1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
//===- IndependenceTransforms.cpp - Make ops independent of values --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
using namespace mlir;
using namespace mlir::tensor;
/// Make the given OpFoldResult independent of all independencies.
static FailureOr<OpFoldResult> makeIndependent(OpBuilder &b, Location loc,
OpFoldResult ofr,
ValueRange independencies) {
if (ofr.is<Attribute>())
return ofr;
Value value = ofr.get<Value>();
AffineMap boundMap;
ValueDimList mapOperands;
if (failed(ValueBoundsConstraintSet::computeIndependentBound(
boundMap, mapOperands, presburger::BoundType::UB, value,
/*dim=*/std::nullopt, independencies, /*closedUB=*/true)))
return failure();
return mlir::affine::materializeComputedBound(b, loc, boundMap, mapOperands);
}
FailureOr<Value> tensor::buildIndependentOp(OpBuilder &b, tensor::PadOp padOp,
ValueRange independencies) {
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(padOp);
Location loc = padOp.getLoc();
// Non-constant padding not supported.
Value constantPadding = padOp.getConstantPaddingValue();
if (!constantPadding)
return failure();
SmallVector<OpFoldResult> newMixedLow, newMixedHigh;
for (OpFoldResult ofr : padOp.getMixedLowPad()) {
auto ub = makeIndependent(b, loc, ofr, independencies);
if (failed(ub))
return failure();
newMixedLow.push_back(*ub);
}
for (OpFoldResult ofr : padOp.getMixedHighPad()) {
auto ub = makeIndependent(b, loc, ofr, independencies);
if (failed(ub))
return failure();
newMixedHigh.push_back(*ub);
}
// Return existing tensor::PadOp if nothing has changed.
if (llvm::equal(padOp.getMixedLowPad(), newMixedLow) &&
llvm::equal(padOp.getMixedHighPad(), newMixedHigh))
return padOp.getResult();
// Create a new tensor::PadOp.
auto newPadOp = b.create<PadOp>(
loc, padOp.getResultType(), padOp.getSource(), newMixedLow, newMixedHigh,
constantPadding, padOp.getNofold(), /*attrs=*/ArrayRef<NamedAttribute>{});
// Create a tensor::ExtractSliceOp.
// Reify the result sizes of the old tensor::PadOp.
ReifiedRankedShapedTypeDims reifiedSizes;
ReifyRankedShapedTypeOpInterface reifyShapedTypeInterface =
dyn_cast<ReifyRankedShapedTypeOpInterface>(padOp.getOperation());
if (failed(reifyShapedTypeInterface.reifyResultShapes(b, reifiedSizes)))
return failure();
SmallVector<OpFoldResult> offsets, sizes, strides;
for (int64_t i = 0, e = padOp.getResultType().getRank(); i < e; ++i) {
// offset = ub(low_padding) - low_padding
OpFoldResult prevLow = padOp.getMixedLowPad()[i];
if (prevLow.is<Attribute>()) {
offsets.push_back(b.getIndexAttr(0));
} else {
offsets.push_back(
b.create<affine::AffineApplyOp>(
loc, b.getAffineDimExpr(0) - b.getAffineDimExpr(1),
std::initializer_list<Value>{newMixedLow[i].get<Value>(),
prevLow.get<Value>()})
.getResult());
}
// size = reified result size
if (!padOp.getResultType().isDynamicDim(i)) {
sizes.push_back(b.getIndexAttr(padOp.getResultType().getDimSize(i)));
} else {
sizes.push_back(reifiedSizes[0][i]);
}
// stride = 1
strides.push_back(b.getIndexAttr(1));
}
return b.create<ExtractSliceOp>(loc, newPadOp, offsets, sizes, strides)
.getResult();
}
FailureOr<Value> tensor::buildIndependentOp(OpBuilder &b,
tensor::EmptyOp emptyOp,
ValueRange independencies) {
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(emptyOp);
Location loc = emptyOp.getLoc();
SmallVector<OpFoldResult> newSizes;
for (OpFoldResult ofr : emptyOp.getMixedSizes()) {
auto ub = makeIndependent(b, loc, ofr, independencies);
if (failed(ub))
return failure();
newSizes.push_back(*ub);
}
// Return existing tensor::EmptyOp if nothing has changed.
if (llvm::equal(emptyOp.getMixedSizes(), newSizes))
return emptyOp.getResult();
// Create a new tensor::EmptyOp.
Value newEmptyOp =
b.create<EmptyOp>(loc, newSizes, emptyOp.getType().getElementType());
// Create a tensor::ExtractSliceOp.
SmallVector<OpFoldResult> offsets(newSizes.size(), b.getIndexAttr(0));
SmallVector<OpFoldResult> strides(newSizes.size(), b.getIndexAttr(1));
return b
.create<ExtractSliceOp>(loc, newEmptyOp, offsets, emptyOp.getMixedSizes(),
strides)
.getResult();
}
|