1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
//===- LowerVectorTranspose.cpp - Lower 'vector.transpose' operation ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.transpose' operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/VectorInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#define DEBUG_TYPE "lower-vector-transpose"
using namespace mlir;
using namespace mlir::vector;
/// Given a 'transpose' pattern, prune the rightmost dimensions that are not
/// transposed.
static void pruneNonTransposedDims(ArrayRef<int64_t> transpose,
SmallVectorImpl<int64_t> &result) {
size_t numTransposedDims = transpose.size();
for (size_t transpDim : llvm::reverse(transpose)) {
if (transpDim != numTransposedDims - 1)
break;
numTransposedDims--;
}
result.append(transpose.begin(), transpose.begin() + numTransposedDims);
}
/// Returns true if the lowering option is a vector shuffle based approach.
static bool isShuffleLike(VectorTransposeLowering lowering) {
return lowering == VectorTransposeLowering::Shuffle1D ||
lowering == VectorTransposeLowering::Shuffle16x16;
}
/// Returns a shuffle mask that builds on `vals`. `vals` is the offset base of
/// shuffle ops, i.e., the unpack pattern. The method iterates with `vals` to
/// create the mask for `numBits` bits vector. The `numBits` have to be a
/// multiple of 128. For example, if `vals` is {0, 1, 16, 17} and `numBits` is
/// 512, there should be 16 elements in the final result. It constructs the
/// below mask to get the unpack elements.
/// [0, 1, 16, 17,
/// 0+4, 1+4, 16+4, 17+4,
/// 0+8, 1+8, 16+8, 17+8,
/// 0+12, 1+12, 16+12, 17+12]
static SmallVector<int64_t>
getUnpackShufflePermFor128Lane(ArrayRef<int64_t> vals, int numBits) {
assert(numBits % 128 == 0 && "expected numBits is a multiple of 128");
int numElem = numBits / 32;
SmallVector<int64_t> res;
for (int i = 0; i < numElem; i += 4)
for (int64_t v : vals)
res.push_back(v + i);
return res;
}
/// Lower to vector.shuffle on v1 and v2 with UnpackLoPd shuffle mask. For
/// example, if it is targeting 512 bit vector, returns
/// vector.shuffle on v1, v2, [0, 1, 16, 17,
/// 0+4, 1+4, 16+4, 17+4,
/// 0+8, 1+8, 16+8, 17+8,
/// 0+12, 1+12, 16+12, 17+12].
static Value createUnpackLoPd(ImplicitLocOpBuilder &b, Value v1, Value v2,
int numBits) {
int numElem = numBits / 32;
return b.create<vector::ShuffleOp>(
v1, v2,
getUnpackShufflePermFor128Lane({0, 1, numElem, numElem + 1}, numBits));
}
/// Lower to vector.shuffle on v1 and v2 with UnpackHiPd shuffle mask. For
/// example, if it is targeting 512 bit vector, returns
/// vector.shuffle, v1, v2, [2, 3, 18, 19,
/// 2+4, 3+4, 18+4, 19+4,
/// 2+8, 3+8, 18+8, 19+8,
/// 2+12, 3+12, 18+12, 19+12].
static Value createUnpackHiPd(ImplicitLocOpBuilder &b, Value v1, Value v2,
int numBits) {
int numElem = numBits / 32;
return b.create<vector::ShuffleOp>(
v1, v2,
getUnpackShufflePermFor128Lane({2, 3, numElem + 2, numElem + 3},
numBits));
}
/// Lower to vector.shuffle on v1 and v2 with UnpackLoPs shuffle mask. For
/// example, if it is targeting 512 bit vector, returns
/// vector.shuffle, v1, v2, [0, 16, 1, 17,
/// 0+4, 16+4, 1+4, 17+4,
/// 0+8, 16+8, 1+8, 17+8,
/// 0+12, 16+12, 1+12, 17+12].
static Value createUnpackLoPs(ImplicitLocOpBuilder &b, Value v1, Value v2,
int numBits) {
int numElem = numBits / 32;
auto shuffle = b.create<vector::ShuffleOp>(
v1, v2,
getUnpackShufflePermFor128Lane({0, numElem, 1, numElem + 1}, numBits));
return shuffle;
}
/// Lower to vector.shuffle on v1 and v2 with UnpackHiPs shuffle mask. For
/// example, if it is targeting 512 bit vector, returns
/// vector.shuffle, v1, v2, [2, 18, 3, 19,
/// 2+4, 18+4, 3+4, 19+4,
/// 2+8, 18+8, 3+8, 19+8,
/// 2+12, 18+12, 3+12, 19+12].
static Value createUnpackHiPs(ImplicitLocOpBuilder &b, Value v1, Value v2,
int numBits) {
int numElem = numBits / 32;
return b.create<vector::ShuffleOp>(
v1, v2,
getUnpackShufflePermFor128Lane({2, numElem + 2, 3, numElem + 3},
numBits));
}
/// Returns a vector.shuffle that shuffles 128-bit lanes (composed of 4 32-bit
/// elements) selected by `mask` from `v1` and `v2`. I.e.,
///
/// DEFINE SELECT4(src, control) {
/// CASE(control[1:0]) OF
/// 0: tmp[127:0] := src[127:0]
/// 1: tmp[127:0] := src[255:128]
/// 2: tmp[127:0] := src[383:256]
/// 3: tmp[127:0] := src[511:384]
/// ESAC
/// RETURN tmp[127:0]
/// }
/// dst[127:0] := SELECT4(v1[511:0], mask[1:0])
/// dst[255:128] := SELECT4(v1[511:0], mask[3:2])
/// dst[383:256] := SELECT4(v2[511:0], mask[5:4])
/// dst[511:384] := SELECT4(v2[511:0], mask[7:6])
static Value create4x128BitSuffle(ImplicitLocOpBuilder &b, Value v1, Value v2,
uint8_t mask) {
assert(cast<VectorType>(v1.getType()).getShape()[0] == 16 &&
"expected a vector with length=16");
SmallVector<int64_t> shuffleMask;
auto appendToMask = [&](int64_t base, uint8_t control) {
switch (control) {
case 0:
llvm::append_range(shuffleMask, ArrayRef<int64_t>{base + 0, base + 1,
base + 2, base + 3});
break;
case 1:
llvm::append_range(shuffleMask, ArrayRef<int64_t>{base + 4, base + 5,
base + 6, base + 7});
break;
case 2:
llvm::append_range(shuffleMask, ArrayRef<int64_t>{base + 8, base + 9,
base + 10, base + 11});
break;
case 3:
llvm::append_range(shuffleMask, ArrayRef<int64_t>{base + 12, base + 13,
base + 14, base + 15});
break;
default:
llvm_unreachable("control > 3 : overflow");
}
};
uint8_t b01 = mask & 0x3;
uint8_t b23 = (mask >> 2) & 0x3;
uint8_t b45 = (mask >> 4) & 0x3;
uint8_t b67 = (mask >> 6) & 0x3;
appendToMask(0, b01);
appendToMask(0, b23);
appendToMask(16, b45);
appendToMask(16, b67);
return b.create<vector::ShuffleOp>(v1, v2, shuffleMask);
}
/// Lowers the value to a vector.shuffle op. The `source` is expected to be a
/// 1-D vector and have `m`x`n` elements.
static Value transposeToShuffle1D(OpBuilder &b, Value source, int m, int n) {
SmallVector<int64_t> mask;
mask.reserve(m * n);
for (int64_t j = 0; j < n; ++j)
for (int64_t i = 0; i < m; ++i)
mask.push_back(i * n + j);
return b.create<vector::ShuffleOp>(source.getLoc(), source, source, mask);
}
/// Lowers the value to a sequence of vector.shuffle ops. The `source` is
/// expected to be a 16x16 vector.
static Value transposeToShuffle16x16(OpBuilder &builder, Value source, int m,
int n) {
ImplicitLocOpBuilder b(source.getLoc(), builder);
SmallVector<Value> vs;
for (int64_t i = 0; i < m; ++i)
vs.push_back(b.create<vector::ExtractOp>(source, i));
// Interleave 32-bit lanes using
// 8x _mm512_unpacklo_epi32
// 8x _mm512_unpackhi_epi32
Value t0 = createUnpackLoPs(b, vs[0x0], vs[0x1], 512);
Value t1 = createUnpackHiPs(b, vs[0x0], vs[0x1], 512);
Value t2 = createUnpackLoPs(b, vs[0x2], vs[0x3], 512);
Value t3 = createUnpackHiPs(b, vs[0x2], vs[0x3], 512);
Value t4 = createUnpackLoPs(b, vs[0x4], vs[0x5], 512);
Value t5 = createUnpackHiPs(b, vs[0x4], vs[0x5], 512);
Value t6 = createUnpackLoPs(b, vs[0x6], vs[0x7], 512);
Value t7 = createUnpackHiPs(b, vs[0x6], vs[0x7], 512);
Value t8 = createUnpackLoPs(b, vs[0x8], vs[0x9], 512);
Value t9 = createUnpackHiPs(b, vs[0x8], vs[0x9], 512);
Value ta = createUnpackLoPs(b, vs[0xa], vs[0xb], 512);
Value tb = createUnpackHiPs(b, vs[0xa], vs[0xb], 512);
Value tc = createUnpackLoPs(b, vs[0xc], vs[0xd], 512);
Value td = createUnpackHiPs(b, vs[0xc], vs[0xd], 512);
Value te = createUnpackLoPs(b, vs[0xe], vs[0xf], 512);
Value tf = createUnpackHiPs(b, vs[0xe], vs[0xf], 512);
// Interleave 64-bit lanes using
// 8x _mm512_unpacklo_epi64
// 8x _mm512_unpackhi_epi64
Value r0 = createUnpackLoPd(b, t0, t2, 512);
Value r1 = createUnpackHiPd(b, t0, t2, 512);
Value r2 = createUnpackLoPd(b, t1, t3, 512);
Value r3 = createUnpackHiPd(b, t1, t3, 512);
Value r4 = createUnpackLoPd(b, t4, t6, 512);
Value r5 = createUnpackHiPd(b, t4, t6, 512);
Value r6 = createUnpackLoPd(b, t5, t7, 512);
Value r7 = createUnpackHiPd(b, t5, t7, 512);
Value r8 = createUnpackLoPd(b, t8, ta, 512);
Value r9 = createUnpackHiPd(b, t8, ta, 512);
Value ra = createUnpackLoPd(b, t9, tb, 512);
Value rb = createUnpackHiPd(b, t9, tb, 512);
Value rc = createUnpackLoPd(b, tc, te, 512);
Value rd = createUnpackHiPd(b, tc, te, 512);
Value re = createUnpackLoPd(b, td, tf, 512);
Value rf = createUnpackHiPd(b, td, tf, 512);
// Permute 128-bit lanes using
// 16x _mm512_shuffle_i32x4
t0 = create4x128BitSuffle(b, r0, r4, 0x88);
t1 = create4x128BitSuffle(b, r1, r5, 0x88);
t2 = create4x128BitSuffle(b, r2, r6, 0x88);
t3 = create4x128BitSuffle(b, r3, r7, 0x88);
t4 = create4x128BitSuffle(b, r0, r4, 0xdd);
t5 = create4x128BitSuffle(b, r1, r5, 0xdd);
t6 = create4x128BitSuffle(b, r2, r6, 0xdd);
t7 = create4x128BitSuffle(b, r3, r7, 0xdd);
t8 = create4x128BitSuffle(b, r8, rc, 0x88);
t9 = create4x128BitSuffle(b, r9, rd, 0x88);
ta = create4x128BitSuffle(b, ra, re, 0x88);
tb = create4x128BitSuffle(b, rb, rf, 0x88);
tc = create4x128BitSuffle(b, r8, rc, 0xdd);
td = create4x128BitSuffle(b, r9, rd, 0xdd);
te = create4x128BitSuffle(b, ra, re, 0xdd);
tf = create4x128BitSuffle(b, rb, rf, 0xdd);
// Permute 256-bit lanes using again
// 16x _mm512_shuffle_i32x4
vs[0x0] = create4x128BitSuffle(b, t0, t8, 0x88);
vs[0x1] = create4x128BitSuffle(b, t1, t9, 0x88);
vs[0x2] = create4x128BitSuffle(b, t2, ta, 0x88);
vs[0x3] = create4x128BitSuffle(b, t3, tb, 0x88);
vs[0x4] = create4x128BitSuffle(b, t4, tc, 0x88);
vs[0x5] = create4x128BitSuffle(b, t5, td, 0x88);
vs[0x6] = create4x128BitSuffle(b, t6, te, 0x88);
vs[0x7] = create4x128BitSuffle(b, t7, tf, 0x88);
vs[0x8] = create4x128BitSuffle(b, t0, t8, 0xdd);
vs[0x9] = create4x128BitSuffle(b, t1, t9, 0xdd);
vs[0xa] = create4x128BitSuffle(b, t2, ta, 0xdd);
vs[0xb] = create4x128BitSuffle(b, t3, tb, 0xdd);
vs[0xc] = create4x128BitSuffle(b, t4, tc, 0xdd);
vs[0xd] = create4x128BitSuffle(b, t5, td, 0xdd);
vs[0xe] = create4x128BitSuffle(b, t6, te, 0xdd);
vs[0xf] = create4x128BitSuffle(b, t7, tf, 0xdd);
auto reshInputType = VectorType::get(
{m, n}, cast<VectorType>(source.getType()).getElementType());
Value res =
b.create<arith::ConstantOp>(reshInputType, b.getZeroAttr(reshInputType));
for (int64_t i = 0; i < m; ++i)
res = b.create<vector::InsertOp>(vs[i], res, i);
return res;
}
namespace {
/// Progressive lowering of TransposeOp.
/// One:
/// %x = vector.transpose %y, [1, 0]
/// is replaced by:
/// %z = arith.constant dense<0.000000e+00>
/// %0 = vector.extract %y[0, 0]
/// %1 = vector.insert %0, %z [0, 0]
/// ..
/// %x = vector.insert .., .. [.., ..]
class TransposeOpLowering : public OpRewritePattern<vector::TransposeOp> {
public:
using OpRewritePattern::OpRewritePattern;
TransposeOpLowering(vector::VectorTransformsOptions vectorTransformOptions,
MLIRContext *context, PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransposeOp>(context, benefit),
vectorTransformOptions(vectorTransformOptions) {}
LogicalResult matchAndRewrite(vector::TransposeOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
Value input = op.getVector();
VectorType inputType = op.getSourceVectorType();
VectorType resType = op.getResultVectorType();
// Set up convenience transposition table.
SmallVector<int64_t> transp;
for (auto attr : op.getTransp())
transp.push_back(cast<IntegerAttr>(attr).getInt());
if (isShuffleLike(vectorTransformOptions.vectorTransposeLowering) &&
succeeded(isTranspose2DSlice(op)))
return rewriter.notifyMatchFailure(
op, "Options specifies lowering to shuffle");
// Handle a true 2-D matrix transpose differently when requested.
if (vectorTransformOptions.vectorTransposeLowering ==
vector::VectorTransposeLowering::Flat &&
resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) {
Type flattenedType =
VectorType::get(resType.getNumElements(), resType.getElementType());
auto matrix =
rewriter.create<vector::ShapeCastOp>(loc, flattenedType, input);
auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]);
auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]);
Value trans = rewriter.create<vector::FlatTransposeOp>(
loc, flattenedType, matrix, rows, columns);
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, resType, trans);
return success();
}
// Generate unrolled extract/insert ops. We do not unroll the rightmost
// (i.e., highest-order) dimensions that are not transposed and leave them
// in vector form to improve performance. Therefore, we prune those
// dimensions from the shape/transpose data structures used to generate the
// extract/insert ops.
SmallVector<int64_t> prunedTransp;
pruneNonTransposedDims(transp, prunedTransp);
size_t numPrunedDims = transp.size() - prunedTransp.size();
auto prunedInShape = inputType.getShape().drop_back(numPrunedDims);
auto prunedInStrides = computeStrides(prunedInShape);
// Generates the extract/insert operations for every scalar/vector element
// of the leftmost transposed dimensions. We traverse every transpose
// element using a linearized index that we delinearize to generate the
// appropriate indices for the extract/insert operations.
Value result = rewriter.create<arith::ConstantOp>(
loc, resType, rewriter.getZeroAttr(resType));
int64_t numTransposedElements = ShapedType::getNumElements(prunedInShape);
for (int64_t linearIdx = 0; linearIdx < numTransposedElements;
++linearIdx) {
auto extractIdxs = delinearize(linearIdx, prunedInStrides);
SmallVector<int64_t> insertIdxs(extractIdxs);
applyPermutationToVector(insertIdxs, prunedTransp);
Value extractOp =
rewriter.create<vector::ExtractOp>(loc, input, extractIdxs);
result =
rewriter.create<vector::InsertOp>(loc, extractOp, result, insertIdxs);
}
rewriter.replaceOp(op, result);
return success();
}
private:
/// Options to control the vector patterns.
vector::VectorTransformsOptions vectorTransformOptions;
};
/// Rewrite a 2-D vector.transpose as a sequence of shuffle ops.
/// If the strategy is Shuffle1D, it will be lowered to:
/// vector.shape_cast 2D -> 1D
/// vector.shuffle
/// vector.shape_cast 1D -> 2D
/// If the strategy is Shuffle16x16, it will be lowered to a sequence of shuffle
/// ops on 16xf32 vectors.
class TransposeOp2DToShuffleLowering
: public OpRewritePattern<vector::TransposeOp> {
public:
using OpRewritePattern::OpRewritePattern;
TransposeOp2DToShuffleLowering(
vector::VectorTransformsOptions vectorTransformOptions,
MLIRContext *context, PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransposeOp>(context, benefit),
vectorTransformOptions(vectorTransformOptions) {}
LogicalResult matchAndRewrite(vector::TransposeOp op,
PatternRewriter &rewriter) const override {
if (!isShuffleLike(vectorTransformOptions.vectorTransposeLowering))
return rewriter.notifyMatchFailure(
op, "not using vector shuffle based lowering");
auto srcGtOneDims = isTranspose2DSlice(op);
if (failed(srcGtOneDims))
return rewriter.notifyMatchFailure(
op, "expected transposition on a 2D slice");
VectorType srcType = op.getSourceVectorType();
int64_t m = srcType.getDimSize(std::get<0>(srcGtOneDims.value()));
int64_t n = srcType.getDimSize(std::get<1>(srcGtOneDims.value()));
// Reshape the n-D input vector with only two dimensions greater than one
// to a 2-D vector.
Location loc = op.getLoc();
auto flattenedType = VectorType::get({n * m}, srcType.getElementType());
auto reshInputType = VectorType::get({m, n}, srcType.getElementType());
auto reshInput = rewriter.create<vector::ShapeCastOp>(loc, flattenedType,
op.getVector());
Value res;
if (vectorTransformOptions.vectorTransposeLowering ==
VectorTransposeLowering::Shuffle16x16 &&
m == 16 && n == 16) {
reshInput =
rewriter.create<vector::ShapeCastOp>(loc, reshInputType, reshInput);
res = transposeToShuffle16x16(rewriter, reshInput, m, n);
} else {
// Fallback to shuffle on 1D approach.
res = transposeToShuffle1D(rewriter, reshInput, m, n);
}
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
op, op.getResultVectorType(), res);
return success();
}
private:
/// Options to control the vector patterns.
vector::VectorTransformsOptions vectorTransformOptions;
};
} // namespace
void mlir::vector::populateVectorTransposeLoweringPatterns(
RewritePatternSet &patterns, VectorTransformsOptions options,
PatternBenefit benefit) {
patterns.add<TransposeOpLowering, TransposeOp2DToShuffleLowering>(
options, patterns.getContext(), benefit);
}
|