1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
//===- LowerVectorMultiReduction.cpp - Lower `vector.multi_reduction` op --===//
//
/// Part of the LLVM Project, under the Apache License v2.0 with LLVM
/// Exceptions. See https://llvm.org/LICENSE.txt for license information.
/// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.multi_reduction' operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/TypeUtilities.h"
#define DEBUG_TYPE "vector-multi-reduction"
using namespace mlir;
namespace {
/// This file implements the following transformations as composable atomic
/// patterns.
/// Converts vector.multi_reduction into inner-most/outer-most reduction form
/// by using vector.transpose
class InnerOuterDimReductionConversion
: public OpRewritePattern<vector::MultiDimReductionOp> {
public:
using OpRewritePattern::OpRewritePattern;
explicit InnerOuterDimReductionConversion(
MLIRContext *context, vector::VectorMultiReductionLowering options,
PatternBenefit benefit = 1)
: mlir::OpRewritePattern<vector::MultiDimReductionOp>(context, benefit),
useInnerDimsForReduction(
options == vector::VectorMultiReductionLowering::InnerReduction) {}
LogicalResult matchAndRewrite(vector::MultiDimReductionOp multiReductionOp,
PatternRewriter &rewriter) const override {
// Vector mask setup.
OpBuilder::InsertionGuard guard(rewriter);
auto maskableOp =
cast<vector::MaskableOpInterface>(multiReductionOp.getOperation());
Operation *rootOp;
if (maskableOp.isMasked()) {
rewriter.setInsertionPoint(maskableOp.getMaskingOp());
rootOp = maskableOp.getMaskingOp();
} else {
rootOp = multiReductionOp;
}
auto src = multiReductionOp.getSource();
auto loc = multiReductionOp.getLoc();
auto srcRank = multiReductionOp.getSourceVectorType().getRank();
// Separate reduction and parallel dims
auto reductionDimsRange =
multiReductionOp.getReductionDims().getAsValueRange<IntegerAttr>();
auto reductionDims = llvm::to_vector<4>(llvm::map_range(
reductionDimsRange, [](const APInt &a) { return a.getZExtValue(); }));
llvm::SmallDenseSet<int64_t> reductionDimsSet(reductionDims.begin(),
reductionDims.end());
int64_t reductionSize = reductionDims.size();
SmallVector<int64_t, 4> parallelDims;
for (int64_t i = 0; i < srcRank; ++i)
if (!reductionDimsSet.contains(i))
parallelDims.push_back(i);
// Add transpose only if inner-most/outer-most dimensions are not parallel
// and there are parallel dims.
if (parallelDims.empty())
return failure();
if (useInnerDimsForReduction &&
(parallelDims ==
llvm::to_vector<4>(llvm::seq<int64_t>(0, parallelDims.size()))))
return failure();
if (!useInnerDimsForReduction &&
(parallelDims == llvm::to_vector<4>(llvm::seq<int64_t>(
reductionDims.size(),
parallelDims.size() + reductionDims.size()))))
return failure();
SmallVector<int64_t, 4> indices;
if (useInnerDimsForReduction) {
indices.append(parallelDims.begin(), parallelDims.end());
indices.append(reductionDims.begin(), reductionDims.end());
} else {
indices.append(reductionDims.begin(), reductionDims.end());
indices.append(parallelDims.begin(), parallelDims.end());
}
// If masked, transpose the original mask.
Value transposedMask;
if (maskableOp.isMasked()) {
transposedMask = rewriter.create<vector::TransposeOp>(
loc, maskableOp.getMaskingOp().getMask(), indices);
}
// Transpose reduction source.
auto transposeOp = rewriter.create<vector::TransposeOp>(loc, src, indices);
SmallVector<bool> reductionMask(srcRank, false);
for (int i = 0; i < reductionSize; ++i) {
if (useInnerDimsForReduction)
reductionMask[srcRank - i - 1] = true;
else
reductionMask[i] = true;
}
Operation *newMultiRedOp = rewriter.create<vector::MultiDimReductionOp>(
multiReductionOp.getLoc(), transposeOp.getResult(),
multiReductionOp.getAcc(), reductionMask, multiReductionOp.getKind());
newMultiRedOp =
mlir::vector::maskOperation(rewriter, newMultiRedOp, transposedMask);
rewriter.replaceOp(rootOp, newMultiRedOp->getResult(0));
return success();
}
private:
const bool useInnerDimsForReduction;
};
/// Reduces the rank of vector.multi_reduction nd -> 2d given all reduction
/// dimensions are either inner most or outer most.
class ReduceMultiDimReductionRank
: public OpRewritePattern<vector::MultiDimReductionOp> {
public:
using OpRewritePattern::OpRewritePattern;
explicit ReduceMultiDimReductionRank(
MLIRContext *context, vector::VectorMultiReductionLowering options,
PatternBenefit benefit = 1)
: mlir::OpRewritePattern<vector::MultiDimReductionOp>(context, benefit),
useInnerDimsForReduction(
options == vector::VectorMultiReductionLowering::InnerReduction) {}
LogicalResult matchAndRewrite(vector::MultiDimReductionOp multiReductionOp,
PatternRewriter &rewriter) const override {
// Vector mask setup.
OpBuilder::InsertionGuard guard(rewriter);
auto maskableOp =
cast<vector::MaskableOpInterface>(multiReductionOp.getOperation());
Operation *rootOp;
if (maskableOp.isMasked()) {
rewriter.setInsertionPoint(maskableOp.getMaskingOp());
rootOp = maskableOp.getMaskingOp();
} else {
rootOp = multiReductionOp;
}
auto srcRank = multiReductionOp.getSourceVectorType().getRank();
auto srcShape = multiReductionOp.getSourceVectorType().getShape();
auto loc = multiReductionOp.getLoc();
// If rank less than 2, nothing to do.
if (srcRank < 2)
return failure();
// If already rank-2 ["parallel", "reduce"] or ["reduce", "parallel"] bail.
SmallVector<bool> reductionMask = multiReductionOp.getReductionMask();
if (srcRank == 2 && reductionMask.front() != reductionMask.back())
return failure();
// 1. Separate reduction and parallel dims.
SmallVector<int64_t, 4> parallelDims, parallelShapes;
SmallVector<int64_t, 4> reductionDims, reductionShapes;
for (const auto &it : llvm::enumerate(reductionMask)) {
int64_t i = it.index();
bool isReduction = it.value();
if (isReduction) {
reductionDims.push_back(i);
reductionShapes.push_back(srcShape[i]);
} else {
parallelDims.push_back(i);
parallelShapes.push_back(srcShape[i]);
}
}
// 2. Compute flattened parallel and reduction sizes.
int flattenedParallelDim = 0;
int flattenedReductionDim = 0;
if (!parallelShapes.empty()) {
flattenedParallelDim = 1;
for (auto d : parallelShapes)
flattenedParallelDim *= d;
}
if (!reductionShapes.empty()) {
flattenedReductionDim = 1;
for (auto d : reductionShapes)
flattenedReductionDim *= d;
}
// We must at least have some parallel or some reduction.
assert((flattenedParallelDim || flattenedReductionDim) &&
"expected at least one parallel or reduction dim");
// 3. Fail if reduction/parallel dims are not contiguous.
// Check parallelDims are exactly [0 .. size).
int64_t counter = 0;
if (useInnerDimsForReduction &&
llvm::any_of(parallelDims, [&](int64_t i) { return i != counter++; }))
return failure();
// Check parallelDims are exactly {reductionDims.size()} + [0 .. size).
counter = reductionDims.size();
if (!useInnerDimsForReduction &&
llvm::any_of(parallelDims, [&](int64_t i) { return i != counter++; }))
return failure();
// 4. Shape cast to collapse consecutive parallel (resp. reduction dim) into
// a single parallel (resp. reduction) dim.
SmallVector<bool, 2> mask;
SmallVector<int64_t, 2> vectorShape;
if (flattenedParallelDim) {
mask.push_back(false);
vectorShape.push_back(flattenedParallelDim);
}
if (flattenedReductionDim) {
mask.push_back(true);
vectorShape.push_back(flattenedReductionDim);
}
if (!useInnerDimsForReduction && vectorShape.size() == 2) {
std::swap(mask.front(), mask.back());
std::swap(vectorShape.front(), vectorShape.back());
}
Value newVectorMask;
if (maskableOp.isMasked()) {
Value vectorMask = maskableOp.getMaskingOp().getMask();
auto maskCastedType = VectorType::get(
vectorShape,
llvm::cast<VectorType>(vectorMask.getType()).getElementType());
newVectorMask =
rewriter.create<vector::ShapeCastOp>(loc, maskCastedType, vectorMask);
}
auto castedType = VectorType::get(
vectorShape, multiReductionOp.getSourceVectorType().getElementType());
Value cast = rewriter.create<vector::ShapeCastOp>(
loc, castedType, multiReductionOp.getSource());
Value acc = multiReductionOp.getAcc();
if (flattenedParallelDim) {
auto accType = VectorType::get(
{flattenedParallelDim},
multiReductionOp.getSourceVectorType().getElementType());
acc = rewriter.create<vector::ShapeCastOp>(loc, accType, acc);
}
// 6. Creates the flattened form of vector.multi_reduction with inner/outer
// most dim as reduction.
Operation *newMultiDimRedOp = rewriter.create<vector::MultiDimReductionOp>(
loc, cast, acc, mask, multiReductionOp.getKind());
newMultiDimRedOp =
mlir::vector::maskOperation(rewriter, newMultiDimRedOp, newVectorMask);
// 7. If there are no parallel shapes, the result is a scalar.
// TODO: support 0-d vectors when available.
if (parallelShapes.empty()) {
rewriter.replaceOp(rootOp, newMultiDimRedOp->getResult(0));
return success();
}
// 8. Creates shape cast for the output n-D -> 2-D.
VectorType outputCastedType = VectorType::get(
parallelShapes,
multiReductionOp.getSourceVectorType().getElementType());
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
rootOp, outputCastedType, newMultiDimRedOp->getResult(0));
return success();
}
private:
const bool useInnerDimsForReduction;
};
/// Unrolls vector.multi_reduction with outermost reductions
/// and combines results
struct TwoDimMultiReductionToElementWise
: public OpRewritePattern<vector::MultiDimReductionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::MultiDimReductionOp multiReductionOp,
PatternRewriter &rewriter) const override {
auto maskableOp =
cast<vector::MaskableOpInterface>(multiReductionOp.getOperation());
if (maskableOp.isMasked())
// TODO: Support masking.
return failure();
auto srcRank = multiReductionOp.getSourceVectorType().getRank();
// Rank-2 ["parallel", "reduce"] or bail.
if (srcRank != 2)
return failure();
if (multiReductionOp.isReducedDim(1) || !multiReductionOp.isReducedDim(0))
return failure();
auto loc = multiReductionOp.getLoc();
ArrayRef<int64_t> srcShape =
multiReductionOp.getSourceVectorType().getShape();
Type elementType = getElementTypeOrSelf(multiReductionOp.getDestType());
if (!elementType.isIntOrIndexOrFloat())
return failure();
Value result = multiReductionOp.getAcc();
for (int64_t i = 0; i < srcShape[0]; i++) {
auto operand = rewriter.create<vector::ExtractOp>(
loc, multiReductionOp.getSource(), i);
result = makeArithReduction(rewriter, loc, multiReductionOp.getKind(),
operand, result);
}
rewriter.replaceOp(multiReductionOp, result);
return success();
}
};
/// Converts 2d vector.multi_reduction with inner most reduction dimension into
/// a sequence of vector.reduction ops.
struct TwoDimMultiReductionToReduction
: public OpRewritePattern<vector::MultiDimReductionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::MultiDimReductionOp multiReductionOp,
PatternRewriter &rewriter) const override {
auto srcRank = multiReductionOp.getSourceVectorType().getRank();
if (srcRank != 2)
return failure();
if (multiReductionOp.isReducedDim(0) || !multiReductionOp.isReducedDim(1))
return failure();
// Vector mask setup.
OpBuilder::InsertionGuard guard(rewriter);
auto maskableOp =
cast<vector::MaskableOpInterface>(multiReductionOp.getOperation());
Operation *rootOp;
if (maskableOp.isMasked()) {
rewriter.setInsertionPoint(maskableOp.getMaskingOp());
rootOp = maskableOp.getMaskingOp();
} else {
rootOp = multiReductionOp;
}
auto loc = multiReductionOp.getLoc();
Value result = rewriter.create<arith::ConstantOp>(
loc, multiReductionOp.getDestType(),
rewriter.getZeroAttr(multiReductionOp.getDestType()));
int outerDim = multiReductionOp.getSourceVectorType().getShape()[0];
for (int i = 0; i < outerDim; ++i) {
auto v = rewriter.create<vector::ExtractOp>(
loc, multiReductionOp.getSource(), ArrayRef<int64_t>{i});
auto acc = rewriter.create<vector::ExtractOp>(
loc, multiReductionOp.getAcc(), ArrayRef<int64_t>{i});
Operation *reductionOp = rewriter.create<vector::ReductionOp>(
loc, multiReductionOp.getKind(), v, acc);
// If masked, slice the mask and mask the new reduction operation.
if (maskableOp.isMasked()) {
Value mask = rewriter.create<vector::ExtractOp>(
loc, maskableOp.getMaskingOp().getMask(), ArrayRef<int64_t>{i});
reductionOp = mlir::vector::maskOperation(rewriter, reductionOp, mask);
}
result = rewriter.create<vector::InsertElementOp>(
loc, reductionOp->getResult(0), result,
rewriter.create<arith::ConstantIndexOp>(loc, i));
}
rewriter.replaceOp(rootOp, result);
return success();
}
};
/// Converts 1d vector.multi_reduction with a single reduction dimension to a 2d
/// form with both a single parallel and reduction dimension.
/// This is achieved with a simple vector.shape_cast that inserts a leading 1.
/// The case with a single parallel dimension is a noop and folds away
/// separately.
struct OneDimMultiReductionToTwoDim
: public OpRewritePattern<vector::MultiDimReductionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::MultiDimReductionOp multiReductionOp,
PatternRewriter &rewriter) const override {
auto srcRank = multiReductionOp.getSourceVectorType().getRank();
// Rank-1 or bail.
if (srcRank != 1)
return failure();
// Vector mask setup.
OpBuilder::InsertionGuard guard(rewriter);
auto maskableOp =
cast<vector::MaskableOpInterface>(multiReductionOp.getOperation());
Operation *rootOp;
Value mask;
if (maskableOp.isMasked()) {
rewriter.setInsertionPoint(maskableOp.getMaskingOp());
rootOp = maskableOp.getMaskingOp();
mask = maskableOp.getMaskingOp().getMask();
} else {
rootOp = multiReductionOp;
}
auto loc = multiReductionOp.getLoc();
auto srcVectorType = multiReductionOp.getSourceVectorType();
auto srcShape = srcVectorType.getShape();
auto castedType = VectorType::get(ArrayRef<int64_t>{1, srcShape.back()},
srcVectorType.getElementType());
auto accType =
VectorType::get(ArrayRef<int64_t>{1}, srcVectorType.getElementType());
assert(!llvm::isa<VectorType>(multiReductionOp.getDestType()) &&
"multi_reduction with a single dimension expects a scalar result");
// If the unique dim is reduced and we insert a parallel in front, we need a
// {false, true} mask.
SmallVector<bool, 2> reductionMask{false, true};
/// vector.extract(vector.multi_reduce(vector.shape_cast(v, 1xk)), 0)
Value cast = rewriter.create<vector::ShapeCastOp>(
loc, castedType, multiReductionOp.getSource());
Value castAcc = rewriter.create<vector::BroadcastOp>(
loc, accType, multiReductionOp.getAcc());
Value castMask;
if (maskableOp.isMasked()) {
auto maskType = llvm::cast<ShapedType>(mask.getType());
auto castMaskType =
VectorType::get(ArrayRef<int64_t>{1, maskType.getShape().back()},
maskType.getElementType());
castMask = rewriter.create<vector::BroadcastOp>(loc, castMaskType, mask);
}
Operation *newOp = rewriter.create<vector::MultiDimReductionOp>(
loc, cast, castAcc, reductionMask, multiReductionOp.getKind());
newOp = vector::maskOperation(rewriter, newOp, castMask);
rewriter.replaceOpWithNewOp<vector::ExtractOp>(rootOp, newOp->getResult(0),
ArrayRef<int64_t>{0});
return success();
}
};
} // namespace
void mlir::vector::populateVectorMultiReductionLoweringPatterns(
RewritePatternSet &patterns, VectorMultiReductionLowering options,
PatternBenefit benefit) {
patterns.add<InnerOuterDimReductionConversion, ReduceMultiDimReductionRank>(
patterns.getContext(), options, benefit);
patterns.add<OneDimMultiReductionToTwoDim>(patterns.getContext(), benefit);
if (options == VectorMultiReductionLowering ::InnerReduction)
patterns.add<TwoDimMultiReductionToReduction>(patterns.getContext(),
benefit);
else
patterns.add<TwoDimMultiReductionToElementWise>(patterns.getContext(),
benefit);
}
|