1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
//===- FoldTensorSubsetOps.cpp - Fold tensor subset ops -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Fold tensor subset ops with producer / consumers.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/ViewLikeInterfaceUtils.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/TypeSwitch.h"
#include <type_traits>
namespace mlir {
namespace tensor {
#define GEN_PASS_DEF_FOLDTENSORSUBSETOPS
#include "mlir/Dialect/Tensor/Transforms/Passes.h.inc"
} // namespace tensor
} // namespace mlir
using namespace mlir;
static Value getTensorOperand(vector::TransferReadOp op) {
return op.getSource();
}
static Value getTensorOperand(tensor::InsertSliceOp op) {
return op.getSource();
}
//===----------------------------------------------------------------------===//
// Patterns
//===----------------------------------------------------------------------===//
namespace {
/// Merge extract_slice operation with load/transferRead operation.
class TransferReadOfExtractSliceOpFolder final
: public OpRewritePattern<vector::TransferReadOp> {
public:
using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
PatternRewriter &rewriter) const override;
};
/// Merge insert_slice operation with store/transferWriteOp operation.
class InsertSliceOfTransferWriteOpFolder final
: public OpRewritePattern<tensor::InsertSliceOp> {
public:
using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::InsertSliceOp insertSliceOp,
PatternRewriter &rewriter) const override;
};
} // namespace
template <typename XferOp, typename ExtractOrInsertOp>
static LogicalResult preconditionsFoldExtractOrInsertWithTransferOp(
RewriterBase &rewriter, XferOp xferOp,
ExtractOrInsertOp extractOrInsertSliceOp) {
if (xferOp.hasOutOfBoundsDim())
return rewriter.notifyMatchFailure(xferOp, "out of bounds transfer dim");
if (xferOp.getMask())
return rewriter.notifyMatchFailure(xferOp, "masked transfer");
if (!extractOrInsertSliceOp.hasUnitStride()) {
return rewriter.notifyMatchFailure(
xferOp, "non-1 stride insert/extract, requires keeping track of "
"strides, this may result in needing to insert "
"vector.insert_strided_slice/extract_strided_slice ops");
}
return success();
}
LogicalResult TransferReadOfExtractSliceOpFolder::matchAndRewrite(
vector::TransferReadOp readOp, PatternRewriter &rewriter) const {
auto extractSliceOp =
getTensorOperand(readOp).getDefiningOp<tensor::ExtractSliceOp>();
if (!extractSliceOp)
return rewriter.notifyMatchFailure(readOp, "not an extract_slice");
LogicalResult preconditionResult =
preconditionsFoldExtractOrInsertWithTransferOp(rewriter, readOp,
extractSliceOp);
if (failed(preconditionResult))
return preconditionResult;
SmallVector<Value> indices(readOp.getIndices().begin(),
readOp.getIndices().end());
SmallVector<Value> sourceIndices;
affine::resolveIndicesIntoOpWithOffsetsAndStrides(
rewriter, readOp.getLoc(), extractSliceOp.getMixedOffsets(),
extractSliceOp.getMixedStrides(), extractSliceOp.getDroppedDims(),
indices, sourceIndices);
rewriter.replaceOpWithNewOp<vector::TransferReadOp>(
readOp, readOp.getVectorType(), extractSliceOp.getSource(), sourceIndices,
AffineMapAttr::get(expandDimsToRank(
readOp.getPermutationMap(), extractSliceOp.getSourceType().getRank(),
extractSliceOp.getDroppedDims())),
readOp.getPadding(),
/*mask=*/Value(), readOp.getInBoundsAttr());
return success();
}
LogicalResult InsertSliceOfTransferWriteOpFolder::matchAndRewrite(
tensor::InsertSliceOp insertSliceOp, PatternRewriter &rewriter) const {
auto writeOp = getTensorOperand(insertSliceOp)
.template getDefiningOp<vector::TransferWriteOp>();
if (!writeOp)
return rewriter.notifyMatchFailure(insertSliceOp, "not a transfer_write");
LogicalResult preconditionResult =
preconditionsFoldExtractOrInsertWithTransferOp(rewriter, writeOp,
insertSliceOp);
if (failed(preconditionResult))
return preconditionResult;
SmallVector<Value> indices(writeOp.getIndices().begin(),
writeOp.getIndices().end());
SmallVector<Value> sourceIndices;
affine::resolveIndicesIntoOpWithOffsetsAndStrides(
rewriter, writeOp.getLoc(), insertSliceOp.getMixedOffsets(),
insertSliceOp.getMixedStrides(), insertSliceOp.getDroppedDims(), indices,
sourceIndices);
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
insertSliceOp, writeOp.getValue(), insertSliceOp.getDest(), sourceIndices,
AffineMapAttr::get(expandDimsToRank(writeOp.getPermutationMap(),
insertSliceOp.getDestType().getRank(),
insertSliceOp.getDroppedDims())),
writeOp.getInBoundsAttr());
return success();
}
template <typename OpTy>
struct InsertSliceOfInsertSliceFolder : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy insertSliceOp,
PatternRewriter &rewriter) const override {
auto sourceInsertSliceOp =
insertSliceOp.getSource()
.template getDefiningOp<tensor::InsertSliceOp>();
if (!sourceInsertSliceOp)
return failure();
// TODO: relax unit stride assumption where possible.
if (!insertSliceOp.hasUnitStride()) {
return rewriter.notifyMatchFailure(insertSliceOp,
"requires unit strides");
}
if (!sourceInsertSliceOp.hasUnitStride()) {
return rewriter.notifyMatchFailure(sourceInsertSliceOp,
"requires unit strides");
}
int64_t srcDim = 0;
llvm::SmallBitVector droppedDims = insertSliceOp.getDroppedDims();
for (int64_t d = 0, e = insertSliceOp.getDestType().getRank(); d < e; ++d) {
if (droppedDims[d])
continue;
if (insertSliceOp.getMixedSizes()[d] !=
sourceInsertSliceOp.getMixedSizes()[srcDim++]) {
return rewriter.notifyMatchFailure(
sourceInsertSliceOp,
"requires matching sizes to fold, otherwise a copy is needed");
}
}
// Resolve sizes according to dropped dims.
SmallVector<OpFoldResult> resolvedSizes;
// Note: the "insertSlice" case is symmetrical to the extract/subview case:
// `insertSliceOp` is passed as the "source" and `sourceInsertSliceOp` is
// passed as the destination to the helper function.
affine::resolveSizesIntoOpWithSizes(insertSliceOp.getMixedSizes(),
sourceInsertSliceOp.getMixedSizes(),
droppedDims, resolvedSizes);
// If we are inside an InParallel region, temporarily set the insertion
// point outside: only tensor.parallel_insert_slice ops are allowed in
// there.
if (std::is_same_v<OpTy, tensor::ParallelInsertSliceOp>) {
rewriter.setInsertionPoint(
insertSliceOp->template getParentOfType<scf::InParallelOp>());
}
// Resolve offsets according to source offsets and strides.
SmallVector<Value> resolvedOffsets;
// Note: the "insertSlice" case is symmetrical to the extract/subview case:
// `insertSliceOp` is passed as the "source" and `sourceInsertSliceOp` is
// passed as the destination to the helper function.
affine::resolveIndicesIntoOpWithOffsetsAndStrides(
rewriter, insertSliceOp.getLoc(), insertSliceOp.getMixedOffsets(),
insertSliceOp.getMixedStrides(), droppedDims,
sourceInsertSliceOp.getMixedOffsets(), resolvedOffsets);
// Reset the insertion point.
rewriter.setInsertionPoint(insertSliceOp);
// Replace original op.
rewriter.replaceOpWithNewOp<OpTy>(
insertSliceOp, sourceInsertSliceOp.getSource(), insertSliceOp.getDest(),
getAsOpFoldResult(resolvedOffsets), resolvedSizes,
insertSliceOp.getMixedStrides());
return success();
}
};
void tensor::populateFoldTensorSubsetOpPatterns(RewritePatternSet &patterns) {
populateFoldTensorSubsetIntoVectorTransferPatterns(patterns);
patterns.add<InsertSliceOfInsertSliceFolder<tensor::InsertSliceOp>,
InsertSliceOfInsertSliceFolder<tensor::ParallelInsertSliceOp>>(
patterns.getContext());
}
void tensor::populateFoldTensorSubsetIntoVectorTransferPatterns(
RewritePatternSet &patterns) {
patterns.add<TransferReadOfExtractSliceOpFolder,
InsertSliceOfTransferWriteOpFolder>(patterns.getContext());
}
//===----------------------------------------------------------------------===//
// Pass registration
//===----------------------------------------------------------------------===//
namespace {
struct FoldTensorSubsetOpsPass final
: public tensor::impl::FoldTensorSubsetOpsBase<FoldTensorSubsetOpsPass> {
void runOnOperation() override;
};
} // namespace
void FoldTensorSubsetOpsPass::runOnOperation() {
RewritePatternSet patterns(&getContext());
tensor::populateFoldTensorSubsetOpPatterns(patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
std::unique_ptr<Pass> tensor::createFoldTensorSubsetOpsPass() {
return std::make_unique<FoldTensorSubsetOpsPass>();
}
|