1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
//===- ExtractSliceFromReshapeUtils.cpp - Slice reshape rewrites ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements rewrites that replace slices of reshape results with
// aggregated slices of the reshape source.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/TransformUtils.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/OpDefinition.h"
#include "llvm/ADT/STLExtras.h"
using namespace mlir;
using namespace mlir::affine;
using namespace mlir::tensor;
/// A tuple that represents (dimension number, dimension value).
using DimAndIndex = std::tuple<unsigned, Value>;
/// Transform `dimAndIndex` from the output index space of a (non-rank-reducing)
/// slice described by `sliceParams` into the input index space.
static DimAndIndex invertSliceIndexing(OpBuilder &b, Location loc,
ArrayRef<Range> sliceParams,
const DimAndIndex &dimAndIndex) {
AffineExpr d0, s0, s1;
bindDims(b.getContext(), d0);
bindSymbols(b.getContext(), s0, s1);
auto [dim, indexValue] = dimAndIndex;
assert(dim < sliceParams.size() && "slice should be non rank-reducing");
return std::make_pair(
dim, affine::makeComposedAffineApply(
b, loc, s0 + d0 * s1,
{indexValue, sliceParams[dim].offset, sliceParams[dim].stride}));
}
/// Transform `dimAndIndex` from the result tensor index space of a
/// CollapseShapeOp to the source tensor index space.
static ValueRange invertCollapseShapeIndexing(
OpBuilder &b, Location loc, ArrayRef<ReassociationIndices> reassociation,
ArrayRef<OpFoldResult> reshapeSourceShape, const DimAndIndex &dimAndIndex) {
const auto &[dim, indexValue] = dimAndIndex;
SmallVector<OpFoldResult> basis;
for (int64_t i : reassociation[dim])
basis.push_back(reshapeSourceShape[i]);
auto delinearized =
b.create<AffineDelinearizeIndexOp>(loc, indexValue, basis);
return delinearized->getResults();
}
FailureOr<ExtractSliceFromCollapseHelper>
tensor::ExtractSliceFromCollapseHelper::create(
OpBuilder &b, tensor::CollapseShapeOp collapseOp,
tensor::ExtractSliceOp extractOp) {
if (extractOp.getSource().getDefiningOp<tensor::CollapseShapeOp>() !=
collapseOp)
return failure();
SmallVector<Range> ranges;
ranges.reserve(extractOp.getSourceType().getRank());
for (const auto &[o, s, st] :
llvm::zip(extractOp.getMixedOffsets(), extractOp.getMixedSizes(),
extractOp.getMixedStrides())) {
ranges.push_back({o, s, st});
}
return ExtractSliceFromCollapseHelper::create(b, collapseOp, ranges);
}
FailureOr<ExtractSliceFromCollapseHelper>
tensor::ExtractSliceFromCollapseHelper::create(OpBuilder &b,
tensor::CollapseShapeOp op,
ArrayRef<Range> sliceParams) {
// Don't perform this pattern if the collapse op can be simplified by
// a rank-reducing extract slice.
if (succeeded(mlir::getSimplifyCollapseShapeWithRankReducingSliceInfo(
op.getSrcType(), op.getReassociationIndices())))
return failure();
// Materialize the output shape of the collapse_shape operation. This will
// create IR describing the output shape in terms of the input shape.
ReifiedRankedShapedTypeDims reifiedShapes;
if (failed(reifyResultShapes(b, op, reifiedShapes)))
return failure();
SmallVector<OpFoldResult> &collapseShapeOutputShape = reifiedShapes[0];
SmallVector<ReassociationIndices> reassociationIndices =
op.getReassociationIndices();
// Determine which of the CollapseShapeOp's result dimensions are sliced
// and/or linearized.
llvm::SmallBitVector linearizedDimensions =
getLinearizedDimensions(reassociationIndices);
llvm::SmallBitVector slicedDimensions =
getSlicedDimensions(collapseShapeOutputShape, sliceParams);
auto collapseShapeInputShape =
tensor::getMixedSizes(b, op.getLoc(), op.getSrc());
SmallVector<Value> tileSizes;
for (unsigned i = 0; i < sliceParams.size(); i++) {
if (slicedDimensions[i] && linearizedDimensions[i])
tileSizes.push_back(
getValueOrCreateConstantIndexOp(b, op.getLoc(), sliceParams[i].size));
}
return ExtractSliceFromCollapseHelper(
op, collapseShapeInputShape, collapseShapeOutputShape, sliceParams,
linearizedDimensions, slicedDimensions, tileSizes);
}
std::pair<Value, SmallVector<Range>>
tensor::ExtractSliceFromCollapseHelper::emitLoopNestBody(
OpBuilder &builder, Location loc, ValueRange tileInductionVars) {
// Create the helper class for forming the slice parameters.
const SmallVector<ReassociationIndices> reassociationIndices =
collapseShapeOp.getReassociationIndices();
SliceFromCollapseHelper helper(reassociationIndices, collapseShapeInputShape,
collapseShapeOutputShape, sliceParams);
// Get the indices of the tiled dims (linearized by the collapse_shape
// and sliced by the extract_slice) invert the index spaces
// transformations.
SmallVector<ValueRange> multiIndices;
unsigned loopIdx = 0;
for (unsigned i = 0, e = linearizedDimensions.size(); i < e; i++) {
if (linearizedDimensions[i] && slicedDimensions[i]) {
DimAndIndex tb =
invertSliceIndexing(builder, loc, sliceParams,
std::make_tuple(i, tileInductionVars[loopIdx++]));
multiIndices.push_back(invertCollapseShapeIndexing(
builder, loc, reassociationIndices, collapseShapeInputShape, tb));
}
}
SmallVector<Range> extractParams =
helper.getExtractSliceParams(builder.getContext(), multiIndices);
Value subTileResult = builder.create<tensor::ExtractSliceOp>(
loc, collapseShapeOp.getSrc(), extractParams);
SmallVector<Range> insertParams =
helper.getInsertSliceParams(builder.getContext(), tileInductionVars);
// Collapse the dimensions of the source slice back down.
Value collapsedResult = builder.create<tensor::CollapseShapeOp>(
loc, subTileResult, reassociationIndices);
return std::make_pair(collapsedResult, insertParams);
}
FailureOr<Operation *>
tensor::simplifyCollapseShapeWithRankReducingExtractSlice(
tensor::CollapseShapeOp op, RewriterBase &rewriter) {
SmallVector<ReassociationIndices> reassociationIndices =
op.getReassociationIndices();
RankedTensorType sourceType = op.getSrcType();
FailureOr<CollapseShapeRankReducingSliceSimplificationInfo> info =
getSimplifyCollapseShapeWithRankReducingSliceInfo(sourceType,
reassociationIndices);
if (failed(info))
return failure();
// Create the rank-reducing extract slice op.
auto zero = rewriter.getIndexAttr(0);
auto one = rewriter.getIndexAttr(1);
SmallVector<OpFoldResult> offsets(sourceType.getRank(), zero);
SmallVector<OpFoldResult> sizes =
tensor::getMixedSizes(rewriter, op.getLoc(), op.getSrc());
SmallVector<OpFoldResult> strides(sourceType.getRank(), one);
auto sliceOp = rewriter.create<tensor::ExtractSliceOp>(
op.getLoc(), info->sliceResultType, op.getSrc(), offsets, sizes, strides);
if (!info->newReassociationIndices.has_value()) {
rewriter.replaceOp(op, sliceOp.getResult());
return sliceOp.getOperation();
}
return rewriter
.replaceOpWithNewOp<tensor::CollapseShapeOp>(
op, sliceOp.getResult(), *info->newReassociationIndices)
.getOperation();
}
|