File: EmptyOpPatterns.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (104 lines) | stat: -rw-r--r-- 4,069 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
//===- EmptyOpPatterns.cpp - Patterns related to tensor.empty folding ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"

using namespace mlir;
using namespace mlir::tensor;

namespace {

template <typename ReshapeOp>
struct FoldEmptyTensorWithReshapeOp : public OpRewritePattern<ReshapeOp> {
  FoldEmptyTensorWithReshapeOp(MLIRContext *ctx, PatternBenefit benefit = 1,
                               bool foldSingleUseOnly = false)
      : OpRewritePattern<ReshapeOp>(ctx, benefit),
        foldSingleUseOnly(foldSingleUseOnly) {}

  LogicalResult matchAndRewrite(ReshapeOp reshapeOp,
                                PatternRewriter &rewriter) const override {
    // Check for tensor.empty source.
    auto emptyOp = reshapeOp.getSrc().template getDefiningOp<EmptyOp>();
    if (!emptyOp)
      return failure();

    // Check for single use.
    if (foldSingleUseOnly && !llvm::hasSingleElement(emptyOp->getUses()))
      return failure();

    // Reify result shape.
    Location loc = reshapeOp.getLoc();
    ReifiedRankedShapedTypeDims resultShapes;
    if (failed(reifyResultShapes(rewriter, reshapeOp, resultShapes)) ||
        !llvm::hasSingleElement(resultShapes))
      return failure();

    // Create new tensor.empty op.
    // TODO: Do not drop tensor type encoding.
    Value emptyTensor = rewriter.create<EmptyOp>(
        loc, resultShapes[0], reshapeOp.getResultType().getElementType());
    if (emptyTensor.getType() != reshapeOp.getResultType()) {
      rewriter.replaceOpWithNewOp<tensor::CastOp>(
          reshapeOp, reshapeOp.getResultType(), emptyTensor);
    } else {
      rewriter.replaceOp(reshapeOp, emptyTensor);
    }
    return success();
  }

private:
  bool foldSingleUseOnly = false;
};

/// tensor.empty does not define any tensor contents, so a slice of a
/// tensor.empty can be folded to a smaller tensor.empty.
struct FoldEmptyTensorWithExtractSliceOp
    : public OpRewritePattern<ExtractSliceOp> {
  FoldEmptyTensorWithExtractSliceOp(MLIRContext *ctx,
                                    PatternBenefit benefit = 1,
                                    bool foldSingleUseOnly = false)
      : OpRewritePattern<ExtractSliceOp>(ctx, benefit),
        foldSingleUseOnly(foldSingleUseOnly) {}

  LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
                                PatternRewriter &rewriter) const override {
    // Check for tensor.empty source.
    auto emptyOp = sliceOp.getSource().template getDefiningOp<EmptyOp>();
    if (!emptyOp)
      return failure();

    // Check for single use.
    if (foldSingleUseOnly && !llvm::hasSingleElement(emptyOp->getUses()))
      return failure();

    // Create new tensor.empty op. tensor.extract_slice may be rank-reducing;
    // its dynamic sizes must be preserved as well as its result type.
    auto tensorType = RankedTensorType::get(sliceOp.getType().getShape(),
                                            sliceOp.getType().getElementType(),
                                            sliceOp.getType().getEncoding());
    rewriter.replaceOpWithNewOp<EmptyOp>(sliceOp, tensorType,
                                         sliceOp.getSizes());
    return success();
  }

private:
  bool foldSingleUseOnly = false;
};

} // namespace

void mlir::tensor::populateFoldTensorEmptyPatterns(RewritePatternSet &patterns,
                                                   bool foldSingleUseOnly) {
  patterns.add<FoldEmptyTensorWithExtractSliceOp,
               FoldEmptyTensorWithReshapeOp<tensor::ExpandShapeOp>,
               FoldEmptyTensorWithReshapeOp<tensor::CollapseShapeOp>>(
      patterns.getContext(), /*benefit=*/1, foldSingleUseOnly);
}