizableOpInterfaceExternalModels(
DialectRegistry ®istry) {
registry.addExtension(+[](MLIRContext *ctx, tensor::TensorDialect *dialect) {
CastOp::attachInterface<CastOpInterface>(*ctx);
CollapseShapeOp::attachInterface<CollapseShapeOpInterface>(*ctx);
DimOp::attachInterface<DimOpInterface>(*ctx);
EmptyOp::attachInterface<EmptyOpInterface>(*ctx);
ExpandShapeOp::attachInterface<ExpandShapeOpInterface>(*ctx);
ExtractSliceOp::attachInterface<ExtractSliceOpInterface>(*ctx);
ExtractOp::attachInterface<ExtractOpInterface>(*ctx);
FromElementsOp::attachInterface<FromElementsOpInterface>(*ctx);
GenerateOp::attachInterface<GenerateOpInterface>(*ctx);
InsertOp::attachInterface<InsertOpInterface>(*ctx);
InsertSliceOp::attachInterface<InsertSliceOpInterface>(*ctx);
PadOp::attachInterface<PadOpInterface>(*ctx);
ParallelInsertSliceOp::attachInterface<ParallelInsertSliceOpInterface>(
*ctx);
RankOp::attachInterface<RankOpInterface>(*ctx);
ReshapeOp::attachInterface<ReshapeOpInterface>(*ctx);
SplatOp::attachInterface<SplatOpInterface>(*ctx);
// Load additional dialects of which ops may get created.
ctx->loadDialect<arith::ArithDialect, linalg::LinalgDialect>();
});
}
|