File: one_trip.mlir

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (34 lines) | stat: -rw-r--r-- 1,603 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
// RUN: mlir-opt %s -sparsification -cse | FileCheck %s

#Dense = #sparse_tensor.encoding<{
  lvlTypes = [ "dense" , "dense" ]
}>

#trait_scale = {
  indexing_maps = [
    affine_map<(i,j) -> (i,j)>  // X (out)
  ],
  iterator_types = ["parallel", "parallel"],
  doc = "X(i,j) = X(i,j) * 2.0"
}

// CHECK-LABEL: func.func @sparse_scale(
// CHECK-SAME:    %[[VAL_0:.*]]: tensor<1x1xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "dense" ] }>>)
// CHECK-DAG:     %[[VAL_1:.*]] = arith.constant 0 : index
// CHECK-DAG:     %[[VAL_2:.*]] = arith.constant 2.000000e+00 : f32
// CHECK:         %[[VAL_3:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<1x1xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "dense" ] }>> to memref<?xf32>
// CHECK:         %[[VAL_4:.*]] = memref.load %[[VAL_3]]{{\[}}%[[VAL_1]]] : memref<?xf32>
// CHECK:         %[[VAL_5:.*]] = arith.mulf %[[VAL_4]], %[[VAL_2]] : f32
// CHECK:         memref.store %[[VAL_5]], %[[VAL_3]]{{\[}}%[[VAL_1]]] : memref<?xf32>
// CHECK:         %[[VAL_6:.*]] = sparse_tensor.load %[[VAL_0]] : tensor<1x1xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "dense" ] }>>
// CHECK:         return %[[VAL_6]] : tensor<1x1xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "dense" ] }>>
func.func @sparse_scale(%argx: tensor<1x1xf32, #Dense>) -> tensor<1x1xf32, #Dense> {
  %c = arith.constant 2.0 : f32
  %0 = linalg.generic #trait_scale
    outs(%argx: tensor<1x1xf32, #Dense>) {
      ^bb(%x: f32):
        %1 = arith.mulf %x, %c : f32
        linalg.yield %1 : f32
  } -> tensor<1x1xf32, #Dense>
  return %0 : tensor<1x1xf32, #Dense>
}