1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
|
//===- ReshapeOpsUtils.cpp - Utilities used by structured ops -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include <numeric>
#include <optional>
using namespace mlir;
std::optional<SmallVector<ReassociationIndices>>
mlir::getReassociationIndicesForReshape(ShapedType sourceType,
ShapedType targetType) {
if (sourceType.getRank() > targetType.getRank())
return getReassociationIndicesForCollapse(sourceType.getShape(),
targetType.getShape());
if (sourceType.getRank() < targetType.getRank())
return getReassociationIndicesForCollapse(targetType.getShape(),
sourceType.getShape());
return std::nullopt;
}
std::optional<SmallVector<ReassociationIndices>>
mlir::getReassociationIndicesForCollapse(ArrayRef<int64_t> sourceShape,
ArrayRef<int64_t> targetShape) {
if (sourceShape.size() <= targetShape.size())
return std::nullopt;
unsigned sourceDim = 0;
SmallVector<ReassociationIndices> reassociationMap;
reassociationMap.reserve(targetShape.size());
ReassociationIndices currIndices;
int64_t prodOfCollapsedDims = 1;
while (sourceDim < sourceShape.size()) {
unsigned targetDim = reassociationMap.size();
// If we have mapped all the target dimensions stop and handle the remaining
// tail of size-1 dimensions explictly.
if (targetDim == targetShape.size())
break;
int64_t currTargetShape = targetShape[targetDim];
while (sourceDim < sourceShape.size() &&
sourceShape[sourceDim] != ShapedType::kDynamic &&
prodOfCollapsedDims * sourceShape[sourceDim] < currTargetShape) {
prodOfCollapsedDims *= sourceShape[sourceDim];
currIndices.push_back(sourceDim++);
}
// If the current expanded dimension is dynamic, then the collapsed
// dimensions should also be dynamic and product of all previous unprocessed
// dimensions of the expanded shape should be 1.
if (sourceShape[sourceDim] == ShapedType::kDynamic &&
(currTargetShape != ShapedType::kDynamic || prodOfCollapsedDims != 1))
return std::nullopt;
// If the collapsed dim is dynamic, the current expanded dim should also
// be dynamic.
if (currTargetShape == ShapedType::kDynamic &&
sourceShape[sourceDim] != ShapedType::kDynamic)
return std::nullopt;
// For static shapes, if the product of dimensions of the expanded shape
// should match the collapsed dimension shape.
if (prodOfCollapsedDims * sourceShape[sourceDim] != currTargetShape)
return std::nullopt;
currIndices.push_back(sourceDim++);
reassociationMap.emplace_back(ReassociationIndices{});
std::swap(reassociationMap.back(), currIndices);
prodOfCollapsedDims = 1;
}
// All the dimensions in the target must have been processed.
if (reassociationMap.size() != targetShape.size())
return std::nullopt;
// Process any remaining entries in the source shape. They all need to be
// 1 or dynamic.
for (; sourceDim < sourceShape.size(); sourceDim++) {
if (sourceShape[sourceDim] != ShapedType::kDynamic &&
sourceShape[sourceDim] != 1)
return std::nullopt;
// The map is empty when the target type is a scalar.
if (!reassociationMap.empty())
reassociationMap.back().push_back(sourceDim);
}
return reassociationMap;
}
std::optional<SmallVector<ReassociationIndices>>
mlir::composeReassociationIndices(
ArrayRef<ReassociationIndices> producerReassociations,
ArrayRef<ReassociationIndices> consumerReassociations,
MLIRContext *context) {
SmallVector<ReassociationIndices> composedIndices;
// Make the producer the larger sized vector. If they are of same size, the
// resulting reshape is not a supported reshape op.
if (producerReassociations.size() == consumerReassociations.size())
return std::nullopt;
if (producerReassociations.size() < consumerReassociations.size())
std::swap(producerReassociations, consumerReassociations);
// Handle the corner case of the result being a rank 0 shaped type. Return an
// empty reassociation.
if (consumerReassociations.empty())
return composedIndices;
size_t consumerDims = std::accumulate(
consumerReassociations.begin(), consumerReassociations.end(), 0,
[](size_t all, ReassociationIndicesRef indices) {
return all + indices.size();
});
if (producerReassociations.size() != consumerDims)
return std::nullopt;
for (ReassociationIndicesRef consumerIndices : consumerReassociations) {
ReassociationIndices reassociations;
for (int64_t consumerIndex : consumerIndices) {
llvm::append_range(reassociations, producerReassociations[consumerIndex]);
}
composedIndices.push_back(std::move(reassociations));
}
return composedIndices;
}
SmallVector<SmallVector<AffineExpr, 2>, 2>
mlir::convertReassociationIndicesToExprs(
MLIRContext *context, ArrayRef<ReassociationIndices> reassociationIndices) {
SmallVector<SmallVector<AffineExpr, 2>, 2> reassociationMaps;
for (const auto &indices : reassociationIndices) {
SmallVector<AffineExpr, 2> reassociationMap;
reassociationMap.reserve(indices.size());
for (int64_t index : indices)
reassociationMap.push_back(mlir::getAffineDimExpr(index, context));
reassociationMaps.push_back(std::move(reassociationMap));
}
return reassociationMaps;
}
template <typename AffineExprTy>
unsigned getMaxPosOfType(ArrayRef<ReassociationExprs> exprArrays) {
unsigned pos = 0;
for (const auto &exprs : exprArrays) {
for (auto expr : exprs) {
expr.walk([&pos](AffineExpr e) {
if (auto d = e.dyn_cast<AffineExprTy>())
pos = std::max(pos, d.getPosition());
});
}
}
return pos;
}
ArrayAttr mlir::getReassociationIndicesAttribute(
OpBuilder &b, ArrayRef<ReassociationIndices> reassociation) {
SmallVector<Attribute, 4> reassociationAttr =
llvm::to_vector<4>(llvm::map_range(
reassociation, [&](const ReassociationIndices &indices) -> Attribute {
return cast<Attribute>(b.getI64ArrayAttr(indices));
}));
return b.getArrayAttr(reassociationAttr);
}
SmallVector<ReassociationIndices, 2> mlir::convertReassociationMapsToIndices(
OpBuilder &b, ArrayRef<ReassociationExprs> reassociationExprs) {
SmallVector<ReassociationIndices, 2> reassociationIndices;
for (const auto &exprs : reassociationExprs) {
ReassociationIndices indices;
indices.reserve(exprs.size());
for (const auto &expr : exprs)
indices.push_back(expr.cast<AffineDimExpr>().getPosition());
reassociationIndices.push_back(indices);
}
return reassociationIndices;
}
SmallVector<AffineMap, 4>
mlir::getSymbolLessAffineMaps(ArrayRef<ReassociationExprs> reassociation) {
unsigned maxDim = getMaxPosOfType<AffineDimExpr>(reassociation);
assert(getMaxPosOfType<AffineSymbolExpr>(reassociation) == 0 &&
"Expected symbol-less expressions");
SmallVector<AffineMap, 4> maps;
maps.reserve(reassociation.size());
for (const auto &exprs : reassociation) {
assert(!exprs.empty());
maps.push_back(AffineMap::get(maxDim + 1, 0, exprs, exprs[0].getContext()));
}
return maps;
}
bool mlir::isReassociationValid(ArrayRef<AffineMap> reassociation,
int *invalidIndex) {
if (reassociation.empty())
return true;
unsigned nDims = reassociation[0].getNumDims();
unsigned nextExpectedDim = 0;
for (const auto &it : llvm::enumerate(reassociation)) {
auto m = it.value();
if (m.getNumDims() != nDims || m.getNumSymbols() != 0) {
if (invalidIndex)
*invalidIndex = it.index();
return false;
}
for (auto e : m.getResults()) {
auto d = e.dyn_cast<AffineDimExpr>();
if (!d || d.getPosition() != nextExpectedDim++) {
if (invalidIndex)
*invalidIndex = it.index();
return false;
}
}
}
if (nextExpectedDim != nDims) {
if (invalidIndex)
*invalidIndex = reassociation.size() - 1;
return false;
}
return true;
}
LogicalResult mlir::reshapeLikeShapesAreCompatible(
function_ref<LogicalResult(const Twine &)> emitError,
ArrayRef<int64_t> collapsedShape, ArrayRef<int64_t> expandedShape,
ArrayRef<ReassociationIndices> reassociationMaps, bool isExpandingReshape) {
unsigned expandedDimStart = 0;
for (const auto &map : llvm::enumerate(reassociationMaps)) {
std::optional<int64_t> dynamicShape;
int64_t linearizedStaticShape = 1;
for (const auto &dim : llvm::enumerate(
expandedShape.slice(expandedDimStart, map.value().size()))) {
if (ShapedType::isDynamic(dim.value())) {
if (isExpandingReshape && dynamicShape) {
return emitError("invalid to have a single dimension (" +
Twine(map.index()) +
") expanded into multiple dynamic dims (" +
Twine(expandedDimStart + dynamicShape.value()) +
"," + Twine(expandedDimStart + dim.index()) + ")");
}
dynamicShape = dim.index();
} else {
linearizedStaticShape *= dim.value();
}
}
if (dynamicShape) {
if (!ShapedType::isDynamic(collapsedShape[map.index()])) {
return emitError(
"expected dimension " + Twine(map.index()) +
" of collapsed type to be dynamic since one or more of the "
"corresponding dimensions in the expanded type is dynamic");
}
} else {
if (collapsedShape[map.index()] != linearizedStaticShape) {
return emitError("expected dimension " + Twine(map.index()) +
" of collapsed type to be static value of " +
Twine(linearizedStaticShape));
}
}
expandedDimStart += map.value().size();
}
return success();
}
bool mlir::hasNonIdentityLayout(Type type) {
if (auto memrefType = dyn_cast<MemRefType>(type))
return !memrefType.getLayout().isIdentity();
return false;
}
llvm::SmallBitVector
mlir::getSlicedDimensions(ArrayRef<OpFoldResult> sliceInputShape,
ArrayRef<Range> sliceParams) {
assert(sliceParams.size() == sliceInputShape.size() &&
"only supports non rank-reducing case");
llvm::SmallBitVector mask(sliceInputShape.size());
unsigned idx = 0;
for (const auto &[offset, size, stride] : sliceParams) {
std::optional<int64_t> offsetConst = getConstantIntValue(offset);
std::optional<int64_t> strideConst = getConstantIntValue(stride);
mask[idx] = !isEqualConstantIntOrValue(size, sliceInputShape[idx]) ||
(!strideConst || *strideConst != 1) ||
(!offsetConst || *offsetConst != 0);
idx++;
}
return mask;
}
llvm::SmallBitVector mlir::getLinearizedDimensions(
ArrayRef<ReassociationIndices> reassociationIndices) {
llvm::SmallBitVector result(reassociationIndices.size());
for (const auto &it : llvm::enumerate(reassociationIndices))
result[it.index()] = it.value().size() > 1;
return result;
}
SmallVector<Range> SliceFromCollapseHelper::getExtractSliceParams(
MLIRContext *ctx, ArrayRef<ValueRange> multiIndices) {
unsigned loopIdx = 0;
auto oneAttr = IntegerAttr::get(IndexType::get(ctx), 1);
auto zeroAttr = IntegerAttr::get(IndexType::get(ctx), 0);
SmallVector<Range> offsetsSizesAndStrides;
offsetsSizesAndStrides.reserve(collapseShapeInputShape.size());
for (const auto &it : llvm::enumerate(reassociationIndices)) {
// Case 1: Linearized dimensions that have also been sliced. These
// are size of 1 because we are iterating over these dimensions. The
// offsets are exactly the de-linearized multi-indices.
if (slicedDimensions[it.index()] && linearizedDimensions[it.index()]) {
llvm::append_range(
offsetsSizesAndStrides,
llvm::map_range(multiIndices[loopIdx++], [&](Value v) -> Range {
return Range{getAsOpFoldResult(v), oneAttr, oneAttr};
}));
continue;
}
// Case 2: One or possibly multiple combined input dimensions, but we
// have proven that these are not sliced. In this case we just take
// the full extent of each dimension in the reassociation list.
if (linearizedDimensions[it.index()]) {
llvm::append_range(
offsetsSizesAndStrides,
llvm::map_range(it.value(), [&](int64_t idx) -> Range {
return {zeroAttr, collapseShapeInputShape[idx], oneAttr};
}));
continue;
}
// Case 3: A single index, but it may be sliced.
offsetsSizesAndStrides.push_back(sliceParams[it.index()]);
}
return offsetsSizesAndStrides;
}
SmallVector<Range>
SliceFromCollapseHelper::getInsertSliceParams(MLIRContext *ctx,
ValueRange tileIndices) {
auto one = IntegerAttr::get(IndexType::get(ctx), 1);
auto zero = IntegerAttr::get(IndexType::get(ctx), 0);
SmallVector<Range> insertParams;
insertParams.reserve(linearizedDimensions.size());
unsigned loopIdx = 0;
for (unsigned i = 0; i < linearizedDimensions.size(); i++) {
if (linearizedDimensions[i] && slicedDimensions[i]) {
insertParams.push_back(Range{tileIndices[loopIdx++], one, one});
continue;
}
insertParams.push_back(Range{zero, sliceParams[i].size, one});
}
return insertParams;
}
/// Returns the index of the only non-unit dimension among `indices` of `shape`,
/// if such a dimension exists and `indices` has more than one element.
/// Otherwise, return std::nullopt.
static std::optional<int64_t> getUniqueNonUnitDim(ArrayRef<int64_t> indices,
ArrayRef<int64_t> shape) {
// Return false if more than one of the dimensions in this group are not 1.
std::optional<int64_t> dimIndex;
if (indices.size() < 2)
return std::nullopt;
for (int64_t idx : indices) {
if (shape[idx] != 1) {
if (dimIndex != std::nullopt)
return std::nullopt;
dimIndex = idx;
}
}
return dimIndex;
}
// For each segment in the reassociation indices, check whether we can
// simplify that segment with a rank-reducing extract slice. We can do this if
// all but (exactly) one of the corresponding source dims is 1.
static SmallVector<std::optional<int64_t>> getCollapseShapeTrivialSegments(
RankedTensorType sourceType,
ArrayRef<ReassociationIndices> reassociationIndices) {
SmallVector<std::optional<int64_t>> trivialSegments;
for (const auto &indices : reassociationIndices)
trivialSegments.push_back(
getUniqueNonUnitDim(indices, sourceType.getShape()));
return trivialSegments;
}
/// Returns true if any of the segments of the reassociation indices for a
/// collapsing reshape can be simplified using a rank-reducing slice.
static FailureOr<SmallVector<std::optional<int64_t>>>
canCollapseShapeBeSimplifiedByRankReducingSlice(
RankedTensorType sourceType,
ArrayRef<ReassociationIndices> reassociationIndices) {
SmallVector<std::optional<int64_t>> trivialSegments =
getCollapseShapeTrivialSegments(sourceType, reassociationIndices);
if (!llvm::any_of(trivialSegments, [](const std::optional<int64_t> &idx) {
return idx.has_value();
}))
return failure();
return trivialSegments;
}
FailureOr<CollapseShapeRankReducingSliceSimplificationInfo>
mlir::getSimplifyCollapseShapeWithRankReducingSliceInfo(
RankedTensorType sourceType,
ArrayRef<ReassociationIndices> reassociationIndices) {
FailureOr<SmallVector<std::optional<int64_t>>> trivialSegments =
canCollapseShapeBeSimplifiedByRankReducingSlice(sourceType,
reassociationIndices);
if (failed(trivialSegments))
return failure();
// Create the expected result shape of the rank-reducing slice.
SmallVector<int64_t> sliceShape;
for (const auto &[nonUnitDim, indices] :
llvm::zip(*trivialSegments, reassociationIndices)) {
if (nonUnitDim) {
sliceShape.push_back(sourceType.getDimSize(*nonUnitDim));
continue;
}
llvm::append_range(sliceShape, llvm::map_range(indices, [&](int64_t idx) {
return sourceType.getDimSize(idx);
}));
}
auto sliceType =
RankedTensorType::get(sliceShape, sourceType.getElementType());
// If the rank-reducing slice simplified every segment, then we are done.
if (sliceShape.size() == reassociationIndices.size())
return CollapseShapeRankReducingSliceSimplificationInfo{sliceType,
std::nullopt};
// Otherwise, we need to create a new collapse_shape op for the segments that
// weren't covered by the slice. By design, the new reassociation indices has
// the same number of groups as the old reassociation indices.
SmallVector<ReassociationIndices> newReassociationIndices;
SmallVector<int64_t, 2> reassociation;
int64_t groupIdx = 0;
for (int64_t dimIdx = 0; dimIdx < sliceType.getRank(); dimIdx++) {
reassociation.push_back(dimIdx);
if ((*trivialSegments)[groupIdx] ||
reassociation.size() == reassociationIndices[groupIdx].size()) {
newReassociationIndices.push_back(reassociation);
reassociation.clear();
groupIdx++;
}
}
return CollapseShapeRankReducingSliceSimplificationInfo{
sliceType, newReassociationIndices};
}
PackingMetadata mlir::computePackingMetadata(int64_t packedRank,
ArrayRef<int64_t> innerDimPos) {
PackingMetadata res;
res.insertPositions.reserve(innerDimPos.size());
// The pack insert position is the position + the number of previously
// inserted positions + offset.
// The offset controls whether the packing dimension is the first or last.
//
// Example
// =======
// Consider packing from a hypothetical ABCD layout to ABCDba whose
// pack.inner_dims is [1, 0]. The first step consists in undoing the
// permutation and producing AaBbCD. This is achieved purely by computing the
// insert positions of `b` and `a` into `ABCD`, starting from [1, 0]. One
// possibility, is to produce insert positions [2, 0], this would result in an
// aAbBCD layout (i.e. offset 0). The other possibility, is to produce insert
// positions [3, 1], this would result in an AaBbCD layout (i.e. offset 1).
// The latter is what we expect from packing.
int64_t offset = 1;
for (int64_t pos : innerDimPos) {
int64_t numInsertedBefore = llvm::count_if(
innerDimPos, [&pos](int64_t pos2) { return pos > pos2; });
res.insertPositions.push_back(pos + numInsertedBefore + offset);
}
DenseSet<int64_t> posSet(res.insertPositions.begin(),
res.insertPositions.end());
res.reassociations.reserve(packedRank);
for (int64_t i = 1; i <= packedRank; ++i) {
res.outerPositions.push_back(i - 1);
if (!posSet.contains(i)) {
res.reassociations.push_back(ReassociationIndices{i - 1});
continue;
}
res.reassociations.push_back(ReassociationIndices{i - 1, i});
++i;
}
return res;
}
|