1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
//===- EmptyOpPatterns.cpp - Patterns related to tensor.empty folding ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
using namespace mlir::tensor;
namespace {
template <typename ReshapeOp>
struct FoldEmptyTensorWithReshapeOp : public OpRewritePattern<ReshapeOp> {
FoldEmptyTensorWithReshapeOp(MLIRContext *ctx, PatternBenefit benefit = 1,
bool foldSingleUseOnly = false)
: OpRewritePattern<ReshapeOp>(ctx, benefit),
foldSingleUseOnly(foldSingleUseOnly) {}
LogicalResult matchAndRewrite(ReshapeOp reshapeOp,
PatternRewriter &rewriter) const override {
// Check for tensor.empty source.
auto emptyOp = reshapeOp.getSrc().template getDefiningOp<EmptyOp>();
if (!emptyOp)
return failure();
// Check for single use.
if (foldSingleUseOnly && !llvm::hasSingleElement(emptyOp->getUses()))
return failure();
// Reify result shape.
Location loc = reshapeOp.getLoc();
ReifiedRankedShapedTypeDims resultShapes;
if (failed(reifyResultShapes(rewriter, reshapeOp, resultShapes)) ||
!llvm::hasSingleElement(resultShapes))
return failure();
// Create new tensor.empty op.
// TODO: Do not drop tensor type encoding.
Value emptyTensor = rewriter.create<EmptyOp>(
loc, resultShapes[0], reshapeOp.getResultType().getElementType());
if (emptyTensor.getType() != reshapeOp.getResultType()) {
rewriter.replaceOpWithNewOp<tensor::CastOp>(
reshapeOp, reshapeOp.getResultType(), emptyTensor);
} else {
rewriter.replaceOp(reshapeOp, emptyTensor);
}
return success();
}
private:
bool foldSingleUseOnly = false;
};
/// tensor.empty does not define any tensor contents, so a slice of a
/// tensor.empty can be folded to a smaller tensor.empty.
struct FoldEmptyTensorWithExtractSliceOp
: public OpRewritePattern<ExtractSliceOp> {
FoldEmptyTensorWithExtractSliceOp(MLIRContext *ctx,
PatternBenefit benefit = 1,
bool foldSingleUseOnly = false)
: OpRewritePattern<ExtractSliceOp>(ctx, benefit),
foldSingleUseOnly(foldSingleUseOnly) {}
LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const override {
// Check for tensor.empty source.
auto emptyOp = sliceOp.getSource().template getDefiningOp<EmptyOp>();
if (!emptyOp)
return failure();
// Check for single use.
if (foldSingleUseOnly && !llvm::hasSingleElement(emptyOp->getUses()))
return failure();
// Create new tensor.empty op. tensor.extract_slice may be rank-reducing;
// its dynamic sizes must be preserved as well as its result type.
auto tensorType = RankedTensorType::get(sliceOp.getType().getShape(),
sliceOp.getType().getElementType(),
sliceOp.getType().getEncoding());
rewriter.replaceOpWithNewOp<EmptyOp>(sliceOp, tensorType,
sliceOp.getSizes());
return success();
}
private:
bool foldSingleUseOnly = false;
};
} // namespace
void mlir::tensor::populateFoldTensorEmptyPatterns(RewritePatternSet &patterns,
bool foldSingleUseOnly) {
patterns.add<FoldEmptyTensorWithExtractSliceOp,
FoldEmptyTensorWithReshapeOp<tensor::ExpandShapeOp>,
FoldEmptyTensorWithReshapeOp<tensor::CollapseShapeOp>>(
patterns.getContext(), /*benefit=*/1, foldSingleUseOnly);
}
|