1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
|
//===- VectorTransferOpTransforms.cpp - transfer op transforms ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions concerned with optimizing transfer_read and
// transfer_write ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Dominance.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "vector-transfer-opt"
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
using namespace mlir;
/// Return the ancestor op in the region or nullptr if the region is not
/// an ancestor of the op.
static Operation *findAncestorOpInRegion(Region *region, Operation *op) {
for (; op != nullptr && op->getParentRegion() != region;
op = op->getParentOp())
;
return op;
}
namespace {
class TransferOptimization {
public:
TransferOptimization(RewriterBase &rewriter, Operation *op)
: rewriter(rewriter), dominators(op), postDominators(op) {}
void deadStoreOp(vector::TransferWriteOp);
void storeToLoadForwarding(vector::TransferReadOp);
void removeDeadOp() {
for (Operation *op : opToErase)
rewriter.eraseOp(op);
opToErase.clear();
}
private:
RewriterBase &rewriter;
bool isReachable(Operation *start, Operation *dest);
DominanceInfo dominators;
PostDominanceInfo postDominators;
std::vector<Operation *> opToErase;
};
} // namespace
/// Return true if there is a path from start operation to dest operation,
/// otherwise return false. The operations have to be in the same region.
bool TransferOptimization::isReachable(Operation *start, Operation *dest) {
assert(start->getParentRegion() == dest->getParentRegion() &&
"This function only works for ops i the same region");
// Simple case where the start op dominate the destination.
if (dominators.dominates(start, dest))
return true;
Block *startBlock = start->getBlock();
Block *destBlock = dest->getBlock();
SmallVector<Block *, 32> worklist(startBlock->succ_begin(),
startBlock->succ_end());
SmallPtrSet<Block *, 32> visited;
while (!worklist.empty()) {
Block *bb = worklist.pop_back_val();
if (!visited.insert(bb).second)
continue;
if (dominators.dominates(bb, destBlock))
return true;
worklist.append(bb->succ_begin(), bb->succ_end());
}
return false;
}
/// For transfer_write to overwrite fully another transfer_write must:
/// 1. Access the same memref with the same indices and vector type.
/// 2. Post-dominate the other transfer_write operation.
/// If several candidates are available, one must be post-dominated by all the
/// others since they are all post-dominating the same transfer_write. We only
/// consider the transfer_write post-dominated by all the other candidates as
/// this will be the first transfer_write executed after the potentially dead
/// transfer_write.
/// If we found such an overwriting transfer_write we know that the original
/// transfer_write is dead if all reads that can be reached from the potentially
/// dead transfer_write are dominated by the overwriting transfer_write.
void TransferOptimization::deadStoreOp(vector::TransferWriteOp write) {
LLVM_DEBUG(DBGS() << "Candidate for dead store: " << *write.getOperation()
<< "\n");
llvm::SmallVector<Operation *, 8> blockingAccesses;
Operation *firstOverwriteCandidate = nullptr;
Value source = write.getSource();
// Skip subview ops.
while (auto subView = source.getDefiningOp<memref::SubViewOp>())
source = subView.getSource();
llvm::SmallVector<Operation *, 32> users(source.getUsers().begin(),
source.getUsers().end());
llvm::SmallDenseSet<Operation *, 32> processed;
while (!users.empty()) {
Operation *user = users.pop_back_val();
// If the user has already been processed skip.
if (!processed.insert(user).second)
continue;
if (auto subView = dyn_cast<memref::SubViewOp>(user)) {
users.append(subView->getUsers().begin(), subView->getUsers().end());
continue;
}
if (isMemoryEffectFree(user))
continue;
if (user == write.getOperation())
continue;
if (auto nextWrite = dyn_cast<vector::TransferWriteOp>(user)) {
// Check candidate that can override the store.
if (write.getSource() == nextWrite.getSource() &&
checkSameValueWAW(nextWrite, write) &&
postDominators.postDominates(nextWrite, write)) {
if (firstOverwriteCandidate == nullptr ||
postDominators.postDominates(firstOverwriteCandidate, nextWrite))
firstOverwriteCandidate = nextWrite;
else
assert(
postDominators.postDominates(nextWrite, firstOverwriteCandidate));
continue;
}
}
if (auto transferOp = dyn_cast<VectorTransferOpInterface>(user)) {
// Don't need to consider disjoint accesses.
if (vector::isDisjointTransferSet(
cast<VectorTransferOpInterface>(write.getOperation()),
cast<VectorTransferOpInterface>(transferOp.getOperation())))
continue;
}
blockingAccesses.push_back(user);
}
if (firstOverwriteCandidate == nullptr)
return;
Region *topRegion = firstOverwriteCandidate->getParentRegion();
Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
assert(writeAncestor &&
"write op should be recursively part of the top region");
for (Operation *access : blockingAccesses) {
Operation *accessAncestor = findAncestorOpInRegion(topRegion, access);
// TODO: if the access and write have the same ancestor we could recurse in
// the region to know if the access is reachable with more precision.
if (accessAncestor == nullptr ||
!isReachable(writeAncestor, accessAncestor))
continue;
if (!dominators.dominates(firstOverwriteCandidate, accessAncestor)) {
LLVM_DEBUG(DBGS() << "Store may not be dead due to op: "
<< *accessAncestor << "\n");
return;
}
}
LLVM_DEBUG(DBGS() << "Found dead store: " << *write.getOperation()
<< " overwritten by: " << *firstOverwriteCandidate << "\n");
opToErase.push_back(write.getOperation());
}
/// A transfer_write candidate to storeToLoad forwarding must:
/// 1. Access the same memref with the same indices and vector type as the
/// transfer_read.
/// 2. Dominate the transfer_read operation.
/// If several candidates are available, one must be dominated by all the others
/// since they are all dominating the same transfer_read. We only consider the
/// transfer_write dominated by all the other candidates as this will be the
/// last transfer_write executed before the transfer_read.
/// If we found such a candidate we can do the forwarding if all the other
/// potentially aliasing ops that may reach the transfer_read are post-dominated
/// by the transfer_write.
void TransferOptimization::storeToLoadForwarding(vector::TransferReadOp read) {
if (read.hasOutOfBoundsDim())
return;
LLVM_DEBUG(DBGS() << "Candidate for Forwarding: " << *read.getOperation()
<< "\n");
SmallVector<Operation *, 8> blockingWrites;
vector::TransferWriteOp lastwrite = nullptr;
Value source = read.getSource();
// Skip subview ops.
while (auto subView = source.getDefiningOp<memref::SubViewOp>())
source = subView.getSource();
llvm::SmallVector<Operation *, 32> users(source.getUsers().begin(),
source.getUsers().end());
llvm::SmallDenseSet<Operation *, 32> processed;
while (!users.empty()) {
Operation *user = users.pop_back_val();
// If the user has already been processed skip.
if (!processed.insert(user).second)
continue;
if (auto subView = dyn_cast<memref::SubViewOp>(user)) {
users.append(subView->getUsers().begin(), subView->getUsers().end());
continue;
}
if (isMemoryEffectFree(user) || isa<vector::TransferReadOp>(user))
continue;
if (auto write = dyn_cast<vector::TransferWriteOp>(user)) {
// If there is a write, but we can prove that it is disjoint we can ignore
// the write.
if (vector::isDisjointTransferSet(
cast<VectorTransferOpInterface>(write.getOperation()),
cast<VectorTransferOpInterface>(read.getOperation())))
continue;
if (write.getSource() == read.getSource() &&
dominators.dominates(write, read) && checkSameValueRAW(write, read)) {
if (lastwrite == nullptr || dominators.dominates(lastwrite, write))
lastwrite = write;
else
assert(dominators.dominates(write, lastwrite));
continue;
}
}
blockingWrites.push_back(user);
}
if (lastwrite == nullptr)
return;
Region *topRegion = lastwrite->getParentRegion();
Operation *readAncestor = findAncestorOpInRegion(topRegion, read);
assert(readAncestor &&
"read op should be recursively part of the top region");
for (Operation *write : blockingWrites) {
Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
// TODO: if the store and read have the same ancestor we could recurse in
// the region to know if the read is reachable with more precision.
if (writeAncestor == nullptr || !isReachable(writeAncestor, readAncestor))
continue;
if (!postDominators.postDominates(lastwrite, write)) {
LLVM_DEBUG(DBGS() << "Fail to do write to read forwarding due to op: "
<< *write << "\n");
return;
}
}
LLVM_DEBUG(DBGS() << "Forward value from " << *lastwrite.getOperation()
<< " to: " << *read.getOperation() << "\n");
read.replaceAllUsesWith(lastwrite.getVector());
opToErase.push_back(read.getOperation());
}
/// Drops unit dimensions from the input MemRefType.
static MemRefType dropUnitDims(MemRefType inputType, ArrayRef<int64_t> offsets,
ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides) {
SmallVector<int64_t> targetShape = llvm::to_vector(
llvm::make_filter_range(sizes, [](int64_t sz) { return sz != 1; }));
Type rankReducedType = memref::SubViewOp::inferRankReducedResultType(
targetShape, inputType, offsets, sizes, strides);
return canonicalizeStridedLayout(cast<MemRefType>(rankReducedType));
}
/// Creates a rank-reducing memref.subview op that drops unit dims from its
/// input. Or just returns the input if it was already without unit dims.
static Value rankReducingSubviewDroppingUnitDims(PatternRewriter &rewriter,
mlir::Location loc,
Value input) {
MemRefType inputType = cast<MemRefType>(input.getType());
assert(inputType.hasStaticShape());
SmallVector<int64_t> subViewOffsets(inputType.getRank(), 0);
SmallVector<int64_t> subViewStrides(inputType.getRank(), 1);
ArrayRef<int64_t> subViewSizes = inputType.getShape();
MemRefType resultType =
dropUnitDims(inputType, subViewOffsets, subViewSizes, subViewStrides);
if (canonicalizeStridedLayout(resultType) ==
canonicalizeStridedLayout(inputType))
return input;
return rewriter.create<memref::SubViewOp>(
loc, resultType, input, subViewOffsets, subViewSizes, subViewStrides);
}
/// Returns the number of dims that aren't unit dims.
static int getReducedRank(ArrayRef<int64_t> shape) {
return llvm::count_if(shape, [](int64_t dimSize) { return dimSize != 1; });
}
/// Returns a copy of `shape` without unit dims.
static SmallVector<int64_t> getReducedShape(ArrayRef<int64_t> shape) {
SmallVector<int64_t> reducedShape;
llvm::copy_if(shape, std::back_inserter(reducedShape),
[](int64_t dimSize) { return dimSize != 1; });
return reducedShape;
}
namespace {
/// Rewrites `vector.transfer_read` ops where the source has unit dims, by
/// inserting a memref.subview dropping those unit dims. The vector shapes are
/// also reduced accordingly.
class TransferReadDropUnitDimsPattern
: public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp transferReadOp,
PatternRewriter &rewriter) const override {
auto loc = transferReadOp.getLoc();
Value vector = transferReadOp.getVector();
VectorType vectorType = cast<VectorType>(vector.getType());
Value source = transferReadOp.getSource();
MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
// TODO: support tensor types.
if (!sourceType || !sourceType.hasStaticShape())
return failure();
if (sourceType.getNumElements() != vectorType.getNumElements())
return failure();
// TODO: generalize this pattern, relax the requirements here.
if (transferReadOp.hasOutOfBoundsDim())
return failure();
if (!transferReadOp.getPermutationMap().isMinorIdentity())
return failure();
// Check if the source shape can be further reduced.
int reducedRank = getReducedRank(sourceType.getShape());
if (reducedRank == sourceType.getRank())
return failure();
// Check if the reduced vector shape matches the reduced source shape.
// Otherwise, this case is not supported yet.
int vectorReducedRank = getReducedRank(vectorType.getShape());
if (reducedRank != vectorReducedRank)
return failure();
if (llvm::any_of(transferReadOp.getIndices(), [](Value v) {
return getConstantIntValue(v) != static_cast<int64_t>(0);
}))
return failure();
Value reducedShapeSource =
rankReducingSubviewDroppingUnitDims(rewriter, loc, source);
Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
SmallVector<Value> zeros(reducedRank, c0);
auto identityMap = rewriter.getMultiDimIdentityMap(reducedRank);
auto reducedVectorType = VectorType::get(
getReducedShape(vectorType.getShape()), vectorType.getElementType());
auto newTransferReadOp = rewriter.create<vector::TransferReadOp>(
loc, reducedVectorType, reducedShapeSource, zeros, identityMap);
auto shapeCast = rewriter.createOrFold<vector::ShapeCastOp>(
loc, vectorType, newTransferReadOp);
rewriter.replaceOp(transferReadOp, shapeCast);
return success();
}
};
/// Rewrites `vector.transfer_write` ops where the "source" (i.e. destination)
/// has unit dims, by inserting a `memref.subview` dropping those unit dims. The
/// vector shapes are also reduced accordingly.
class TransferWriteDropUnitDimsPattern
: public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp transferWriteOp,
PatternRewriter &rewriter) const override {
auto loc = transferWriteOp.getLoc();
Value vector = transferWriteOp.getVector();
VectorType vectorType = cast<VectorType>(vector.getType());
Value source = transferWriteOp.getSource();
MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
// TODO: support tensor type.
if (!sourceType || !sourceType.hasStaticShape())
return failure();
if (sourceType.getNumElements() != vectorType.getNumElements())
return failure();
// TODO: generalize this pattern, relax the requirements here.
if (transferWriteOp.hasOutOfBoundsDim())
return failure();
if (!transferWriteOp.getPermutationMap().isMinorIdentity())
return failure();
// Check if the destination shape can be further reduced.
int reducedRank = getReducedRank(sourceType.getShape());
if (reducedRank == sourceType.getRank())
return failure();
// Check if the reduced vector shape matches the reduced destination shape.
// Otherwise, this case is not supported yet.
int vectorReducedRank = getReducedRank(vectorType.getShape());
if (reducedRank != vectorReducedRank)
return failure();
if (llvm::any_of(transferWriteOp.getIndices(), [](Value v) {
return getConstantIntValue(v) != static_cast<int64_t>(0);
}))
return failure();
Value reducedShapeSource =
rankReducingSubviewDroppingUnitDims(rewriter, loc, source);
Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
SmallVector<Value> zeros(reducedRank, c0);
auto identityMap = rewriter.getMultiDimIdentityMap(reducedRank);
VectorType reducedVectorType = VectorType::get(
getReducedShape(vectorType.getShape()), vectorType.getElementType());
auto shapeCast = rewriter.createOrFold<vector::ShapeCastOp>(
loc, reducedVectorType, vector);
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
transferWriteOp, shapeCast, reducedShapeSource, zeros, identityMap);
return success();
}
};
} // namespace
/// Return true if the memref type has its inner dimension matching the given
/// shape. Otherwise return false.
static int64_t hasMatchingInnerContigousShape(MemRefType memrefType,
ArrayRef<int64_t> targetShape) {
auto shape = memrefType.getShape();
SmallVector<int64_t> strides;
int64_t offset;
if (!succeeded(getStridesAndOffset(memrefType, strides, offset)))
return false;
if (strides.back() != 1)
return false;
strides.pop_back();
int64_t flatDim = 1;
for (auto [targetDim, memrefDim, memrefStride] :
llvm::reverse(llvm::zip(targetShape, shape, strides))) {
flatDim *= memrefDim;
if (flatDim != memrefStride || targetDim != memrefDim)
return false;
}
return true;
}
/// Creates a memref.collapse_shape collapsing all inner dimensions of the
/// input starting at `firstDimToCollapse`.
static Value collapseInnerDims(PatternRewriter &rewriter, mlir::Location loc,
Value input, int64_t firstDimToCollapse) {
ShapedType inputType = cast<ShapedType>(input.getType());
if (inputType.getRank() == 1)
return input;
SmallVector<ReassociationIndices> reassociation;
for (int64_t i = 0; i < firstDimToCollapse; ++i)
reassociation.push_back(ReassociationIndices{i});
ReassociationIndices collapsedIndices;
for (int64_t i = firstDimToCollapse; i < inputType.getRank(); ++i)
collapsedIndices.push_back(i);
reassociation.push_back(collapsedIndices);
return rewriter.create<memref::CollapseShapeOp>(loc, input, reassociation);
}
/// Checks that the indices corresponding to dimensions starting at
/// `firstDimToCollapse` are constant 0, and writes to `outIndices`
/// the truncated indices where `firstDimToCollapse` is now the innermost dim.
static LogicalResult
checkAndCollapseInnerZeroIndices(ValueRange indices, int64_t firstDimToCollapse,
SmallVector<Value> &outIndices) {
int64_t rank = indices.size();
if (firstDimToCollapse >= rank)
return failure();
for (int64_t i = firstDimToCollapse; i < rank; ++i) {
std::optional<int64_t> cst = getConstantIntValue(indices[i]);
if (!cst || cst.value() != 0)
return failure();
}
outIndices = indices;
outIndices.resize(firstDimToCollapse + 1);
return success();
}
namespace {
/// Rewrites contiguous row-major vector.transfer_read ops by inserting
/// memref.collapse_shape on the source so that the resulting
/// vector.transfer_read has a 1D source. Requires the source shape to be
/// already reduced i.e. without unit dims.
class FlattenContiguousRowMajorTransferReadPattern
: public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp transferReadOp,
PatternRewriter &rewriter) const override {
auto loc = transferReadOp.getLoc();
Value vector = transferReadOp.getVector();
VectorType vectorType = cast<VectorType>(vector.getType());
Value source = transferReadOp.getSource();
MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
// Contiguity check is valid on tensors only.
if (!sourceType)
return failure();
if (vectorType.getRank() <= 1)
// Already 0D/1D, nothing to do.
return failure();
if (!hasMatchingInnerContigousShape(
sourceType,
vectorType.getShape().take_back(vectorType.getRank() - 1)))
return failure();
int64_t firstContiguousInnerDim =
sourceType.getRank() - vectorType.getRank();
// TODO: generalize this pattern, relax the requirements here.
if (transferReadOp.hasOutOfBoundsDim())
return failure();
if (!transferReadOp.getPermutationMap().isMinorIdentity())
return failure();
if (transferReadOp.getMask())
return failure();
SmallVector<Value> collapsedIndices;
if (failed(checkAndCollapseInnerZeroIndices(transferReadOp.getIndices(),
firstContiguousInnerDim,
collapsedIndices)))
return failure();
Value collapsedSource =
collapseInnerDims(rewriter, loc, source, firstContiguousInnerDim);
MemRefType collapsedSourceType =
dyn_cast<MemRefType>(collapsedSource.getType());
int64_t collapsedRank = collapsedSourceType.getRank();
assert(collapsedRank == firstContiguousInnerDim + 1);
SmallVector<AffineExpr, 1> dimExprs{
getAffineDimExpr(firstContiguousInnerDim, rewriter.getContext())};
auto collapsedMap =
AffineMap::get(collapsedRank, 0, dimExprs, rewriter.getContext());
VectorType flatVectorType = VectorType::get({vectorType.getNumElements()},
vectorType.getElementType());
vector::TransferReadOp flatRead = rewriter.create<vector::TransferReadOp>(
loc, flatVectorType, collapsedSource, collapsedIndices, collapsedMap);
flatRead.setInBoundsAttr(rewriter.getBoolArrayAttr({true}));
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
transferReadOp, cast<VectorType>(vector.getType()), flatRead);
return success();
}
};
/// Rewrites contiguous row-major vector.transfer_write ops by inserting
/// memref.collapse_shape on the source so that the resulting
/// vector.transfer_write has a 1D source. Requires the source shape to be
/// already reduced i.e. without unit dims.
class FlattenContiguousRowMajorTransferWritePattern
: public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp transferWriteOp,
PatternRewriter &rewriter) const override {
auto loc = transferWriteOp.getLoc();
Value vector = transferWriteOp.getVector();
VectorType vectorType = cast<VectorType>(vector.getType());
Value source = transferWriteOp.getSource();
MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
// Contiguity check is valid on tensors only.
if (!sourceType)
return failure();
if (vectorType.getRank() <= 1)
// Already 0D/1D, nothing to do.
return failure();
if (!hasMatchingInnerContigousShape(
sourceType,
vectorType.getShape().take_back(vectorType.getRank() - 1)))
return failure();
int64_t firstContiguousInnerDim =
sourceType.getRank() - vectorType.getRank();
// TODO: generalize this pattern, relax the requirements here.
if (transferWriteOp.hasOutOfBoundsDim())
return failure();
if (!transferWriteOp.getPermutationMap().isMinorIdentity())
return failure();
if (transferWriteOp.getMask())
return failure();
SmallVector<Value> collapsedIndices;
if (failed(checkAndCollapseInnerZeroIndices(transferWriteOp.getIndices(),
firstContiguousInnerDim,
collapsedIndices)))
return failure();
Value collapsedSource =
collapseInnerDims(rewriter, loc, source, firstContiguousInnerDim);
MemRefType collapsedSourceType =
cast<MemRefType>(collapsedSource.getType());
int64_t collapsedRank = collapsedSourceType.getRank();
assert(collapsedRank == firstContiguousInnerDim + 1);
SmallVector<AffineExpr, 1> dimExprs{
getAffineDimExpr(firstContiguousInnerDim, rewriter.getContext())};
auto collapsedMap =
AffineMap::get(collapsedRank, 0, dimExprs, rewriter.getContext());
VectorType flatVectorType = VectorType::get({vectorType.getNumElements()},
vectorType.getElementType());
Value flatVector =
rewriter.create<vector::ShapeCastOp>(loc, flatVectorType, vector);
vector::TransferWriteOp flatWrite =
rewriter.create<vector::TransferWriteOp>(
loc, flatVector, collapsedSource, collapsedIndices, collapsedMap);
flatWrite.setInBoundsAttr(rewriter.getBoolArrayAttr({true}));
rewriter.eraseOp(transferWriteOp);
return success();
}
};
/// Base class for `vector.extract/vector.extract_element(vector.transfer_read)`
/// to `memref.load` patterns. The `match` method is shared for both
/// `vector.extract` and `vector.extract_element`.
template <class VectorExtractOp>
class RewriteScalarExtractOfTransferReadBase
: public OpRewritePattern<VectorExtractOp> {
using Base = OpRewritePattern<VectorExtractOp>;
public:
RewriteScalarExtractOfTransferReadBase(MLIRContext *context,
PatternBenefit benefit,
bool allowMultipleUses)
: Base::OpRewritePattern(context, benefit),
allowMultipleUses(allowMultipleUses) {}
LogicalResult match(VectorExtractOp extractOp) const override {
auto xferOp =
extractOp.getVector().template getDefiningOp<vector::TransferReadOp>();
if (!xferOp)
return failure();
// Check that we are extracting a scalar and not a sub-vector.
if (isa<VectorType>(extractOp.getResult().getType()))
return failure();
// If multiple uses are not allowed, check if xfer has a single use.
if (!allowMultipleUses && !xferOp.getResult().hasOneUse())
return failure();
// If multiple uses are allowed, check if all the xfer uses are extract ops.
if (allowMultipleUses &&
!llvm::all_of(xferOp->getUses(), [](OpOperand &use) {
return isa<vector::ExtractOp, vector::ExtractElementOp>(
use.getOwner());
}))
return failure();
// Mask not supported.
if (xferOp.getMask())
return failure();
// Map not supported.
if (!xferOp.getPermutationMap().isMinorIdentity())
return failure();
// Cannot rewrite if the indices may be out of bounds.
if (xferOp.hasOutOfBoundsDim())
return failure();
return success();
}
private:
bool allowMultipleUses;
};
/// Rewrite `vector.extractelement(vector.transfer_read)` to `memref.load`.
///
/// All the users of the transfer op must be either `vector.extractelement` or
/// `vector.extract` ops. If `allowMultipleUses` is set to true, rewrite
/// transfer ops with any number of users. Otherwise, rewrite only if the
/// extract op is the single user of the transfer op. Rewriting a single
/// vector load with multiple scalar loads may negatively affect performance.
class RewriteScalarExtractElementOfTransferRead
: public RewriteScalarExtractOfTransferReadBase<vector::ExtractElementOp> {
using RewriteScalarExtractOfTransferReadBase::
RewriteScalarExtractOfTransferReadBase;
void rewrite(vector::ExtractElementOp extractOp,
PatternRewriter &rewriter) const override {
// Construct scalar load.
auto loc = extractOp.getLoc();
auto xferOp = extractOp.getVector().getDefiningOp<vector::TransferReadOp>();
SmallVector<Value> newIndices(xferOp.getIndices().begin(),
xferOp.getIndices().end());
if (extractOp.getPosition()) {
AffineExpr sym0, sym1;
bindSymbols(extractOp.getContext(), sym0, sym1);
OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
rewriter, loc, sym0 + sym1,
{newIndices[newIndices.size() - 1], extractOp.getPosition()});
if (ofr.is<Value>()) {
newIndices[newIndices.size() - 1] = ofr.get<Value>();
} else {
newIndices[newIndices.size() - 1] =
rewriter.create<arith::ConstantIndexOp>(loc,
*getConstantIntValue(ofr));
}
}
if (isa<MemRefType>(xferOp.getSource().getType())) {
rewriter.replaceOpWithNewOp<memref::LoadOp>(extractOp, xferOp.getSource(),
newIndices);
} else {
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(
extractOp, xferOp.getSource(), newIndices);
}
}
};
/// Rewrite `vector.extractelement(vector.transfer_read)` to `memref.load`.
/// Rewrite `vector.extract(vector.transfer_read)` to `memref.load`.
///
/// All the users of the transfer op must be either `vector.extractelement` or
/// `vector.extract` ops. If `allowMultipleUses` is set to true, rewrite
/// transfer ops with any number of users. Otherwise, rewrite only if the
/// extract op is the single user of the transfer op. Rewriting a single
/// vector load with multiple scalar loads may negatively affect performance.
class RewriteScalarExtractOfTransferRead
: public RewriteScalarExtractOfTransferReadBase<vector::ExtractOp> {
using RewriteScalarExtractOfTransferReadBase::
RewriteScalarExtractOfTransferReadBase;
void rewrite(vector::ExtractOp extractOp,
PatternRewriter &rewriter) const override {
// Construct scalar load.
auto xferOp = extractOp.getVector().getDefiningOp<vector::TransferReadOp>();
SmallVector<Value> newIndices(xferOp.getIndices().begin(),
xferOp.getIndices().end());
for (const auto &it : llvm::enumerate(extractOp.getPosition())) {
int64_t offset = cast<IntegerAttr>(it.value()).getInt();
int64_t idx =
newIndices.size() - extractOp.getPosition().size() + it.index();
OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
rewriter, extractOp.getLoc(),
rewriter.getAffineSymbolExpr(0) + offset, {newIndices[idx]});
if (ofr.is<Value>()) {
newIndices[idx] = ofr.get<Value>();
} else {
newIndices[idx] = rewriter.create<arith::ConstantIndexOp>(
extractOp.getLoc(), *getConstantIntValue(ofr));
}
}
if (isa<MemRefType>(xferOp.getSource().getType())) {
rewriter.replaceOpWithNewOp<memref::LoadOp>(extractOp, xferOp.getSource(),
newIndices);
} else {
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(
extractOp, xferOp.getSource(), newIndices);
}
}
};
/// Rewrite transfer_writes of vectors of size 1 (e.g., vector<1x1xf32>)
/// to memref.store.
class RewriteScalarWrite : public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp xferOp,
PatternRewriter &rewriter) const override {
// Must be a scalar write.
auto vecType = xferOp.getVectorType();
if (!llvm::all_of(vecType.getShape(), [](int64_t sz) { return sz == 1; }))
return failure();
// Mask not supported.
if (xferOp.getMask())
return failure();
// Map not supported.
if (!xferOp.getPermutationMap().isMinorIdentity())
return failure();
// Only float and integer element types are supported.
Value scalar;
if (vecType.getRank() == 0) {
// vector.extract does not support vector<f32> etc., so use
// vector.extractelement instead.
scalar = rewriter.create<vector::ExtractElementOp>(xferOp.getLoc(),
xferOp.getVector());
} else {
SmallVector<int64_t> pos(vecType.getRank(), 0);
scalar = rewriter.create<vector::ExtractOp>(xferOp.getLoc(),
xferOp.getVector(), pos);
}
// Construct a scalar store.
if (isa<MemRefType>(xferOp.getSource().getType())) {
rewriter.replaceOpWithNewOp<memref::StoreOp>(
xferOp, scalar, xferOp.getSource(), xferOp.getIndices());
} else {
rewriter.replaceOpWithNewOp<tensor::InsertOp>(
xferOp, scalar, xferOp.getSource(), xferOp.getIndices());
}
return success();
}
};
} // namespace
void mlir::vector::transferOpflowOpt(RewriterBase &rewriter,
Operation *rootOp) {
TransferOptimization opt(rewriter, rootOp);
// Run store to load forwarding first since it can expose more dead store
// opportunity.
rootOp->walk([&](vector::TransferReadOp read) {
if (isa<MemRefType>(read.getShapedType()))
opt.storeToLoadForwarding(read);
});
opt.removeDeadOp();
rootOp->walk([&](vector::TransferWriteOp write) {
if (isa<MemRefType>(write.getShapedType()))
opt.deadStoreOp(write);
});
opt.removeDeadOp();
}
void mlir::vector::populateScalarVectorTransferLoweringPatterns(
RewritePatternSet &patterns, PatternBenefit benefit,
bool allowMultipleUses) {
patterns.add<RewriteScalarExtractElementOfTransferRead,
RewriteScalarExtractOfTransferRead>(patterns.getContext(),
benefit, allowMultipleUses);
patterns.add<RewriteScalarWrite>(patterns.getContext(), benefit);
}
void mlir::vector::populateVectorTransferDropUnitDimsPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns
.add<TransferReadDropUnitDimsPattern, TransferWriteDropUnitDimsPattern>(
patterns.getContext(), benefit);
populateShapeCastFoldingPatterns(patterns);
}
void mlir::vector::populateFlattenVectorTransferPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<FlattenContiguousRowMajorTransferReadPattern,
FlattenContiguousRowMajorTransferWritePattern>(
patterns.getContext(), benefit);
populateShapeCastFoldingPatterns(patterns, benefit);
}
|