1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
//===- StructuredOpsUtils.cpp - Utilities used by structured ops ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/IRMapping.h"
#include "llvm/ADT/StringSet.h"
#include "mlir/Dialect/Utils/DialectUtilsEnums.cpp.inc"
using namespace mlir;
bool mlir::isRowMajorMatmul(ArrayAttr indexingMaps) {
if (indexingMaps.size() != 3)
return false;
auto map0 = cast<AffineMapAttr>(indexingMaps[0]).getValue();
auto map1 = cast<AffineMapAttr>(indexingMaps[1]).getValue();
auto map2 = cast<AffineMapAttr>(indexingMaps[2]).getValue();
if (map0.getNumResults() != 2 || map1.getNumResults() != 2 ||
map2.getNumResults() != 2 || map0.getNumInputs() != 3 ||
map1.getNumInputs() != 3 || map2.getNumInputs() != 3) {
return false;
}
// Extract dimensions for MxK * KxN -> MxN
AffineExpr m = map2.getResult(0);
AffineExpr n = map2.getResult(1);
AffineExpr k = map0.getResult(1);
auto *context = indexingMaps.getContext();
auto mapA = AffineMapAttr::get(AffineMap::get(3, 0, {m, k}, context));
auto mapB = AffineMapAttr::get(AffineMap::get(3, 0, {k, n}, context));
auto mapC = AffineMapAttr::get(AffineMap::get(3, 0, {m, n}, context));
auto maps = ArrayAttr::get(context, {mapA, mapB, mapC});
return indexingMaps == maps;
}
bool mlir::isColumnMajorMatmul(ArrayAttr indexingMaps) {
if (indexingMaps.size() != 3)
return false;
auto map0 = cast<AffineMapAttr>(indexingMaps[0]).getValue();
auto map1 = cast<AffineMapAttr>(indexingMaps[1]).getValue();
auto map2 = cast<AffineMapAttr>(indexingMaps[2]).getValue();
if (map0.getNumResults() != 2 || map1.getNumResults() != 2 ||
map2.getNumResults() != 2 || map0.getNumInputs() != 3 ||
map1.getNumInputs() != 3 || map2.getNumInputs() != 3) {
return false;
}
// Extract dimensions for KxM * NxK -> NxM
AffineExpr n = map2.getResult(0);
AffineExpr m = map2.getResult(1);
AffineExpr k = map0.getResult(0);
auto *context = indexingMaps.getContext();
auto mapA = AffineMapAttr::get(AffineMap::get(3, 0, {k, m}, context));
auto mapB = AffineMapAttr::get(AffineMap::get(3, 0, {n, k}, context));
auto mapC = AffineMapAttr::get(AffineMap::get(3, 0, {n, m}, context));
auto maps = ArrayAttr::get(context, {mapA, mapB, mapC});
return indexingMaps == maps;
}
bool mlir::isRowMajorBatchMatmul(ArrayAttr indexingMaps) {
if (indexingMaps.size() != 3)
return false;
auto map0 = cast<AffineMapAttr>(indexingMaps[0]).getValue();
auto map1 = cast<AffineMapAttr>(indexingMaps[1]).getValue();
auto map2 = cast<AffineMapAttr>(indexingMaps[2]).getValue();
if (map0.getNumResults() != 3 || map1.getNumResults() != 3 ||
map2.getNumResults() != 3 || map0.getNumInputs() != 4 ||
map1.getNumInputs() != 4 || map2.getNumInputs() != 4) {
return false;
}
// Extract dimensions for BxMxK * BxKxN -> BxMxN
AffineExpr b = map2.getResult(0);
AffineExpr m = map2.getResult(1);
AffineExpr n = map2.getResult(2);
AffineExpr k = map0.getResult(2);
auto *context = indexingMaps.getContext();
auto mapA = AffineMapAttr::get(AffineMap::get(4, 0, {b, m, k}, context));
auto mapB = AffineMapAttr::get(AffineMap::get(4, 0, {b, k, n}, context));
auto mapC = AffineMapAttr::get(AffineMap::get(4, 0, {b, m, n}, context));
auto maps = ArrayAttr::get(context, {mapA, mapB, mapC});
return indexingMaps == maps;
}
Operation *mlir::clone(OpBuilder &b, Operation *op, TypeRange newResultTypes,
ValueRange newOperands) {
IRMapping bvm;
OperationState state(op->getLoc(), op->getName(), newOperands, newResultTypes,
op->getAttrs());
for (Region &r : op->getRegions())
r.cloneInto(state.addRegion(), bvm);
return b.create(state);
}
Operation *mlir::cloneWithoutRegions(OpBuilder &b, Operation *op,
TypeRange newResultTypes,
ValueRange newOperands) {
OperationState state(op->getLoc(), op->getName(), newOperands, newResultTypes,
op->getAttrs());
for (size_t cnt = 0, e = op->getNumRegions(); cnt < e; ++cnt)
state.addRegion();
return b.create(state);
}
SmallVector<NamedAttribute>
mlir::getPrunedAttributeList(Operation *op, ArrayRef<StringRef> elidedAttrs) {
llvm::StringSet<> elidedAttrsSet;
elidedAttrsSet.insert(elidedAttrs.begin(), elidedAttrs.end());
SmallVector<NamedAttribute> attrs;
for (auto attr : op->getAttrs()) {
if (elidedAttrsSet.count(attr.getName()))
continue;
attrs.push_back(attr);
}
return attrs;
}
|