1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
|
//===- VectorTransferPermutationMapRewritePatterns.cpp - Xfer map rewrite -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements rewrite patterns for the permutation_map attribute of
// vector.transfer operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Interfaces/VectorInterfaces.h"
using namespace mlir;
using namespace mlir::vector;
/// Transpose a vector transfer op's `in_bounds` attribute by applying reverse
/// permutation based on the given indices.
static ArrayAttr
inverseTransposeInBoundsAttr(OpBuilder &builder, ArrayAttr attr,
const SmallVector<unsigned> &permutation) {
SmallVector<bool> newInBoundsValues(permutation.size());
size_t index = 0;
for (unsigned pos : permutation)
newInBoundsValues[pos] =
cast<BoolAttr>(attr.getValue()[index++]).getValue();
return builder.getBoolArrayAttr(newInBoundsValues);
}
/// Extend the rank of a vector Value by `addedRanks` by adding outer unit
/// dimensions.
static Value extendVectorRank(OpBuilder &builder, Location loc, Value vec,
int64_t addedRank) {
auto originalVecType = cast<VectorType>(vec.getType());
SmallVector<int64_t> newShape(addedRank, 1);
newShape.append(originalVecType.getShape().begin(),
originalVecType.getShape().end());
VectorType newVecType =
VectorType::get(newShape, originalVecType.getElementType());
return builder.create<vector::BroadcastOp>(loc, newVecType, vec);
}
/// Extend the rank of a vector Value by `addedRanks` by adding inner unit
/// dimensions.
static Value extendMaskRank(OpBuilder &builder, Location loc, Value vec,
int64_t addedRank) {
Value broadcasted = extendVectorRank(builder, loc, vec, addedRank);
SmallVector<int64_t> permutation;
for (int64_t i = addedRank,
e = broadcasted.getType().cast<VectorType>().getRank();
i < e; ++i)
permutation.push_back(i);
for (int64_t i = 0; i < addedRank; ++i)
permutation.push_back(i);
return builder.create<vector::TransposeOp>(loc, broadcasted, permutation);
}
//===----------------------------------------------------------------------===//
// populateVectorTransferPermutationMapLoweringPatterns
//===----------------------------------------------------------------------===//
namespace {
/// Lower transfer_read op with permutation into a transfer_read with a
/// permutation map composed of leading zeros followed by a minor identiy +
/// vector.transpose op.
/// Ex:
/// vector.transfer_read ...
/// permutation_map: (d0, d1, d2) -> (0, d1)
/// into:
/// %v = vector.transfer_read ...
/// permutation_map: (d0, d1, d2) -> (d1, 0)
/// vector.transpose %v, [1, 0]
///
/// vector.transfer_read ...
/// permutation_map: (d0, d1, d2, d3) -> (0, 0, 0, d1, d3)
/// into:
/// %v = vector.transfer_read ...
/// permutation_map: (d0, d1, d2, d3) -> (0, 0, d1, 0, d3)
/// vector.transpose %v, [0, 1, 3, 2, 4]
/// Note that an alternative is to transform it to linalg.transpose +
/// vector.transfer_read to do the transpose in memory instead.
struct TransferReadPermutationLowering
: public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp op,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (op.getTransferRank() == 0)
return rewriter.notifyMatchFailure(op, "0-d corner case not supported");
SmallVector<unsigned> permutation;
AffineMap map = op.getPermutationMap();
if (map.getNumResults() == 0)
return rewriter.notifyMatchFailure(op, "0 result permutation map");
if (!map.isPermutationOfMinorIdentityWithBroadcasting(permutation)) {
return rewriter.notifyMatchFailure(
op, "map is not permutable to minor identity, apply another pattern");
}
AffineMap permutationMap =
map.getPermutationMap(permutation, op.getContext());
if (permutationMap.isIdentity())
return rewriter.notifyMatchFailure(op, "map is not identity");
permutationMap = map.getPermutationMap(permutation, op.getContext());
// Caluclate the map of the new read by applying the inverse permutation.
permutationMap = inversePermutation(permutationMap);
AffineMap newMap = permutationMap.compose(map);
// Apply the reverse transpose to deduce the type of the transfer_read.
ArrayRef<int64_t> originalShape = op.getVectorType().getShape();
SmallVector<int64_t> newVectorShape(originalShape.size());
for (const auto &pos : llvm::enumerate(permutation)) {
newVectorShape[pos.value()] = originalShape[pos.index()];
}
// Transpose in_bounds attribute.
ArrayAttr newInBoundsAttr =
op.getInBounds() ? inverseTransposeInBoundsAttr(
rewriter, op.getInBounds().value(), permutation)
: ArrayAttr();
// Generate new transfer_read operation.
VectorType newReadType =
VectorType::get(newVectorShape, op.getVectorType().getElementType());
Value newRead = rewriter.create<vector::TransferReadOp>(
op.getLoc(), newReadType, op.getSource(), op.getIndices(),
AffineMapAttr::get(newMap), op.getPadding(), op.getMask(),
newInBoundsAttr);
// Transpose result of transfer_read.
SmallVector<int64_t> transposePerm(permutation.begin(), permutation.end());
rewriter.replaceOpWithNewOp<vector::TransposeOp>(op, newRead,
transposePerm);
return success();
}
};
/// Lower transfer_write op with permutation into a transfer_write with a
/// minor identity permutation map. (transfer_write ops cannot have broadcasts.)
/// Ex:
/// vector.transfer_write %v ...
/// permutation_map: (d0, d1, d2) -> (d2, d0, d1)
/// into:
/// %tmp = vector.transpose %v, [2, 0, 1]
/// vector.transfer_write %tmp ...
/// permutation_map: (d0, d1, d2) -> (d0, d1, d2)
///
/// vector.transfer_write %v ...
/// permutation_map: (d0, d1, d2, d3) -> (d3, d2)
/// into:
/// %tmp = vector.transpose %v, [1, 0]
/// %v = vector.transfer_write %tmp ...
/// permutation_map: (d0, d1, d2, d3) -> (d2, d3)
struct TransferWritePermutationLowering
: public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp op,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (op.getTransferRank() == 0)
return rewriter.notifyMatchFailure(op, "0-d corner case not supported");
SmallVector<unsigned> permutation;
AffineMap map = op.getPermutationMap();
if (map.isMinorIdentity())
return rewriter.notifyMatchFailure(op, "map is already minor identity");
if (!map.isPermutationOfMinorIdentityWithBroadcasting(permutation)) {
return rewriter.notifyMatchFailure(
op, "map is not permutable to minor identity, apply another pattern");
}
// Remove unused dims from the permutation map. E.g.:
// E.g.: (d0, d1, d2, d3, d4, d5) -> (d5, d3, d4)
// comp = (d0, d1, d2) -> (d2, d0, d1)
auto comp = compressUnusedDims(map);
AffineMap permutationMap = inversePermutation(comp);
// Get positions of remaining result dims.
SmallVector<int64_t> indices;
llvm::transform(permutationMap.getResults(), std::back_inserter(indices),
[](AffineExpr expr) {
return expr.dyn_cast<AffineDimExpr>().getPosition();
});
// Transpose in_bounds attribute.
ArrayAttr newInBoundsAttr =
op.getInBounds() ? inverseTransposeInBoundsAttr(
rewriter, op.getInBounds().value(), permutation)
: ArrayAttr();
// Generate new transfer_write operation.
Value newVec = rewriter.create<vector::TransposeOp>(
op.getLoc(), op.getVector(), indices);
auto newMap = AffineMap::getMinorIdentityMap(
map.getNumDims(), map.getNumResults(), rewriter.getContext());
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
op, newVec, op.getSource(), op.getIndices(), AffineMapAttr::get(newMap),
op.getMask(), newInBoundsAttr);
return success();
}
};
/// Convert a transfer.write op with a map which isn't the permutation of a
/// minor identity into a vector.broadcast + transfer_write with permutation of
/// minor identity map by adding unit dim on inner dimension. Ex:
/// ```
/// vector.transfer_write %v
/// {permutation_map = affine_map<(d0, d1, d2, d3) -> (d1, d2)>} :
/// vector<8x16xf32>
/// ```
/// into:
/// ```
/// %v1 = vector.broadcast %v : vector<8x16xf32> to vector<1x8x16xf32>
/// vector.transfer_write %v1
/// {permutation_map = affine_map<(d0, d1, d2, d3) -> (d3, d1, d2)>} :
/// vector<1x8x16xf32>
/// ```
struct TransferWriteNonPermutationLowering
: public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp op,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (op.getTransferRank() == 0)
return rewriter.notifyMatchFailure(op, "0-d corner case not supported");
SmallVector<unsigned> permutation;
AffineMap map = op.getPermutationMap();
if (map.isPermutationOfMinorIdentityWithBroadcasting(permutation)) {
return rewriter.notifyMatchFailure(
op,
"map is already permutable to minor identity, apply another pattern");
}
// Missing outer dimensions are allowed, find the most outer existing
// dimension then deduce the missing inner dimensions.
SmallVector<bool> foundDim(map.getNumDims(), false);
for (AffineExpr exp : map.getResults())
foundDim[exp.cast<AffineDimExpr>().getPosition()] = true;
SmallVector<AffineExpr> exprs;
bool foundFirstDim = false;
SmallVector<int64_t> missingInnerDim;
for (size_t i = 0; i < foundDim.size(); i++) {
if (foundDim[i]) {
foundFirstDim = true;
continue;
}
if (!foundFirstDim)
continue;
// Once we found one outer dimension existing in the map keep track of all
// the missing dimensions after that.
missingInnerDim.push_back(i);
exprs.push_back(rewriter.getAffineDimExpr(i));
}
// Vector: add unit dims at the beginning of the shape.
Value newVec = extendVectorRank(rewriter, op.getLoc(), op.getVector(),
missingInnerDim.size());
// Mask: add unit dims at the end of the shape.
Value newMask;
if (op.getMask())
newMask = extendMaskRank(rewriter, op.getLoc(), op.getMask(),
missingInnerDim.size());
exprs.append(map.getResults().begin(), map.getResults().end());
AffineMap newMap =
AffineMap::get(map.getNumDims(), 0, exprs, op.getContext());
// All the new dimensions added are inbound.
SmallVector<bool> newInBoundsValues(missingInnerDim.size(), true);
for (int64_t i = 0, e = op.getVectorType().getRank(); i < e; ++i) {
newInBoundsValues.push_back(op.isDimInBounds(i));
}
ArrayAttr newInBoundsAttr = rewriter.getBoolArrayAttr(newInBoundsValues);
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
op, newVec, op.getSource(), op.getIndices(), AffineMapAttr::get(newMap),
newMask, newInBoundsAttr);
return success();
}
};
/// Lower transfer_read op with broadcast in the leading dimensions into
/// transfer_read of lower rank + vector.broadcast.
/// Ex: vector.transfer_read ...
/// permutation_map: (d0, d1, d2, d3) -> (0, d1, 0, d3)
/// into:
/// %v = vector.transfer_read ...
/// permutation_map: (d0, d1, d2, d3) -> (d1, 0, d3)
/// vector.broadcast %v
struct TransferOpReduceRank : public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp op,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (op.getTransferRank() == 0)
return rewriter.notifyMatchFailure(op, "0-d corner case not supported");
AffineMap map = op.getPermutationMap();
unsigned numLeadingBroadcast = 0;
for (auto expr : map.getResults()) {
auto dimExpr = expr.dyn_cast<AffineConstantExpr>();
if (!dimExpr || dimExpr.getValue() != 0)
break;
numLeadingBroadcast++;
}
// If there are no leading zeros in the map there is nothing to do.
if (numLeadingBroadcast == 0)
return rewriter.notifyMatchFailure(op, "no leading broadcasts in map");
VectorType originalVecType = op.getVectorType();
unsigned reducedShapeRank = originalVecType.getRank() - numLeadingBroadcast;
// Calculate new map, vector type and masks without the leading zeros.
AffineMap newMap = AffineMap::get(
map.getNumDims(), 0, map.getResults().take_back(reducedShapeRank),
op.getContext());
// Only remove the leading zeros if the rest of the map is a minor identity
// with broadasting. Otherwise we first want to permute the map.
if (!newMap.isMinorIdentityWithBroadcasting()) {
return rewriter.notifyMatchFailure(
op, "map is not a minor identity with broadcasting");
}
// TODO: support zero-dimension vectors natively. See:
// https://llvm.discourse.group/t/should-we-have-0-d-vectors/3097.
// In the meantime, lower these to a scalar load when they pop up.
if (reducedShapeRank == 0) {
Value newRead;
if (isa<TensorType>(op.getShapedType())) {
newRead = rewriter.create<tensor::ExtractOp>(
op.getLoc(), op.getSource(), op.getIndices());
} else {
newRead = rewriter.create<memref::LoadOp>(
op.getLoc(), originalVecType.getElementType(), op.getSource(),
op.getIndices());
}
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, originalVecType,
newRead);
return success();
}
SmallVector<int64_t> newShape = llvm::to_vector<4>(
originalVecType.getShape().take_back(reducedShapeRank));
// Vector rank cannot be zero. Handled by TransferReadToVectorLoadLowering.
if (newShape.empty())
return rewriter.notifyMatchFailure(op, "rank-reduced vector is 0-d");
VectorType newReadType =
VectorType::get(newShape, originalVecType.getElementType());
ArrayAttr newInBoundsAttr =
op.getInBounds()
? rewriter.getArrayAttr(
op.getInBoundsAttr().getValue().take_back(reducedShapeRank))
: ArrayAttr();
Value newRead = rewriter.create<vector::TransferReadOp>(
op.getLoc(), newReadType, op.getSource(), op.getIndices(),
AffineMapAttr::get(newMap), op.getPadding(), op.getMask(),
newInBoundsAttr);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, originalVecType,
newRead);
return success();
}
};
} // namespace
void mlir::vector::populateVectorTransferPermutationMapLoweringPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns
.add<TransferReadPermutationLowering, TransferWritePermutationLowering,
TransferOpReduceRank, TransferWriteNonPermutationLowering>(
patterns.getContext(), benefit);
}
//===----------------------------------------------------------------------===//
// populateVectorTransferLoweringPatterns
//===----------------------------------------------------------------------===//
namespace {
/// Progressive lowering of transfer_read. This pattern supports lowering of
/// `vector.transfer_read` to a combination of `vector.load` and
/// `vector.broadcast` if all of the following hold:
/// - Stride of most minor memref dimension must be 1.
/// - Out-of-bounds masking is not required.
/// - If the memref's element type is a vector type then it coincides with the
/// result type.
/// - The permutation map doesn't perform permutation (broadcasting is allowed).
struct TransferReadToVectorLoadLowering
: public OpRewritePattern<vector::TransferReadOp> {
TransferReadToVectorLoadLowering(MLIRContext *context,
std::optional<unsigned> maxRank,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransferReadOp>(context, benefit),
maxTransferRank(maxRank) {}
LogicalResult matchAndRewrite(vector::TransferReadOp read,
PatternRewriter &rewriter) const override {
if (maxTransferRank && read.getVectorType().getRank() > *maxTransferRank) {
return rewriter.notifyMatchFailure(
read, "vector type is greater than max transfer rank");
}
SmallVector<unsigned> broadcastedDims;
// Permutations are handled by VectorToSCF or
// populateVectorTransferPermutationMapLoweringPatterns.
// We let the 0-d corner case pass-through as it is supported.
if (!read.getPermutationMap().isMinorIdentityWithBroadcasting(
&broadcastedDims))
return rewriter.notifyMatchFailure(read, "not minor identity + bcast");
auto memRefType = dyn_cast<MemRefType>(read.getShapedType());
if (!memRefType)
return rewriter.notifyMatchFailure(read, "not a memref source");
// Non-unit strides are handled by VectorToSCF.
if (!isLastMemrefDimUnitStride(memRefType))
return rewriter.notifyMatchFailure(read, "!= 1 stride needs VectorToSCF");
// If there is broadcasting involved then we first load the unbroadcasted
// vector, and then broadcast it with `vector.broadcast`.
ArrayRef<int64_t> vectorShape = read.getVectorType().getShape();
SmallVector<int64_t> unbroadcastedVectorShape(vectorShape.begin(),
vectorShape.end());
for (unsigned i : broadcastedDims)
unbroadcastedVectorShape[i] = 1;
VectorType unbroadcastedVectorType = VectorType::get(
unbroadcastedVectorShape, read.getVectorType().getElementType());
// `vector.load` supports vector types as memref's elements only when the
// resulting vector type is the same as the element type.
auto memrefElTy = memRefType.getElementType();
if (isa<VectorType>(memrefElTy) && memrefElTy != unbroadcastedVectorType)
return rewriter.notifyMatchFailure(read, "incompatible element type");
// Otherwise, element types of the memref and the vector must match.
if (!isa<VectorType>(memrefElTy) &&
memrefElTy != read.getVectorType().getElementType())
return rewriter.notifyMatchFailure(read, "non-matching element type");
// Out-of-bounds dims are handled by MaterializeTransferMask.
if (read.hasOutOfBoundsDim())
return rewriter.notifyMatchFailure(read, "out-of-bounds needs mask");
// Create vector load op.
Operation *loadOp;
if (read.getMask()) {
Value fill = rewriter.create<vector::SplatOp>(
read.getLoc(), unbroadcastedVectorType, read.getPadding());
loadOp = rewriter.create<vector::MaskedLoadOp>(
read.getLoc(), unbroadcastedVectorType, read.getSource(),
read.getIndices(), read.getMask(), fill);
} else {
loadOp = rewriter.create<vector::LoadOp>(
read.getLoc(), unbroadcastedVectorType, read.getSource(),
read.getIndices());
}
// Insert a broadcasting op if required.
if (!broadcastedDims.empty()) {
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
read, read.getVectorType(), loadOp->getResult(0));
} else {
rewriter.replaceOp(read, loadOp->getResult(0));
}
return success();
}
std::optional<unsigned> maxTransferRank;
};
/// Replace a 0-d vector.load with a memref.load + vector.broadcast.
// TODO: we shouldn't cross the vector/scalar domains just for this
// but atm we lack the infra to avoid it. Possible solutions include:
// - go directly to LLVM + bitcast
// - introduce a bitcast op and likely a new pointer dialect
// - let memref.load/store additionally support the 0-d vector case
// There are still deeper data layout issues lingering even in this
// trivial case (for architectures for which this matters).
struct VectorLoadToMemrefLoadLowering
: public OpRewritePattern<vector::LoadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::LoadOp loadOp,
PatternRewriter &rewriter) const override {
auto vecType = loadOp.getVectorType();
if (vecType.getNumElements() != 1)
return rewriter.notifyMatchFailure(loadOp, "not a single element vector");
auto memrefLoad = rewriter.create<memref::LoadOp>(
loadOp.getLoc(), loadOp.getBase(), loadOp.getIndices());
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(loadOp, vecType,
memrefLoad);
return success();
}
};
/// Replace a 0-d vector.store with a vector.extractelement + memref.store.
struct VectorStoreToMemrefStoreLowering
: public OpRewritePattern<vector::StoreOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::StoreOp storeOp,
PatternRewriter &rewriter) const override {
auto vecType = storeOp.getVectorType();
if (vecType.getNumElements() != 1)
return rewriter.notifyMatchFailure(storeOp, "not single element vector");
Value extracted;
if (vecType.getRank() == 0) {
// TODO: Unifiy once ExtractOp supports 0-d vectors.
extracted = rewriter.create<vector::ExtractElementOp>(
storeOp.getLoc(), storeOp.getValueToStore());
} else {
SmallVector<int64_t> indices(vecType.getRank(), 0);
extracted = rewriter.create<vector::ExtractOp>(
storeOp.getLoc(), storeOp.getValueToStore(), indices);
}
rewriter.replaceOpWithNewOp<memref::StoreOp>(
storeOp, extracted, storeOp.getBase(), storeOp.getIndices());
return success();
}
};
/// Progressive lowering of transfer_write. This pattern supports lowering of
/// `vector.transfer_write` to `vector.store` if all of the following hold:
/// - Stride of most minor memref dimension must be 1.
/// - Out-of-bounds masking is not required.
/// - If the memref's element type is a vector type then it coincides with the
/// type of the written value.
/// - The permutation map is the minor identity map (neither permutation nor
/// broadcasting is allowed).
struct TransferWriteToVectorStoreLowering
: public OpRewritePattern<vector::TransferWriteOp> {
TransferWriteToVectorStoreLowering(MLIRContext *context,
std::optional<unsigned> maxRank,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransferWriteOp>(context, benefit),
maxTransferRank(maxRank) {}
LogicalResult matchAndRewrite(vector::TransferWriteOp write,
PatternRewriter &rewriter) const override {
if (maxTransferRank && write.getVectorType().getRank() > *maxTransferRank) {
return rewriter.notifyMatchFailure(
write, "vector type is greater than max transfer rank");
}
// Permutations are handled by VectorToSCF or
// populateVectorTransferPermutationMapLoweringPatterns.
if ( // pass-through for the 0-d corner case.
!write.getPermutationMap().isMinorIdentity())
return rewriter.notifyMatchFailure(write.getLoc(), [=](Diagnostic &diag) {
diag << "permutation map is not minor identity: " << write;
});
auto memRefType = dyn_cast<MemRefType>(write.getShapedType());
if (!memRefType)
return rewriter.notifyMatchFailure(write.getLoc(), [=](Diagnostic &diag) {
diag << "not a memref type: " << write;
});
// Non-unit strides are handled by VectorToSCF.
if (!isLastMemrefDimUnitStride(memRefType))
return rewriter.notifyMatchFailure(write.getLoc(), [=](Diagnostic &diag) {
diag << "most minor stride is not 1: " << write;
});
// `vector.store` supports vector types as memref's elements only when the
// type of the vector value being written is the same as the element type.
auto memrefElTy = memRefType.getElementType();
if (isa<VectorType>(memrefElTy) && memrefElTy != write.getVectorType())
return rewriter.notifyMatchFailure(write.getLoc(), [=](Diagnostic &diag) {
diag << "elemental type mismatch: " << write;
});
// Otherwise, element types of the memref and the vector must match.
if (!isa<VectorType>(memrefElTy) &&
memrefElTy != write.getVectorType().getElementType())
return rewriter.notifyMatchFailure(write.getLoc(), [=](Diagnostic &diag) {
diag << "elemental type mismatch: " << write;
});
// Out-of-bounds dims are handled by MaterializeTransferMask.
if (write.hasOutOfBoundsDim())
return rewriter.notifyMatchFailure(write.getLoc(), [=](Diagnostic &diag) {
diag << "out of bounds dim: " << write;
});
if (write.getMask()) {
rewriter.replaceOpWithNewOp<vector::MaskedStoreOp>(
write, write.getSource(), write.getIndices(), write.getMask(),
write.getVector());
} else {
rewriter.replaceOpWithNewOp<vector::StoreOp>(
write, write.getVector(), write.getSource(), write.getIndices());
}
return success();
}
std::optional<unsigned> maxTransferRank;
};
} // namespace
void mlir::vector::populateVectorTransferLoweringPatterns(
RewritePatternSet &patterns, std::optional<unsigned> maxTransferRank,
PatternBenefit benefit) {
patterns.add<TransferReadToVectorLoadLowering,
TransferWriteToVectorStoreLowering>(patterns.getContext(),
maxTransferRank, benefit);
patterns
.add<VectorLoadToMemrefLoadLowering, VectorStoreToMemrefStoreLowering>(
patterns.getContext(), benefit);
}
|