1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
//===- VectorDropLeadUnitDim.cpp - Conversion within the Vector dialect ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/TypeUtilities.h"
#define DEBUG_TYPE "vector-drop-unit-dim"
using namespace mlir;
using namespace mlir::vector;
// Trims leading one dimensions from `oldType` and returns the result type.
// Returns `vector<1xT>` if `oldType` only has one element.
static VectorType trimLeadingOneDims(VectorType oldType) {
ArrayRef<int64_t> oldShape = oldType.getShape();
ArrayRef<int64_t> newShape =
oldShape.drop_while([](int64_t dim) { return dim == 1; });
// Make sure we have at least 1 dimension per vector type requirements.
if (newShape.empty())
newShape = oldShape.take_back();
return VectorType::get(newShape, oldType.getElementType());
}
/// Return a smallVector of size `rank` containing all zeros.
static SmallVector<int64_t> splatZero(int64_t rank) {
return SmallVector<int64_t>(rank, 0);
}
namespace {
// Casts away leading one dimensions in vector.extract_strided_slice's vector
// input by inserting vector.broadcast.
struct CastAwayExtractStridedSliceLeadingOneDim
: public OpRewritePattern<vector::ExtractStridedSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
PatternRewriter &rewriter) const override {
// vector.extract_strided_slice requires the input and output vector to have
// the same rank. Here we drop leading one dimensions from the input vector
// type to make sure we don't cause mismatch.
VectorType oldSrcType = extractOp.getSourceVectorType();
VectorType newSrcType = trimLeadingOneDims(oldSrcType);
if (newSrcType.getRank() == oldSrcType.getRank())
return failure();
int64_t dropCount = oldSrcType.getRank() - newSrcType.getRank();
VectorType oldDstType = extractOp.getType();
VectorType newDstType =
VectorType::get(oldDstType.getShape().drop_front(dropCount),
oldDstType.getElementType());
Location loc = extractOp.getLoc();
Value newSrcVector = rewriter.create<vector::ExtractOp>(
loc, extractOp.getVector(), splatZero(dropCount));
// The offsets/sizes/strides attribute can have a less number of elements
// than the input vector's rank: it is meant for the leading dimensions.
auto newOffsets = rewriter.getArrayAttr(
extractOp.getOffsets().getValue().drop_front(dropCount));
auto newSizes = rewriter.getArrayAttr(
extractOp.getSizes().getValue().drop_front(dropCount));
auto newStrides = rewriter.getArrayAttr(
extractOp.getStrides().getValue().drop_front(dropCount));
auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
loc, newDstType, newSrcVector, newOffsets, newSizes, newStrides);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(extractOp, oldDstType,
newExtractOp);
return success();
}
};
// Casts away leading one dimensions in vector.insert_strided_slice's vector
// inputs by inserting vector.broadcast.
struct CastAwayInsertStridedSliceLeadingOneDim
: public OpRewritePattern<vector::InsertStridedSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::InsertStridedSliceOp insertOp,
PatternRewriter &rewriter) const override {
VectorType oldSrcType = insertOp.getSourceVectorType();
VectorType newSrcType = trimLeadingOneDims(oldSrcType);
VectorType oldDstType = insertOp.getDestVectorType();
VectorType newDstType = trimLeadingOneDims(oldDstType);
int64_t srcDropCount = oldSrcType.getRank() - newSrcType.getRank();
int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank();
if (srcDropCount == 0 && dstDropCount == 0)
return failure();
// Trim leading one dimensions from both operands.
Location loc = insertOp.getLoc();
Value newSrcVector = rewriter.create<vector::ExtractOp>(
loc, insertOp.getSource(), splatZero(srcDropCount));
Value newDstVector = rewriter.create<vector::ExtractOp>(
loc, insertOp.getDest(), splatZero(dstDropCount));
auto newOffsets = rewriter.getArrayAttr(
insertOp.getOffsets().getValue().take_back(newDstType.getRank()));
auto newStrides = rewriter.getArrayAttr(
insertOp.getStrides().getValue().take_back(newSrcType.getRank()));
auto newInsertOp = rewriter.create<vector::InsertStridedSliceOp>(
loc, newDstType, newSrcVector, newDstVector, newOffsets, newStrides);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType,
newInsertOp);
return success();
}
};
// Casts away leading one dimensions in vector.insert's vector inputs by
// inserting vector.broadcast.
struct CastAwayInsertLeadingOneDim : public OpRewritePattern<vector::InsertOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::InsertOp insertOp,
PatternRewriter &rewriter) const override {
Type oldSrcType = insertOp.getSourceType();
Type newSrcType = oldSrcType;
int64_t oldSrcRank = 0, newSrcRank = 0;
if (auto type = dyn_cast<VectorType>(oldSrcType)) {
newSrcType = trimLeadingOneDims(type);
oldSrcRank = type.getRank();
newSrcRank = cast<VectorType>(newSrcType).getRank();
}
VectorType oldDstType = insertOp.getDestVectorType();
VectorType newDstType = trimLeadingOneDims(oldDstType);
int64_t srcDropCount = oldSrcRank - newSrcRank;
int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank();
if (srcDropCount == 0 && dstDropCount == 0)
return failure();
// Trim leading one dimensions from both operands.
Location loc = insertOp.getLoc();
Value newSrcVector = insertOp.getSource();
if (oldSrcRank != 0) {
newSrcVector = rewriter.create<vector::ExtractOp>(
loc, insertOp.getSource(), splatZero(srcDropCount));
}
Value newDstVector = rewriter.create<vector::ExtractOp>(
loc, insertOp.getDest(), splatZero(dstDropCount));
// New position rank needs to be computed in two steps: (1) if destination
// type has leading unit dims, we also trim the position array accordingly,
// then (2) if source type also has leading unit dims, we need to append
// zeroes to the position array accordingly.
unsigned oldPosRank = insertOp.getPosition().getValue().size();
unsigned newPosRank = std::max<int64_t>(0, oldPosRank - dstDropCount);
SmallVector<Attribute> newPositions = llvm::to_vector(
insertOp.getPosition().getValue().take_back(newPosRank));
newPositions.resize(newDstType.getRank() - newSrcRank,
rewriter.getI64IntegerAttr(0));
auto newInsertOp = rewriter.create<vector::InsertOp>(
loc, newDstType, newSrcVector, newDstVector,
rewriter.getArrayAttr(newPositions));
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType,
newInsertOp);
return success();
}
};
// Turns vector.transfer_read on vector with leading 1 dimensions into
// vector.shape_cast followed by vector.transfer_read on vector without leading
// 1 dimensions.
struct CastAwayTransferReadLeadingOneDim
: public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp read,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (read.getTransferRank() == 0)
return failure();
if (read.getMask())
return failure();
auto shapedType = cast<ShapedType>(read.getSource().getType());
if (shapedType.getElementType() != read.getVectorType().getElementType())
return failure();
VectorType oldType = read.getVectorType();
VectorType newType = trimLeadingOneDims(oldType);
if (newType == oldType)
return failure();
AffineMap oldMap = read.getPermutationMap();
ArrayRef<AffineExpr> newResults =
oldMap.getResults().take_back(newType.getRank());
AffineMap newMap =
AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
rewriter.getContext());
ArrayAttr inBoundsAttr;
if (read.getInBounds())
inBoundsAttr = rewriter.getArrayAttr(
read.getInBoundsAttr().getValue().take_back(newType.getRank()));
auto newRead = rewriter.create<vector::TransferReadOp>(
read.getLoc(), newType, read.getSource(), read.getIndices(),
AffineMapAttr::get(newMap), read.getPadding(), /*mask=*/Value(),
inBoundsAttr);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(read, oldType, newRead);
return success();
}
};
// Turns vector.transfer_write on vector with leading 1 dimensions into
// vector.shape_cast followed by vector.transfer_write on vector without leading
// 1 dimensions.
struct CastAwayTransferWriteLeadingOneDim
: public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp write,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (write.getTransferRank() == 0)
return failure();
if (write.getMask())
return failure();
auto shapedType = dyn_cast<ShapedType>(write.getSource().getType());
if (shapedType.getElementType() != write.getVectorType().getElementType())
return failure();
VectorType oldType = write.getVectorType();
VectorType newType = trimLeadingOneDims(oldType);
if (newType == oldType)
return failure();
int64_t dropDim = oldType.getRank() - newType.getRank();
AffineMap oldMap = write.getPermutationMap();
ArrayRef<AffineExpr> newResults =
oldMap.getResults().take_back(newType.getRank());
AffineMap newMap =
AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
rewriter.getContext());
ArrayAttr inBoundsAttr;
if (write.getInBounds())
inBoundsAttr = rewriter.getArrayAttr(
write.getInBoundsAttr().getValue().take_back(newType.getRank()));
auto newVector = rewriter.create<vector::ExtractOp>(
write.getLoc(), write.getVector(), splatZero(dropDim));
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
write, newVector, write.getSource(), write.getIndices(),
AffineMapAttr::get(newMap), inBoundsAttr);
return success();
}
};
} // namespace
LogicalResult
mlir::vector::castAwayContractionLeadingOneDim(vector::ContractionOp contractOp,
RewriterBase &rewriter) {
VectorType oldAccType = dyn_cast<VectorType>(contractOp.getAccType());
if (oldAccType == nullptr)
return failure();
if (oldAccType.getRank() < 2)
return failure();
if (oldAccType.getShape()[0] != 1)
return failure();
// currently we support only dropping one dim but the pattern can be applied
// greedily to drop more.
int64_t dropDim = 1;
auto oldIndexingMaps = contractOp.getIndexingMapsArray();
SmallVector<AffineMap> newIndexingMaps;
auto oldIteratorTypes = contractOp.getIteratorTypes();
SmallVector<Attribute> newIteratorTypes;
int64_t dimToDrop = oldIndexingMaps[2].getDimPosition(0);
if (!isParallelIterator(oldIteratorTypes[dimToDrop]))
// only parallel type iterators can be dropped.
return failure();
for (const auto &it : llvm::enumerate(oldIteratorTypes)) {
int64_t currDim = it.index();
if (currDim == dimToDrop)
continue;
newIteratorTypes.push_back(it.value());
}
SmallVector<Value> operands = {contractOp.getLhs(), contractOp.getRhs(),
contractOp.getAcc()};
SmallVector<Value> newOperands;
for (const auto &it : llvm::enumerate(oldIndexingMaps)) {
// Check if the dim to be dropped exists as a leading dim in the operand
// if it does then we use vector.extract to drop it.
bool validExtract = false;
SmallVector<AffineExpr> results;
auto map = it.value();
int64_t orginalZeroDim = it.value().getDimPosition(0);
if (orginalZeroDim != dimToDrop) {
// There are two reasons to be in this path, 1. We need to
// tranpose the operand to make the dim to be dropped
// leading. 2. The dim to be dropped does not exist and in
// that case we dont want to add a unit tranpose but we must
// check all the indices to make sure this is the case.
bool tranposeNeeded = false;
SmallVector<int64_t> perm;
SmallVector<AffineExpr> transposeResults;
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
int64_t currDim = map.getDimPosition(i);
if (currDim == dimToDrop) {
tranposeNeeded = true;
perm.insert(perm.begin(), i);
auto targetExpr = rewriter.getAffineDimExpr(currDim);
transposeResults.insert(transposeResults.begin(), targetExpr);
} else {
perm.push_back(i);
auto targetExpr = rewriter.getAffineDimExpr(currDim);
transposeResults.push_back(targetExpr);
}
}
// Do the tranpose now if needed so that we can drop the
// correct dim using extract later.
if (tranposeNeeded) {
map = AffineMap::get(map.getNumDims(), 0, transposeResults,
contractOp.getContext());
operands[it.index()] = rewriter.create<vector::TransposeOp>(
contractOp.getLoc(), operands[it.index()], perm);
}
}
// We have taken care to have the dim to be dropped be
// the leading dim. If its still not leading that means it
// does not exist in this operand and hence we do not need
// an extract.
if (map.getDimPosition(0) == dimToDrop)
validExtract = true;
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
int64_t currDim = map.getDimPosition(i);
if (currDim == dimToDrop)
// This is the dim we are dropping.
continue;
auto targetExpr = rewriter.getAffineDimExpr(
currDim < dimToDrop ? currDim : currDim - 1);
results.push_back(targetExpr);
}
newIndexingMaps.push_back(AffineMap::get(map.getNumDims() - 1, 0, results,
contractOp.getContext()));
// Extract if its a valid extraction, otherwise use the operand
// without extraction.
newOperands.push_back(
validExtract ? rewriter.create<vector::ExtractOp>(contractOp.getLoc(),
operands[it.index()],
splatZero(dropDim))
: operands[it.index()]);
}
auto newContractOp = rewriter.create<vector::ContractionOp>(
contractOp.getLoc(), newOperands[0], newOperands[1], newOperands[2],
rewriter.getAffineMapArrayAttr(newIndexingMaps),
rewriter.getArrayAttr(newIteratorTypes), contractOp.getKind());
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
contractOp, contractOp->getResultTypes()[0], newContractOp);
return success();
}
namespace {
/// Turns vector.contract on vector with leading 1 dimensions into
/// vector.extract followed by vector.contract on vector without leading
/// 1 dimensions. Also performs tranpose of lhs and rhs operands if required
/// prior to extract.
struct CastAwayContractionLeadingOneDim
: public OpRewritePattern<vector::ContractionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
PatternRewriter &rewriter) const override {
return castAwayContractionLeadingOneDim(contractOp, rewriter);
}
};
class CastAwayElementwiseLeadingOneDim : public RewritePattern {
public:
CastAwayElementwiseLeadingOneDim(MLIRContext *context,
PatternBenefit benefit = 1)
: RewritePattern(MatchAnyOpTypeTag(), benefit, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (!OpTrait::hasElementwiseMappableTraits(op) || op->getNumResults() != 1)
return failure();
auto vecType = dyn_cast<VectorType>(op->getResultTypes()[0]);
if (!vecType)
return failure();
VectorType newVecType = trimLeadingOneDims(vecType);
if (newVecType == vecType)
return failure();
int64_t dropDim = vecType.getRank() - newVecType.getRank();
SmallVector<Value, 4> newOperands;
for (Value operand : op->getOperands()) {
if (auto opVecType = dyn_cast<VectorType>(operand.getType())) {
newOperands.push_back(rewriter.create<vector::ExtractOp>(
op->getLoc(), operand, splatZero(dropDim)));
} else {
newOperands.push_back(operand);
}
}
Operation *newOp =
rewriter.create(op->getLoc(), op->getName().getIdentifier(),
newOperands, newVecType, op->getAttrs());
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, vecType,
newOp->getResult(0));
return success();
}
};
} // namespace
void mlir::vector::populateCastAwayVectorLeadingOneDimPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns
.add<CastAwayExtractStridedSliceLeadingOneDim,
CastAwayInsertStridedSliceLeadingOneDim, CastAwayInsertLeadingOneDim,
CastAwayTransferReadLeadingOneDim,
CastAwayTransferWriteLeadingOneDim, CastAwayElementwiseLeadingOneDim,
CastAwayContractionLeadingOneDim>(patterns.getContext(), benefit);
populateShapeCastFoldingPatterns(patterns, benefit);
}
|