1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
|
// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
// RUN: mlir-opt %s -sparsification | FileCheck %s
#DV = #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>
#SV = #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>
#trait1 = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"],
doc = "x(i) = a(i) OP b"
}
// CHECK-LABEL: func @add_d(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>>,
// CHECK-SAME: %[[VAL_1:.*]]: f32,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_8]] : memref<32xf32>)
// CHECK: scf.for %[[VAL_9:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
// CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_9]]] : memref<?xf32>
// CHECK: %[[VAL_11:.*]] = arith.addf %[[VAL_10]], %[[VAL_1]] : f32
// CHECK: memref.store %[[VAL_11]], %[[VAL_8]]{{\[}}%[[VAL_9]]] : memref<32xf32>
// CHECK: }
// CHECK: %[[VAL_12:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf32>
// CHECK: return %[[VAL_12]] : tensor<32xf32>
// CHECK: }
func.func @add_d(%arga: tensor<32xf32, #DV>, %argb: f32, %argx: tensor<32xf32>) -> tensor<32xf32> {
%0 = linalg.generic #trait1
ins(%arga: tensor<32xf32, #DV>)
outs(%argx: tensor<32xf32>) {
^bb(%a: f32, %x: f32):
%0 = arith.addf %a, %argb : f32
linalg.yield %0 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
// CHECK-LABEL: func @add_d_init(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>>,
// CHECK-SAME: %[[VAL_1:.*]]: f32) -> tensor<32xf32> {
// CHECK: %[[VAL_2:.*]] = arith.constant 32 : index
// CHECK: %[[VAL_3:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_INITTENSOR:.*]] = tensor.empty() : tensor<32xf32>
// CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>> to memref<?xf32>
// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_INITTENSOR]] : memref<32xf32>
// CHECK: linalg.fill ins(%[[VAL_3]] : f32) outs(%[[VAL_7]] : memref<32xf32>)
// CHECK: scf.for %[[VAL_8:.*]] = %[[VAL_4]] to %[[VAL_2]] step %[[VAL_5]] {
// CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_8]]] : memref<?xf32>
// CHECK: %[[VAL_10:.*]] = arith.addf %[[VAL_9]], %[[VAL_1]] : f32
// CHECK: memref.store %[[VAL_10]], %[[VAL_7]]{{\[}}%[[VAL_8]]] : memref<32xf32>
// CHECK: }
// CHECK: %[[VAL_11:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf32>
// CHECK: return %[[VAL_11]] : tensor<32xf32>
// CHECK: }
func.func @add_d_init(%arga: tensor<32xf32, #DV>, %argb: f32) -> tensor<32xf32> {
%u = tensor.empty() : tensor<32xf32>
%0 = linalg.generic #trait1
ins(%arga: tensor<32xf32, #DV>)
outs(%u: tensor<32xf32>) {
^bb(%a: f32, %x: f32):
%0 = arith.addf %a, %argb : f32
linalg.yield %0 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
// CHECK-LABEL: func @mul_d(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>>,
// CHECK-SAME: %[[VAL_1:.*]]: f32,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_8]] : memref<32xf32>)
// CHECK: scf.for %[[VAL_9:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
// CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_9]]] : memref<?xf32>
// CHECK: %[[VAL_11:.*]] = arith.mulf %[[VAL_10]], %[[VAL_1]] : f32
// CHECK: memref.store %[[VAL_11]], %[[VAL_8]]{{\[}}%[[VAL_9]]] : memref<32xf32>
// CHECK: }
// CHECK: %[[VAL_12:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf32>
// CHECK: return %[[VAL_12]] : tensor<32xf32>
// CHECK: }
func.func @mul_d(%arga: tensor<32xf32, #DV>, %argb: f32, %argx: tensor<32xf32>) -> tensor<32xf32> {
%0 = linalg.generic #trait1
ins(%arga: tensor<32xf32, #DV>)
outs(%argx: tensor<32xf32>) {
^bb(%a: f32, %x: f32):
%0 = arith.mulf %a, %argb : f32
linalg.yield %0 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
// CHECK-LABEL: func @add_s(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_1:.*]]: f32,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant true
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_11]] : memref<32xf32>)
// CHECK: %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
// CHECK: %[[VAL_17:.*]] = arith.cmpi ult, %[[VAL_15]], %[[VAL_13]] : index
// CHECK: scf.condition(%[[VAL_17]]) %[[VAL_15]], %[[VAL_16]] : index, index
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_18:.*]]: index, %[[VAL_19:.*]]: index):
// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex>
// CHECK: %[[VAL_21:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
// CHECK: scf.if %[[VAL_21]] {
// CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xf32>
// CHECK: %[[VAL_23:.*]] = arith.addf %[[VAL_22]], %[[VAL_1]] : f32
// CHECK: memref.store %[[VAL_23]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf32>
// CHECK: } else {
// CHECK: scf.if %[[VAL_5]] {
// CHECK: memref.store %[[VAL_1]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf32>
// CHECK: } else {
// CHECK: }
// CHECK: }
// CHECK: %[[VAL_24:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
// CHECK: %[[VAL_25:.*]] = arith.addi %[[VAL_18]], %[[VAL_6]] : index
// CHECK: %[[VAL_26:.*]] = arith.select %[[VAL_24]], %[[VAL_25]], %[[VAL_18]] : index
// CHECK: %[[VAL_27:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
// CHECK: scf.yield %[[VAL_26]], %[[VAL_27]] : index, index
// CHECK: }
// CHECK: scf.for %[[VAL_28:.*]] = %[[VAL_29:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
// CHECK: memref.store %[[VAL_1]], %[[VAL_11]]{{\[}}%[[VAL_28]]] : memref<32xf32>
// CHECK: }
// CHECK: %[[VAL_30:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf32>
// CHECK: return %[[VAL_30]] : tensor<32xf32>
// CHECK: }
func.func @add_s(%arga: tensor<32xf32, #SV>, %argb: f32, %argx: tensor<32xf32>) -> tensor<32xf32> {
%0 = linalg.generic #trait1
ins(%arga: tensor<32xf32, #SV>)
outs(%argx: tensor<32xf32>) {
^bb(%a: f32, %x: f32):
%0 = arith.addf %a, %argb : f32
linalg.yield %0 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
// CHECK-LABEL: func @repeated_add_s(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]]
// CHECK-DAG: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_10:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_8]] : memref<32xf32>)
// CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_3]] {
// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_11]]] : memref<?xindex>
// CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref<?xf32>
// CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref<?xf32>
// CHECK: %[[VAL_15:.*]] = arith.addf %[[VAL_13]], %[[VAL_14]] : f32
// CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref<?xf32>
// CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref<?xf32>
// CHECK: %[[VAL_18:.*]] = arith.addf %[[VAL_16]], %[[VAL_17]] : f32
// CHECK: %[[VAL_19:.*]] = arith.addf %[[VAL_15]], %[[VAL_18]] : f32
// CHECK: memref.store %[[VAL_19]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xf32>
// CHECK: }
// CHECK: %[[VAL_20:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf32>
// CHECK: return %[[VAL_20]] : tensor<32xf32>
// CHECK: }
func.func @repeated_add_s(%arga: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> {
%0 = linalg.generic #trait1
ins(%arga: tensor<32xf32, #SV>)
outs(%argx: tensor<32xf32>) {
^bb(%a: f32, %x: f32):
%0 = arith.addf %a, %a : f32 // same tensor
%1 = arith.addf %a, %a : f32 // should yield
%2 = arith.addf %0, %1 : f32 // one guard
linalg.yield %2 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
// CHECK-LABEL: func @mul_s(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_1:.*]]: f32,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_9]] : memref<32xf32>)
// CHECK-DAG: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_4]] {
// CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref<?xindex>
// CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_12]]] : memref<?xf32>
// CHECK: %[[VAL_15:.*]] = arith.mulf %[[VAL_14]], %[[VAL_1]] : f32
// CHECK: memref.store %[[VAL_15]], %[[VAL_9]]{{\[}}%[[VAL_13]]] : memref<32xf32>
// CHECK: }
// CHECK: %[[VAL_16:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf32>
// CHECK: return %[[VAL_16]] : tensor<32xf32>
// CHECK: }
func.func @mul_s(%arga: tensor<32xf32, #SV>, %argb: f32, %argx: tensor<32xf32>) -> tensor<32xf32> {
%0 = linalg.generic #trait1
ins(%arga: tensor<32xf32, #SV>)
outs(%argx: tensor<32xf32>) {
^bb(%a: f32, %x: f32):
%0 = arith.mulf %a, %argb : f32
linalg.yield %0 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
#trait2 = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> (i)>, // b
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"],
doc = "x(i) = a(i) OP b(i)"
}
// CHECK-LABEL: func @add_dd(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32>
// CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_9]] : memref<32xf32>)
// CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf32>
// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_10]]] : memref<32xf32>
// CHECK: %[[VAL_13:.*]] = arith.addf %[[VAL_11]], %[[VAL_12]] : f32
// CHECK: memref.store %[[VAL_13]], %[[VAL_9]]{{\[}}%[[VAL_10]]] : memref<32xf32>
// CHECK: }
// CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf32>
// CHECK: return %[[VAL_14]] : tensor<32xf32>
// CHECK: }
func.func @add_dd(%arga: tensor<32xf32, #DV>, %argb: tensor<32xf32>, %argx: tensor<32xf32>) -> tensor<32xf32> {
%0 = linalg.generic #trait2
ins(%arga, %argb: tensor<32xf32, #DV>, tensor<32xf32>)
outs(%argx: tensor<32xf32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.addf %a, %b : f32
linalg.yield %0 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
// CHECK-LABEL: func @mul_dd(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32>
// CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_9]] : memref<32xf32>)
// CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf32>
// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_10]]] : memref<32xf32>
// CHECK: %[[VAL_13:.*]] = arith.mulf %[[VAL_11]], %[[VAL_12]] : f32
// CHECK: memref.store %[[VAL_13]], %[[VAL_9]]{{\[}}%[[VAL_10]]] : memref<32xf32>
// CHECK: }
// CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf32>
// CHECK: return %[[VAL_14]] : tensor<32xf32>
// CHECK: }
func.func @mul_dd(%arga: tensor<32xf32, #DV>, %argb: tensor<32xf32>, %argx: tensor<32xf32>) -> tensor<32xf32> {
%0 = linalg.generic #trait2
ins(%arga, %argb: tensor<32xf32, #DV>, tensor<32xf32>)
outs(%argx: tensor<32xf32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.mulf %a, %b : f32
linalg.yield %0 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
// CHECK-LABEL: func @add_ds(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant true
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_0]] : memref<32xf32>
// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_12]] : memref<32xf32>)
// CHECK-DAG: %[[VAL_13:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_14:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_6]]] : memref<?xindex>
// CHECK: %[[VAL_15:.*]]:2 = scf.while (%[[VAL_16:.*]] = %[[VAL_13]], %[[VAL_17:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
// CHECK: %[[VAL_18:.*]] = arith.cmpi ult, %[[VAL_16]], %[[VAL_14]] : index
// CHECK: scf.condition(%[[VAL_18]]) %[[VAL_16]], %[[VAL_17]] : index, index
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_19:.*]]: index, %[[VAL_20:.*]]: index):
// CHECK: %[[VAL_21:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_19]]] : memref<?xindex>
// CHECK: %[[VAL_22:.*]] = arith.cmpi eq, %[[VAL_21]], %[[VAL_20]] : index
// CHECK: scf.if %[[VAL_22]] {
// CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK: %[[VAL_24:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<?xf32>
// CHECK: %[[VAL_25:.*]] = arith.addf %[[VAL_23]], %[[VAL_24]] : f32
// CHECK: memref.store %[[VAL_25]], %[[VAL_12]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK: } else {
// CHECK: scf.if %[[VAL_5]] {
// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK: memref.store %[[VAL_26]], %[[VAL_12]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK: } else {
// CHECK: }
// CHECK: }
// CHECK: %[[VAL_27:.*]] = arith.cmpi eq, %[[VAL_21]], %[[VAL_20]] : index
// CHECK: %[[VAL_28:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
// CHECK: %[[VAL_29:.*]] = arith.select %[[VAL_27]], %[[VAL_28]], %[[VAL_19]] : index
// CHECK: %[[VAL_30:.*]] = arith.addi %[[VAL_20]], %[[VAL_6]] : index
// CHECK: scf.yield %[[VAL_29]], %[[VAL_30]] : index, index
// CHECK: }
// CHECK: scf.for %[[VAL_31:.*]] = %[[VAL_32:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
// CHECK: %[[VAL_33:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_31]]] : memref<32xf32>
// CHECK: memref.store %[[VAL_33]], %[[VAL_12]]{{\[}}%[[VAL_31]]] : memref<32xf32>
// CHECK: }
// CHECK: %[[VAL_34:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf32>
// CHECK: return %[[VAL_34]] : tensor<32xf32>
// CHECK: }
func.func @add_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> {
%0 = linalg.generic #trait2
ins(%arga, %argb: tensor<32xf32>, tensor<32xf32, #SV>)
outs(%argx: tensor<32xf32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.addf %a, %b : f32
linalg.yield %0 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
// CHECK-LABEL: func @mul_ds(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_5:.*]] = bufferization.to_memref %[[VAL_0]] : memref<32xf32>
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_10]] : memref<32xf32>)
// CHECK-DAG: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK: scf.for %[[VAL_13:.*]] = %[[VAL_11]] to %[[VAL_12]] step %[[VAL_4]] {
// CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_13]]] : memref<?xindex>
// CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_14]]] : memref<32xf32>
// CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_13]]] : memref<?xf32>
// CHECK: %[[VAL_17:.*]] = arith.mulf %[[VAL_15]], %[[VAL_16]] : f32
// CHECK: memref.store %[[VAL_17]], %[[VAL_10]]{{\[}}%[[VAL_14]]] : memref<32xf32>
// CHECK: }
// CHECK: %[[VAL_18:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32xf32>
// CHECK: return %[[VAL_18]] : tensor<32xf32>
// CHECK: }
func.func @mul_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> {
%0 = linalg.generic #trait2
ins(%arga, %argb: tensor<32xf32>, tensor<32xf32, #SV>)
outs(%argx: tensor<32xf32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.mulf %a, %b : f32
linalg.yield %0 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
// CHECK-LABEL: func @add_sd(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant true
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32>
// CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_12]] : memref<32xf32>)
// CHECK-DAG: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
// CHECK: %[[VAL_15:.*]]:2 = scf.while (%[[VAL_16:.*]] = %[[VAL_13]], %[[VAL_17:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
// CHECK: %[[VAL_18:.*]] = arith.cmpi ult, %[[VAL_16]], %[[VAL_14]] : index
// CHECK: scf.condition(%[[VAL_18]]) %[[VAL_16]], %[[VAL_17]] : index, index
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_19:.*]]: index, %[[VAL_20:.*]]: index):
// CHECK: %[[VAL_21:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_19]]] : memref<?xindex>
// CHECK: %[[VAL_22:.*]] = arith.cmpi eq, %[[VAL_21]], %[[VAL_20]] : index
// CHECK: scf.if %[[VAL_22]] {
// CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_19]]] : memref<?xf32>
// CHECK: %[[VAL_24:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK: %[[VAL_25:.*]] = arith.addf %[[VAL_23]], %[[VAL_24]] : f32
// CHECK: memref.store %[[VAL_25]], %[[VAL_12]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK: } else {
// CHECK: scf.if %[[VAL_5]] {
// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK: memref.store %[[VAL_26]], %[[VAL_12]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK: } else {
// CHECK: }
// CHECK: }
// CHECK: %[[VAL_27:.*]] = arith.cmpi eq, %[[VAL_21]], %[[VAL_20]] : index
// CHECK: %[[VAL_28:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
// CHECK: %[[VAL_29:.*]] = arith.select %[[VAL_27]], %[[VAL_28]], %[[VAL_19]] : index
// CHECK: %[[VAL_30:.*]] = arith.addi %[[VAL_20]], %[[VAL_6]] : index
// CHECK: scf.yield %[[VAL_29]], %[[VAL_30]] : index, index
// CHECK: }
// CHECK: scf.for %[[VAL_31:.*]] = %[[VAL_32:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
// CHECK: %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_31]]] : memref<32xf32>
// CHECK: memref.store %[[VAL_33]], %[[VAL_12]]{{\[}}%[[VAL_31]]] : memref<32xf32>
// CHECK: }
// CHECK: %[[VAL_34:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf32>
// CHECK: return %[[VAL_34]] : tensor<32xf32>
// CHECK: }
func.func @add_sd(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32>, %argx: tensor<32xf32>) -> tensor<32xf32> {
%0 = linalg.generic #trait2
ins(%arga, %argb: tensor<32xf32, #SV>, tensor<32xf32>)
outs(%argx: tensor<32xf32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.addf %a, %b : f32
linalg.yield %0 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
// CHECK-LABEL: func @mul_sd(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32>
// CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_10]] : memref<32xf32>)
// CHECK-DAG: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_12:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK: scf.for %[[VAL_13:.*]] = %[[VAL_11]] to %[[VAL_12]] step %[[VAL_4]] {
// CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_13]]] : memref<?xindex>
// CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_13]]] : memref<?xf32>
// CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_14]]] : memref<32xf32>
// CHECK: %[[VAL_17:.*]] = arith.mulf %[[VAL_15]], %[[VAL_16]] : f32
// CHECK: memref.store %[[VAL_17]], %[[VAL_10]]{{\[}}%[[VAL_14]]] : memref<32xf32>
// CHECK: }
// CHECK: %[[VAL_18:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32xf32>
// CHECK: return %[[VAL_18]] : tensor<32xf32>
// CHECK: }
func.func @mul_sd(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32>, %argx: tensor<32xf32>) -> tensor<32xf32> {
%0 = linalg.generic #trait2
ins(%arga, %argb: tensor<32xf32, #SV>, tensor<32xf32>)
outs(%argx: tensor<32xf32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.mulf %a, %b : f32
linalg.yield %0 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
// CHECK-LABEL: func @add_ss(
// CHECK-SAME: %[[VAL_0:.*0]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_1:.*1]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_2:.*2]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_12]] : memref<32xf32>)
// CHECK-DAG: %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_14:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK: %[[VAL_17:.*]]:2 = scf.while (%[[VAL_18:.*]] = %[[VAL_13]], %[[VAL_19:.*]] = %[[VAL_15]]) : (index, index) -> (index, index) {
// CHECK: %[[VAL_20:.*]] = arith.cmpi ult, %[[VAL_18]], %[[VAL_14]] : index
// CHECK: %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_16]] : index
// CHECK: %[[VAL_22:.*]] = arith.andi %[[VAL_20]], %[[VAL_21]] : i1
// CHECK: scf.condition(%[[VAL_22]]) %[[VAL_18]], %[[VAL_19]] : index, index
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_23:.*]]: index, %[[VAL_24:.*]]: index):
// CHECK: %[[VAL_25:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_23]]] : memref<?xindex>
// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK: %[[VAL_27:.*]] = arith.cmpi ult, %[[VAL_26]], %[[VAL_25]] : index
// CHECK: %[[VAL_28:.*]] = arith.select %[[VAL_27]], %[[VAL_26]], %[[VAL_25]] : index
// CHECK: %[[VAL_29:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_28]] : index
// CHECK: %[[VAL_30:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_28]] : index
// CHECK: %[[VAL_31:.*]] = arith.andi %[[VAL_29]], %[[VAL_30]] : i1
// CHECK: scf.if %[[VAL_31]] {
// CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_23]]] : memref<?xf32>
// CHECK: %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK: %[[VAL_34:.*]] = arith.addf %[[VAL_32]], %[[VAL_33]] : f32
// CHECK: memref.store %[[VAL_34]], %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<32xf32>
// CHECK: } else {
// CHECK: %[[VAL_35:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_28]] : index
// CHECK: scf.if %[[VAL_35]] {
// CHECK: %[[VAL_36:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_23]]] : memref<?xf32>
// CHECK: memref.store %[[VAL_36]], %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<32xf32>
// CHECK: } else {
// CHECK: %[[VAL_37:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_28]] : index
// CHECK: scf.if %[[VAL_37]] {
// CHECK: %[[VAL_38:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK: memref.store %[[VAL_38]], %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<32xf32>
// CHECK: } else {
// CHECK: }
// CHECK: }
// CHECK: }
// CHECK: %[[VAL_39:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_28]] : index
// CHECK: %[[VAL_40:.*]] = arith.addi %[[VAL_23]], %[[VAL_4]] : index
// CHECK: %[[VAL_41:.*]] = arith.select %[[VAL_39]], %[[VAL_40]], %[[VAL_23]] : index
// CHECK: %[[VAL_42:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_28]] : index
// CHECK: %[[VAL_43:.*]] = arith.addi %[[VAL_24]], %[[VAL_4]] : index
// CHECK: %[[VAL_44:.*]] = arith.select %[[VAL_42]], %[[VAL_43]], %[[VAL_24]] : index
// CHECK: scf.yield %[[VAL_41]], %[[VAL_44]] : index, index
// CHECK: }
// CHECK: scf.for %[[VAL_45:.*]] = %[[VAL_46:.*]]#0 to %[[VAL_14]] step %[[VAL_4]] {
// CHECK: %[[VAL_47:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_45]]] : memref<?xindex>
// CHECK: %[[VAL_48:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_45]]] : memref<?xf32>
// CHECK: memref.store %[[VAL_48]], %[[VAL_12]]{{\[}}%[[VAL_47]]] : memref<32xf32>
// CHECK: }
// CHECK: scf.for %[[VAL_49:.*]] = %[[VAL_50:.*]]#1 to %[[VAL_16]] step %[[VAL_4]] {
// CHECK: %[[VAL_51:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_49]]] : memref<?xindex>
// CHECK: %[[VAL_52:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_49]]] : memref<?xf32>
// CHECK: memref.store %[[VAL_52]], %[[VAL_12]]{{\[}}%[[VAL_51]]] : memref<32xf32>
// CHECK: }
// CHECK: %[[VAL_53:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf32>
// CHECK: return %[[VAL_53]] : tensor<32xf32>
// CHECK: }
func.func @add_ss(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> {
%0 = linalg.generic #trait2
ins(%arga, %argb: tensor<32xf32, #SV>, tensor<32xf32, #SV>)
outs(%argx: tensor<32xf32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.addf %a, %b : f32
linalg.yield %0 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
// CHECK-LABEL: func @mul_ss(
// CHECK-SAME: %[[VAL_0:.*0]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_1:.*1]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_2:.*2]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_12]] : memref<32xf32>)
// CHECK-DAG: %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_14:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK: %[[VAL_17:.*]]:2 = scf.while (%[[VAL_18:.*]] = %[[VAL_13]], %[[VAL_19:.*]] = %[[VAL_15]]) : (index, index) -> (index, index) {
// CHECK: %[[VAL_20:.*]] = arith.cmpi ult, %[[VAL_18]], %[[VAL_14]] : index
// CHECK: %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_16]] : index
// CHECK: %[[VAL_22:.*]] = arith.andi %[[VAL_20]], %[[VAL_21]] : i1
// CHECK: scf.condition(%[[VAL_22]]) %[[VAL_18]], %[[VAL_19]] : index, index
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_23:.*]]: index, %[[VAL_24:.*]]: index):
// CHECK: %[[VAL_25:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_23]]] : memref<?xindex>
// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK: %[[VAL_27:.*]] = arith.cmpi ult, %[[VAL_26]], %[[VAL_25]] : index
// CHECK: %[[VAL_28:.*]] = arith.select %[[VAL_27]], %[[VAL_26]], %[[VAL_25]] : index
// CHECK: %[[VAL_29:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_28]] : index
// CHECK: %[[VAL_30:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_28]] : index
// CHECK: %[[VAL_31:.*]] = arith.andi %[[VAL_29]], %[[VAL_30]] : i1
// CHECK: scf.if %[[VAL_31]] {
// CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_23]]] : memref<?xf32>
// CHECK: %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK: %[[VAL_34:.*]] = arith.mulf %[[VAL_32]], %[[VAL_33]] : f32
// CHECK: memref.store %[[VAL_34]], %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<32xf32>
// CHECK: } else {
// CHECK: }
// CHECK: %[[VAL_35:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_28]] : index
// CHECK: %[[VAL_36:.*]] = arith.addi %[[VAL_23]], %[[VAL_4]] : index
// CHECK: %[[VAL_37:.*]] = arith.select %[[VAL_35]], %[[VAL_36]], %[[VAL_23]] : index
// CHECK: %[[VAL_38:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_28]] : index
// CHECK: %[[VAL_39:.*]] = arith.addi %[[VAL_24]], %[[VAL_4]] : index
// CHECK: %[[VAL_40:.*]] = arith.select %[[VAL_38]], %[[VAL_39]], %[[VAL_24]] : index
// CHECK: scf.yield %[[VAL_37]], %[[VAL_40]] : index, index
// CHECK: }
// CHECK: %[[VAL_41:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf32>
// CHECK: return %[[VAL_41]] : tensor<32xf32>
// CHECK: }
func.func @mul_ss(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> {
%0 = linalg.generic #trait2
ins(%arga, %argb: tensor<32xf32, #SV>, tensor<32xf32, #SV>)
outs(%argx: tensor<32xf32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.mulf %a, %b : f32
linalg.yield %0 : f32
} -> tensor<32xf32>
return %0 : tensor<32xf32>
}
// CHECK-LABEL: func @two_way_inv(
// CHECK-SAME: %[[VAL_0:.*0]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_1:.*1]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_2:.*2]]: f32,
// CHECK-SAME: %[[VAL_3:.*3]]: tensor<16xf32>) -> tensor<16xf32> {
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_3]]
// CHECK-DAG: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_13]] : memref<16xf32>)
// CHECK-DAG: %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_16:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_17:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK: %[[VAL_18:.*]]:2 = scf.while (%[[VAL_19:.*]] = %[[VAL_14]], %[[VAL_20:.*]] = %[[VAL_16]]) : (index, index) -> (index, index) {
// CHECK: %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_15]] : index
// CHECK: %[[VAL_22:.*]] = arith.cmpi ult, %[[VAL_20]], %[[VAL_17]] : index
// CHECK: %[[VAL_23:.*]] = arith.andi %[[VAL_21]], %[[VAL_22]] : i1
// CHECK: scf.condition(%[[VAL_23]]) %[[VAL_19]], %[[VAL_20]] : index, index
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_24:.*]]: index, %[[VAL_25:.*]]: index):
// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK: %[[VAL_27:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_25]]] : memref<?xindex>
// CHECK: %[[VAL_28:.*]] = arith.cmpi ult, %[[VAL_27]], %[[VAL_26]] : index
// CHECK: %[[VAL_29:.*]] = arith.select %[[VAL_28]], %[[VAL_27]], %[[VAL_26]] : index
// CHECK: %[[VAL_30:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_29]] : index
// CHECK: %[[VAL_31:.*]] = arith.cmpi eq, %[[VAL_27]], %[[VAL_29]] : index
// CHECK: %[[VAL_32:.*]] = arith.andi %[[VAL_30]], %[[VAL_31]] : i1
// CHECK: scf.if %[[VAL_32]] {
// CHECK: %[[VAL_33:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK: %[[VAL_34:.*]] = arith.mulf %[[VAL_33]], %[[VAL_2]] : f32
// CHECK: %[[VAL_35:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK: %[[VAL_36:.*]] = arith.mulf %[[VAL_35]], %[[VAL_2]] : f32
// CHECK: %[[VAL_37:.*]] = arith.addf %[[VAL_34]], %[[VAL_36]] : f32
// CHECK: memref.store %[[VAL_37]], %[[VAL_13]]{{\[}}%[[VAL_29]]] : memref<16xf32>
// CHECK: } else {
// CHECK: %[[VAL_38:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_29]] : index
// CHECK: scf.if %[[VAL_38]] {
// CHECK: %[[VAL_39:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK: %[[VAL_40:.*]] = arith.mulf %[[VAL_39]], %[[VAL_2]] : f32
// CHECK: memref.store %[[VAL_40]], %[[VAL_13]]{{\[}}%[[VAL_29]]] : memref<16xf32>
// CHECK: } else {
// CHECK: %[[VAL_41:.*]] = arith.cmpi eq, %[[VAL_27]], %[[VAL_29]] : index
// CHECK: scf.if %[[VAL_41]] {
// CHECK: %[[VAL_42:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK: %[[VAL_43:.*]] = arith.mulf %[[VAL_42]], %[[VAL_2]] : f32
// CHECK: memref.store %[[VAL_43]], %[[VAL_13]]{{\[}}%[[VAL_29]]] : memref<16xf32>
// CHECK: } else {
// CHECK: }
// CHECK: }
// CHECK: }
// CHECK: %[[VAL_44:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_29]] : index
// CHECK: %[[VAL_45:.*]] = arith.addi %[[VAL_24]], %[[VAL_5]] : index
// CHECK: %[[VAL_46:.*]] = arith.select %[[VAL_44]], %[[VAL_45]], %[[VAL_24]] : index
// CHECK: %[[VAL_47:.*]] = arith.cmpi eq, %[[VAL_27]], %[[VAL_29]] : index
// CHECK: %[[VAL_48:.*]] = arith.addi %[[VAL_25]], %[[VAL_5]] : index
// CHECK: %[[VAL_49:.*]] = arith.select %[[VAL_47]], %[[VAL_48]], %[[VAL_25]] : index
// CHECK: scf.yield %[[VAL_46]], %[[VAL_49]] : index, index
// CHECK: }
// CHECK: scf.for %[[VAL_50:.*]] = %[[VAL_51:.*]]#0 to %[[VAL_15]] step %[[VAL_5]] {
// CHECK: %[[VAL_52:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_50]]] : memref<?xindex>
// CHECK: %[[VAL_53:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_50]]] : memref<?xf32>
// CHECK: %[[VAL_54:.*]] = arith.mulf %[[VAL_53]], %[[VAL_2]] : f32
// CHECK: memref.store %[[VAL_54]], %[[VAL_13]]{{\[}}%[[VAL_52]]] : memref<16xf32>
// CHECK: }
// CHECK: scf.for %[[VAL_55:.*]] = %[[VAL_56:.*]]#1 to %[[VAL_17]] step %[[VAL_5]] {
// CHECK: %[[VAL_57:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_55]]] : memref<?xindex>
// CHECK: %[[VAL_58:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_55]]] : memref<?xf32>
// CHECK: %[[VAL_59:.*]] = arith.mulf %[[VAL_58]], %[[VAL_2]] : f32
// CHECK: memref.store %[[VAL_59]], %[[VAL_13]]{{\[}}%[[VAL_57]]] : memref<16xf32>
// CHECK: }
// CHECK: %[[VAL_60:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<16xf32>
// CHECK: return %[[VAL_60]] : tensor<16xf32>
// CHECK: }
func.func @two_way_inv(%arga: tensor<16xf32, #SV>, %argb: tensor<16xf32, #SV>, %argc: f32, %argx: tensor<16xf32>) -> tensor<16xf32> {
// Kernel "x(i) = a(i) * c + b(i) * c".
%0 = linalg.generic #trait2
ins(%arga, %argb: tensor<16xf32, #SV>, tensor<16xf32, #SV>)
outs(%argx: tensor<16xf32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.mulf %a, %argc : f32
%1 = arith.mulf %b, %argc : f32
%2 = arith.addf %0, %1 : f32
linalg.yield %2 : f32
} -> tensor<16xf32>
return %0 : tensor<16xf32>
}
// CHECK-LABEL: func @two_way_inv_alt(
// CHECK-SAME: %[[VAL_0:.*0]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_1:.*1]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_2:.*2]]: f32,
// CHECK-SAME: %[[VAL_3:.*3]]: tensor<16xf32>) -> tensor<16xf32> {
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_3]]
// CHECK-DAG: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_13]] : memref<16xf32>)
// CHECK-DAG: %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_16:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_17:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK: %[[VAL_18:.*]]:2 = scf.while (%[[VAL_19:.*]] = %[[VAL_14]], %[[VAL_20:.*]] = %[[VAL_16]]) : (index, index) -> (index, index) {
// CHECK: %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_15]] : index
// CHECK: %[[VAL_22:.*]] = arith.cmpi ult, %[[VAL_20]], %[[VAL_17]] : index
// CHECK: %[[VAL_23:.*]] = arith.andi %[[VAL_21]], %[[VAL_22]] : i1
// CHECK: scf.condition(%[[VAL_23]]) %[[VAL_19]], %[[VAL_20]] : index, index
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_24:.*]]: index, %[[VAL_25:.*]]: index):
// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK: %[[VAL_27:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_25]]] : memref<?xindex>
// CHECK: %[[VAL_28:.*]] = arith.cmpi ult, %[[VAL_27]], %[[VAL_26]] : index
// CHECK: %[[VAL_29:.*]] = arith.select %[[VAL_28]], %[[VAL_27]], %[[VAL_26]] : index
// CHECK: %[[VAL_30:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_29]] : index
// CHECK: %[[VAL_31:.*]] = arith.cmpi eq, %[[VAL_27]], %[[VAL_29]] : index
// CHECK: %[[VAL_32:.*]] = arith.andi %[[VAL_30]], %[[VAL_31]] : i1
// CHECK: scf.if %[[VAL_32]] {
// CHECK: %[[VAL_33:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK: %[[VAL_34:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK: %[[VAL_35:.*]] = arith.addf %[[VAL_33]], %[[VAL_34]] : f32
// CHECK: %[[VAL_36:.*]] = arith.mulf %[[VAL_35]], %[[VAL_2]] : f32
// CHECK: memref.store %[[VAL_36]], %[[VAL_13]]{{\[}}%[[VAL_29]]] : memref<16xf32>
// CHECK: } else {
// CHECK: %[[VAL_37:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_29]] : index
// CHECK: scf.if %[[VAL_37]] {
// CHECK: %[[VAL_38:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK: %[[VAL_39:.*]] = arith.mulf %[[VAL_38]], %[[VAL_2]] : f32
// CHECK: memref.store %[[VAL_39]], %[[VAL_13]]{{\[}}%[[VAL_29]]] : memref<16xf32>
// CHECK: } else {
// CHECK: %[[VAL_40:.*]] = arith.cmpi eq, %[[VAL_27]], %[[VAL_29]] : index
// CHECK: scf.if %[[VAL_40]] {
// CHECK: %[[VAL_41:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK: %[[VAL_42:.*]] = arith.mulf %[[VAL_41]], %[[VAL_2]] : f32
// CHECK: memref.store %[[VAL_42]], %[[VAL_13]]{{\[}}%[[VAL_29]]] : memref<16xf32>
// CHECK: } else {
// CHECK: }
// CHECK: }
// CHECK: }
// CHECK: %[[VAL_43:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_29]] : index
// CHECK: %[[VAL_44:.*]] = arith.addi %[[VAL_24]], %[[VAL_5]] : index
// CHECK: %[[VAL_45:.*]] = arith.select %[[VAL_43]], %[[VAL_44]], %[[VAL_24]] : index
// CHECK: %[[VAL_46:.*]] = arith.cmpi eq, %[[VAL_27]], %[[VAL_29]] : index
// CHECK: %[[VAL_47:.*]] = arith.addi %[[VAL_25]], %[[VAL_5]] : index
// CHECK: %[[VAL_48:.*]] = arith.select %[[VAL_46]], %[[VAL_47]], %[[VAL_25]] : index
// CHECK: scf.yield %[[VAL_45]], %[[VAL_48]] : index, index
// CHECK: }
// CHECK: scf.for %[[VAL_49:.*]] = %[[VAL_50:.*]]#0 to %[[VAL_15]] step %[[VAL_5]] {
// CHECK: %[[VAL_51:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_49]]] : memref<?xindex>
// CHECK: %[[VAL_52:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_49]]] : memref<?xf32>
// CHECK: %[[VAL_53:.*]] = arith.mulf %[[VAL_52]], %[[VAL_2]] : f32
// CHECK: memref.store %[[VAL_53]], %[[VAL_13]]{{\[}}%[[VAL_51]]] : memref<16xf32>
// CHECK: }
// CHECK: scf.for %[[VAL_54:.*]] = %[[VAL_55:.*]]#1 to %[[VAL_17]] step %[[VAL_5]] {
// CHECK: %[[VAL_56:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_54]]] : memref<?xindex>
// CHECK: %[[VAL_57:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_54]]] : memref<?xf32>
// CHECK: %[[VAL_58:.*]] = arith.mulf %[[VAL_57]], %[[VAL_2]] : f32
// CHECK: memref.store %[[VAL_58]], %[[VAL_13]]{{\[}}%[[VAL_56]]] : memref<16xf32>
// CHECK: }
// CHECK: %[[VAL_59:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<16xf32>
// CHECK: return %[[VAL_59]] : tensor<16xf32>
// CHECK: }
func.func @two_way_inv_alt(%arga: tensor<16xf32, #SV>,
%argb: tensor<16xf32, #SV>, %argc: f32, %argx: tensor<16xf32>) -> tensor<16xf32> {
// Same kernel, but now expressed as "x(i) = (a(i) + b(i)) * c".
%0 = linalg.generic #trait2
ins(%arga, %argb: tensor<16xf32, #SV>, tensor<16xf32, #SV>)
outs(%argx: tensor<16xf32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.addf %a, %b : f32
%1 = arith.mulf %0, %argc : f32
linalg.yield %1 : f32
} -> tensor<16xf32>
return %0 : tensor<16xf32>
}
#trait_sum_reduction = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> ()> // x (scalar out)
],
iterator_types = ["reduction"],
doc = "x += SUM_i a(i)"
}
// CHECK-LABEL: func @sum_reduction(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<?xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<f32>) -> tensor<f32> {
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<?xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_1]] : memref<f32>
// CHECK-DAG: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_10:.*]] = memref.load %[[VAL_6]][] : memref<f32>
// CHECK: %[[VAL_11:.*]] = scf.for %[[VAL_12:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] iter_args(%[[VAL_13:.*]] = %[[VAL_10]]) -> (f32) {
// CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_12]]] : memref<?xf32>
// CHECK: %[[VAL_15:.*]] = arith.addf %[[VAL_13]], %[[VAL_14]] : f32
// CHECK: scf.yield %[[VAL_15]] : f32
// CHECK: }
// CHECK: memref.store %[[VAL_11]], %[[VAL_6]][] : memref<f32>
// CHECK: %[[VAL_17:.*]] = bufferization.to_tensor %[[VAL_6]] : memref<f32>
// CHECK: return %[[VAL_17]] : tensor<f32>
// CHECK: }
func.func @sum_reduction(%arga: tensor<?xf32, #SV>, %argx: tensor<f32>) -> tensor<f32> {
%0 = linalg.generic #trait_sum_reduction
ins(%arga: tensor<?xf32, #SV>)
outs(%argx: tensor<f32>) {
^bb(%a: f32, %x: f32):
%0 = arith.addf %x, %a : f32
linalg.yield %0 : f32
} -> tensor<f32>
return %0 : tensor<f32>
}
#trait_sum_reduction2 = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> (i)>, // b
affine_map<(i)-> ()> // x (scalar out)
],
iterator_types = ["reduction"],
doc = "x += SUM_i a(i) + b(i)"
}
// CHECK-LABEL: func @sum_reduction_ss(
// CHECK-SAME: %[[VAL_0:.*0]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_1:.*1]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_2:.*2]]: tensor<f32>) -> tensor<f32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<f32>
// CHECK-DAG: %[[VAL_13:.*]] = memref.load %[[VAL_11]][] : memref<f32>
// CHECK-DAG: %[[VAL_14:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_15:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK: %[[VAL_18:.*]]:3 = scf.while (%[[VAL_19:.*]] = %[[VAL_14]], %[[VAL_20:.*]] = %[[VAL_16]], %[[VAL_21:.*]] = %[[VAL_13]]) : (index, index, f32) -> (index, index, f32) {
// CHECK: %[[VAL_22:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_15]] : index
// CHECK: %[[VAL_23:.*]] = arith.cmpi ult, %[[VAL_20]], %[[VAL_17]] : index
// CHECK: %[[VAL_24:.*]] = arith.andi %[[VAL_22]], %[[VAL_23]] : i1
// CHECK: scf.condition(%[[VAL_24]]) %[[VAL_19]], %[[VAL_20]], %[[VAL_21]] : index, index, f32
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_25:.*]]: index, %[[VAL_26:.*]]: index, %[[VAL_27:.*]]: f32):
// CHECK: %[[VAL_28:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_25]]] : memref<?xindex>
// CHECK: %[[VAL_29:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_26]]] : memref<?xindex>
// CHECK: %[[VAL_30:.*]] = arith.cmpi ult, %[[VAL_29]], %[[VAL_28]] : index
// CHECK: %[[VAL_31:.*]] = arith.select %[[VAL_30]], %[[VAL_29]], %[[VAL_28]] : index
// CHECK: %[[VAL_32:.*]] = arith.cmpi eq, %[[VAL_28]], %[[VAL_31]] : index
// CHECK: %[[VAL_33:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_31]] : index
// CHECK: %[[VAL_34:.*]] = arith.andi %[[VAL_32]], %[[VAL_33]] : i1
// CHECK: %[[VAL_35:.*]] = scf.if %[[VAL_34]] -> (f32) {
// CHECK: %[[VAL_36:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK: %[[VAL_37:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_26]]] : memref<?xf32>
// CHECK: %[[VAL_38:.*]] = arith.addf %[[VAL_36]], %[[VAL_37]] : f32
// CHECK: %[[VAL_39:.*]] = arith.addf %[[VAL_27]], %[[VAL_38]] : f32
// CHECK: scf.yield %[[VAL_39]] : f32
// CHECK: } else {
// CHECK: %[[VAL_40:.*]] = arith.cmpi eq, %[[VAL_28]], %[[VAL_31]] : index
// CHECK: %[[VAL_41:.*]] = scf.if %[[VAL_40]] -> (f32) {
// CHECK: %[[VAL_42:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK: %[[VAL_43:.*]] = arith.addf %[[VAL_27]], %[[VAL_42]] : f32
// CHECK: scf.yield %[[VAL_43]] : f32
// CHECK: } else {
// CHECK: %[[VAL_44:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_31]] : index
// CHECK: %[[VAL_45:.*]] = scf.if %[[VAL_44]] -> (f32) {
// CHECK: %[[VAL_46:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_26]]] : memref<?xf32>
// CHECK: %[[VAL_47:.*]] = arith.addf %[[VAL_27]], %[[VAL_46]] : f32
// CHECK: scf.yield %[[VAL_47]] : f32
// CHECK: } else {
// CHECK: scf.yield %[[VAL_27]] : f32
// CHECK: }
// CHECK: scf.yield %[[VAL_48:.*]] : f32
// CHECK: }
// CHECK: scf.yield %[[VAL_49:.*]] : f32
// CHECK: }
// CHECK: %[[VAL_50:.*]] = arith.cmpi eq, %[[VAL_28]], %[[VAL_31]] : index
// CHECK: %[[VAL_51:.*]] = arith.addi %[[VAL_25]], %[[VAL_4]] : index
// CHECK: %[[VAL_52:.*]] = arith.select %[[VAL_50]], %[[VAL_51]], %[[VAL_25]] : index
// CHECK: %[[VAL_53:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_31]] : index
// CHECK: %[[VAL_54:.*]] = arith.addi %[[VAL_26]], %[[VAL_4]] : index
// CHECK: %[[VAL_55:.*]] = arith.select %[[VAL_53]], %[[VAL_54]], %[[VAL_26]] : index
// CHECK: scf.yield %[[VAL_52]], %[[VAL_55]], %[[VAL_56:.*]] : index, index, f32
// CHECK: }
// CHECK: %[[VAL_57:.*]] = scf.for %[[VAL_58:.*]] = %[[VAL_59:.*]]#0 to %[[VAL_15]] step %[[VAL_4]] iter_args(%[[VAL_60:.*]] = %[[VAL_59]]#2) -> (f32) {
// CHECK: %[[VAL_61:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_58]]] : memref<?xf32>
// CHECK: %[[VAL_62:.*]] = arith.addf %[[VAL_60]], %[[VAL_61]] : f32
// CHECK: scf.yield %[[VAL_62]] : f32
// CHECK: }
// CHECK: %[[VAL_63:.*]] = scf.for %[[VAL_64:.*]] = %[[VAL_65:.*]]#1 to %[[VAL_17]] step %[[VAL_4]] iter_args(%[[VAL_66:.*]] = %[[VAL_67:.*]]) -> (f32) {
// CHECK: %[[VAL_68:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_64]]] : memref<?xf32>
// CHECK: %[[VAL_69:.*]] = arith.addf %[[VAL_66]], %[[VAL_68]] : f32
// CHECK: scf.yield %[[VAL_69]] : f32
// CHECK: }
// CHECK: memref.store %[[VAL_70:.*]], %[[VAL_11]][] : memref<f32>
// CHECK: %[[VAL_71:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<f32>
// CHECK: return %[[VAL_71]] : tensor<f32>
// CHECK: }
func.func @sum_reduction_ss(%arga: tensor<16xf32, #SV>,
%argb: tensor<16xf32, #SV>,
%argx: tensor<f32>) -> tensor<f32> {
// Just for testing. This case would be better expressed
// as two separate reductions kernels.
%0 = linalg.generic #trait_sum_reduction2
ins(%arga, %argb: tensor<16xf32, #SV>, tensor<16xf32, #SV>)
outs(%argx: tensor<f32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.addf %a, %b : f32
%1 = arith.addf %x, %0 : f32
linalg.yield %1 : f32
} -> tensor<f32>
return %0 : tensor<f32>
}
#trait_sum_reduction_inv = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> ()>, // b
affine_map<(i) -> (i)>, // c
affine_map<(i) -> ()> // x (out)
],
iterator_types = ["reduction"],
doc = "x += SUM_i a(i) * b + c(i)"
}
// CHECK-LABEL: func @sum_reduction_inv(
// CHECK-SAME: %[[VAL_0:.*0]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_1:.*1]]: tensor<f32>,
// CHECK-SAME: %[[VAL_2:.*2]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_3:.*3]]: tensor<f32>) -> tensor<f32> {
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<f32>
// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.positions %[[VAL_2]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.coordinates %[[VAL_2]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_2]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_3]] : memref<f32>
// CHECK-DAG: %[[VAL_15:.*]] = memref.load %[[VAL_13]][] : memref<f32>
// CHECK-DAG: %[[VAL_16:.*]] = memref.load %[[VAL_9]][] : memref<f32>
// CHECK-DAG: %[[VAL_17:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_18:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_19:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_20:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK: %[[VAL_21:.*]]:3 = scf.while (%[[VAL_22:.*]] = %[[VAL_17]], %[[VAL_23:.*]] = %[[VAL_19]], %[[VAL_24:.*]] = %[[VAL_15]]) : (index, index, f32) -> (index, index, f32) {
// CHECK: %[[VAL_25:.*]] = arith.cmpi ult, %[[VAL_22]], %[[VAL_18]] : index
// CHECK: %[[VAL_26:.*]] = arith.cmpi ult, %[[VAL_23]], %[[VAL_20]] : index
// CHECK: %[[VAL_27:.*]] = arith.andi %[[VAL_25]], %[[VAL_26]] : i1
// CHECK: scf.condition(%[[VAL_27]]) %[[VAL_22]], %[[VAL_23]], %[[VAL_24]] : index, index, f32
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_28:.*]]: index, %[[VAL_29:.*]]: index, %[[VAL_30:.*]]: f32):
// CHECK: %[[VAL_31:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_28]]] : memref<?xindex>
// CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_29]]] : memref<?xindex>
// CHECK: %[[VAL_33:.*]] = arith.cmpi ult, %[[VAL_32]], %[[VAL_31]] : index
// CHECK: %[[VAL_34:.*]] = arith.select %[[VAL_33]], %[[VAL_32]], %[[VAL_31]] : index
// CHECK: %[[VAL_35:.*]] = arith.cmpi eq, %[[VAL_31]], %[[VAL_34]] : index
// CHECK: %[[VAL_36:.*]] = arith.cmpi eq, %[[VAL_32]], %[[VAL_34]] : index
// CHECK: %[[VAL_37:.*]] = arith.andi %[[VAL_35]], %[[VAL_36]] : i1
// CHECK: %[[VAL_38:.*]] = scf.if %[[VAL_37]] -> (f32) {
// CHECK: %[[VAL_39:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_28]]] : memref<?xf32>
// CHECK: %[[VAL_40:.*]] = arith.mulf %[[VAL_39]], %[[VAL_16]] : f32
// CHECK: %[[VAL_41:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_29]]] : memref<?xf32>
// CHECK: %[[VAL_42:.*]] = arith.addf %[[VAL_40]], %[[VAL_41]] : f32
// CHECK: %[[VAL_43:.*]] = arith.addf %[[VAL_30]], %[[VAL_42]] : f32
// CHECK: scf.yield %[[VAL_43]] : f32
// CHECK: } else {
// CHECK: %[[VAL_44:.*]] = arith.cmpi eq, %[[VAL_31]], %[[VAL_34]] : index
// CHECK: %[[VAL_45:.*]] = scf.if %[[VAL_44]] -> (f32) {
// CHECK: %[[VAL_46:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_28]]] : memref<?xf32>
// CHECK: %[[VAL_47:.*]] = arith.mulf %[[VAL_46]], %[[VAL_16]] : f32
// CHECK: %[[VAL_48:.*]] = arith.addf %[[VAL_30]], %[[VAL_47]] : f32
// CHECK: scf.yield %[[VAL_48]] : f32
// CHECK: } else {
// CHECK: %[[VAL_49:.*]] = arith.cmpi eq, %[[VAL_32]], %[[VAL_34]] : index
// CHECK: %[[VAL_50:.*]] = scf.if %[[VAL_49]] -> (f32) {
// CHECK: %[[VAL_51:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_29]]] : memref<?xf32>
// CHECK: %[[VAL_52:.*]] = arith.addf %[[VAL_30]], %[[VAL_51]] : f32
// CHECK: scf.yield %[[VAL_52]] : f32
// CHECK: } else {
// CHECK: scf.yield %[[VAL_30]] : f32
// CHECK: }
// CHECK: scf.yield %[[VAL_53:.*]] : f32
// CHECK: }
// CHECK: scf.yield %[[VAL_54:.*]] : f32
// CHECK: }
// CHECK: %[[VAL_55:.*]] = arith.cmpi eq, %[[VAL_31]], %[[VAL_34]] : index
// CHECK: %[[VAL_56:.*]] = arith.addi %[[VAL_28]], %[[VAL_5]] : index
// CHECK: %[[VAL_57:.*]] = arith.select %[[VAL_55]], %[[VAL_56]], %[[VAL_28]] : index
// CHECK: %[[VAL_58:.*]] = arith.cmpi eq, %[[VAL_32]], %[[VAL_34]] : index
// CHECK: %[[VAL_59:.*]] = arith.addi %[[VAL_29]], %[[VAL_5]] : index
// CHECK: %[[VAL_60:.*]] = arith.select %[[VAL_58]], %[[VAL_59]], %[[VAL_29]] : index
// CHECK: scf.yield %[[VAL_57]], %[[VAL_60]], %[[VAL_61:.*]] : index, index, f32
// CHECK: }
// CHECK: %[[VAL_62:.*]] = scf.for %[[VAL_63:.*]] = %[[VAL_64:.*]]#0 to %[[VAL_18]] step %[[VAL_5]] iter_args(%[[VAL_65:.*]] = %[[VAL_64]]#2) -> (f32) {
// CHECK: %[[VAL_66:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_63]]] : memref<?xf32>
// CHECK: %[[VAL_67:.*]] = arith.mulf %[[VAL_66]], %[[VAL_16]] : f32
// CHECK: %[[VAL_68:.*]] = arith.addf %[[VAL_65]], %[[VAL_67]] : f32
// CHECK: scf.yield %[[VAL_68]] : f32
// CHECK: }
// CHECK: %[[VAL_69:.*]] = scf.for %[[VAL_70:.*]] = %[[VAL_71:.*]]#1 to %[[VAL_20]] step %[[VAL_5]] iter_args(%[[VAL_72:.*]] = %[[VAL_73:.*]]) -> (f32) {
// CHECK: %[[VAL_74:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_70]]] : memref<?xf32>
// CHECK: %[[VAL_75:.*]] = arith.addf %[[VAL_72]], %[[VAL_74]] : f32
// CHECK: scf.yield %[[VAL_75]] : f32
// CHECK: }
// CHECK: memref.store %[[VAL_76:.*]], %[[VAL_13]][] : memref<f32>
// CHECK: %[[VAL_77:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<f32>
// CHECK: return %[[VAL_77]] : tensor<f32>
// CHECK: }
func.func @sum_reduction_inv(%arga: tensor<16xf32, #SV>,
%argb: tensor<f32>,
%argc: tensor<16xf32, #SV>,
%argx: tensor<f32>) -> tensor<f32> {
// Just for testing. This case would be better expressed
// as two separate reductions kernels.
%0 = linalg.generic #trait_sum_reduction_inv
ins(%arga, %argb, %argc : tensor<16xf32, #SV>, tensor<f32>, tensor<16xf32, #SV>)
outs(%argx: tensor<f32>) {
^bb(%a: f32, %b: f32, %c: f32, %x: f32):
%0 = arith.mulf %a, %b : f32
%1 = arith.addf %0, %c : f32
%2 = arith.addf %x, %1 : f32
linalg.yield %2 : f32
} -> tensor<f32>
return %0 : tensor<f32>
}
#trait_four_tensors = {
indexing_maps = [
affine_map<(i) -> (i)>, // A
affine_map<(i) -> (i)>, // B
affine_map<(i) -> (i)>, // C
affine_map<(i) -> (i)>, // D
affine_map<(i) -> (i)> // X (out)
],
iterator_types = ["parallel"],
doc = "X(i) = A(i) + B(i) + C(i) + D(i)"
}
// CHECK-LABEL: func @four_tensors_op(
// CHECK-SAME: %[[VAL_0:.*0]]: tensor<?xf64>,
// CHECK-SAME: %[[VAL_1:.*1]]: tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_2:.*2]]: tensor<?xf64>,
// CHECK-SAME: %[[VAL_3:.*3]]: tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_4:.*]]: tensor<?xf64>) -> tensor<?xf64> {
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant true
// CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref<?xf64>
// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf64>
// CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<?xf64>
// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.positions %[[VAL_3]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.coordinates %[[VAL_3]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_15:.*]] = sparse_tensor.values %[[VAL_3]] : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf64>
// CHECK-DAG: %[[VAL_16:.*]] = tensor.dim %[[VAL_0]], %[[VAL_5]] : tensor<?xf64>
// CHECK-DAG: %[[VAL_18:.*]] = bufferization.to_memref %[[VAL_4]]
// CHECK-DAG: linalg.fill ins(%{{.*}} : f64) outs(%[[VAL_18]] : memref<?xf64>)
// CHECK-DAG: %[[VAL_19:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_7]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_21:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_22:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_7]]] : memref<?xindex>
// CHECK: %[[VAL_23:.*]]:3 = scf.while (%[[VAL_24:.*]] = %[[VAL_19]], %[[VAL_25:.*]] = %[[VAL_21]], %[[VAL_26:.*]] = %[[VAL_5]]) : (index, index, index) -> (index, index, index) {
// CHECK: %[[VAL_27:.*]] = arith.cmpi ult, %[[VAL_24]], %[[VAL_20]] : index
// CHECK: %[[VAL_28:.*]] = arith.cmpi ult, %[[VAL_25]], %[[VAL_22]] : index
// CHECK: %[[VAL_29:.*]] = arith.andi %[[VAL_27]], %[[VAL_28]] : i1
// CHECK: scf.condition(%[[VAL_29]]) %[[VAL_24]], %[[VAL_25]], %[[VAL_26]] : index, index, index
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_30:.*]]: index, %[[VAL_31:.*]]: index, %[[VAL_32:.*]]: index):
// CHECK: %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_30]]] : memref<?xindex>
// CHECK: %[[VAL_34:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_31]]] : memref<?xindex>
// CHECK: %[[VAL_35:.*]] = arith.cmpi eq, %[[VAL_33]], %[[VAL_32]] : index
// CHECK: %[[VAL_36:.*]] = arith.cmpi eq, %[[VAL_34]], %[[VAL_32]] : index
// CHECK: %[[VAL_37:.*]] = arith.andi %[[VAL_35]], %[[VAL_36]] : i1
// CHECK: scf.if %[[VAL_37]] {
// CHECK: %[[VAL_38:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK: %[[VAL_39:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<?xf64>
// CHECK: %[[VAL_40:.*]] = arith.addf %[[VAL_38]], %[[VAL_39]] : f64
// CHECK: %[[VAL_41:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK: %[[VAL_42:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_31]]] : memref<?xf64>
// CHECK: %[[VAL_43:.*]] = arith.addf %[[VAL_41]], %[[VAL_42]] : f64
// CHECK: %[[VAL_44:.*]] = arith.addf %[[VAL_40]], %[[VAL_43]] : f64
// CHECK: memref.store %[[VAL_44]], %[[VAL_18]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK: } else {
// CHECK: %[[VAL_45:.*]] = arith.cmpi eq, %[[VAL_33]], %[[VAL_32]] : index
// CHECK: scf.if %[[VAL_45]] {
// CHECK: %[[VAL_46:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK: %[[VAL_47:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<?xf64>
// CHECK: %[[VAL_48:.*]] = arith.addf %[[VAL_46]], %[[VAL_47]] : f64
// CHECK: %[[VAL_49:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK: %[[VAL_50:.*]] = arith.addf %[[VAL_48]], %[[VAL_49]] : f64
// CHECK: memref.store %[[VAL_50]], %[[VAL_18]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK: } else {
// CHECK: %[[VAL_51:.*]] = arith.cmpi eq, %[[VAL_34]], %[[VAL_32]] : index
// CHECK: scf.if %[[VAL_51]] {
// CHECK: %[[VAL_52:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK: %[[VAL_53:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK: %[[VAL_54:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_31]]] : memref<?xf64>
// CHECK: %[[VAL_55:.*]] = arith.addf %[[VAL_53]], %[[VAL_54]] : f64
// CHECK: %[[VAL_56:.*]] = arith.addf %[[VAL_52]], %[[VAL_55]] : f64
// CHECK: memref.store %[[VAL_56]], %[[VAL_18]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK: } else {
// CHECK: scf.if %[[VAL_6]] {
// CHECK: %[[VAL_57:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK: %[[VAL_58:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK: %[[VAL_59:.*]] = arith.addf %[[VAL_57]], %[[VAL_58]] : f64
// CHECK: memref.store %[[VAL_59]], %[[VAL_18]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK: } else {
// CHECK: }
// CHECK: }
// CHECK: }
// CHECK: }
// CHECK: %[[VAL_60:.*]] = arith.cmpi eq, %[[VAL_33]], %[[VAL_32]] : index
// CHECK: %[[VAL_61:.*]] = arith.addi %[[VAL_30]], %[[VAL_7]] : index
// CHECK: %[[VAL_62:.*]] = arith.select %[[VAL_60]], %[[VAL_61]], %[[VAL_30]] : index
// CHECK: %[[VAL_63:.*]] = arith.cmpi eq, %[[VAL_34]], %[[VAL_32]] : index
// CHECK: %[[VAL_64:.*]] = arith.addi %[[VAL_31]], %[[VAL_7]] : index
// CHECK: %[[VAL_65:.*]] = arith.select %[[VAL_63]], %[[VAL_64]], %[[VAL_31]] : index
// CHECK: %[[VAL_66:.*]] = arith.addi %[[VAL_32]], %[[VAL_7]] : index
// CHECK: scf.yield %[[VAL_62]], %[[VAL_65]], %[[VAL_66]] : index, index, index
// CHECK: }
// CHECK: %[[VAL_67:.*]]:2 = scf.while (%[[VAL_68:.*]] = %[[VAL_69:.*]]#0, %[[VAL_70:.*]] = %[[VAL_69]]#2) : (index, index) -> (index, index) {
// CHECK: %[[VAL_71:.*]] = arith.cmpi ult, %[[VAL_68]], %[[VAL_20]] : index
// CHECK: scf.condition(%[[VAL_71]]) %[[VAL_68]], %[[VAL_70]] : index, index
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_72:.*]]: index, %[[VAL_73:.*]]: index):
// CHECK: %[[VAL_74:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_72]]] : memref<?xindex>
// CHECK: %[[VAL_75:.*]] = arith.cmpi eq, %[[VAL_74]], %[[VAL_73]] : index
// CHECK: scf.if %[[VAL_75]] {
// CHECK: %[[VAL_76:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_73]]] : memref<?xf64>
// CHECK: %[[VAL_77:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_72]]] : memref<?xf64>
// CHECK: %[[VAL_78:.*]] = arith.addf %[[VAL_76]], %[[VAL_77]] : f64
// CHECK: %[[VAL_79:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_73]]] : memref<?xf64>
// CHECK: %[[VAL_80:.*]] = arith.addf %[[VAL_78]], %[[VAL_79]] : f64
// CHECK: memref.store %[[VAL_80]], %[[VAL_18]]{{\[}}%[[VAL_73]]] : memref<?xf64>
// CHECK: } else {
// CHECK: scf.if %[[VAL_6]] {
// CHECK: %[[VAL_81:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_73]]] : memref<?xf64>
// CHECK: %[[VAL_82:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_73]]] : memref<?xf64>
// CHECK: %[[VAL_83:.*]] = arith.addf %[[VAL_81]], %[[VAL_82]] : f64
// CHECK: memref.store %[[VAL_83]], %[[VAL_18]]{{\[}}%[[VAL_73]]] : memref<?xf64>
// CHECK: } else {
// CHECK: }
// CHECK: }
// CHECK: %[[VAL_84:.*]] = arith.cmpi eq, %[[VAL_74]], %[[VAL_73]] : index
// CHECK: %[[VAL_85:.*]] = arith.addi %[[VAL_72]], %[[VAL_7]] : index
// CHECK: %[[VAL_86:.*]] = arith.select %[[VAL_84]], %[[VAL_85]], %[[VAL_72]] : index
// CHECK: %[[VAL_87:.*]] = arith.addi %[[VAL_73]], %[[VAL_7]] : index
// CHECK: scf.yield %[[VAL_86]], %[[VAL_87]] : index, index
// CHECK: }
// CHECK: %[[VAL_88:.*]]:2 = scf.while (%[[VAL_89:.*]] = %[[VAL_90:.*]]#1, %[[VAL_91:.*]] = %[[VAL_92:.*]]#1) : (index, index) -> (index, index) {
// CHECK: %[[VAL_93:.*]] = arith.cmpi ult, %[[VAL_89]], %[[VAL_22]] : index
// CHECK: scf.condition(%[[VAL_93]]) %[[VAL_89]], %[[VAL_91]] : index, index
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_94:.*]]: index, %[[VAL_95:.*]]: index):
// CHECK: %[[VAL_96:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_94]]] : memref<?xindex>
// CHECK: %[[VAL_97:.*]] = arith.cmpi eq, %[[VAL_96]], %[[VAL_95]] : index
// CHECK: scf.if %[[VAL_97]] {
// CHECK: %[[VAL_98:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_95]]] : memref<?xf64>
// CHECK: %[[VAL_99:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_95]]] : memref<?xf64>
// CHECK: %[[VAL_100:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_94]]] : memref<?xf64>
// CHECK: %[[VAL_101:.*]] = arith.addf %[[VAL_99]], %[[VAL_100]] : f64
// CHECK: %[[VAL_102:.*]] = arith.addf %[[VAL_98]], %[[VAL_101]] : f64
// CHECK: memref.store %[[VAL_102]], %[[VAL_18]]{{\[}}%[[VAL_95]]] : memref<?xf64>
// CHECK: } else {
// CHECK: scf.if %[[VAL_6]] {
// CHECK: %[[VAL_103:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_95]]] : memref<?xf64>
// CHECK: %[[VAL_104:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_95]]] : memref<?xf64>
// CHECK: %[[VAL_105:.*]] = arith.addf %[[VAL_103]], %[[VAL_104]] : f64
// CHECK: memref.store %[[VAL_105]], %[[VAL_18]]{{\[}}%[[VAL_95]]] : memref<?xf64>
// CHECK: } else {
// CHECK: }
// CHECK: }
// CHECK: %[[VAL_106:.*]] = arith.cmpi eq, %[[VAL_96]], %[[VAL_95]] : index
// CHECK: %[[VAL_107:.*]] = arith.addi %[[VAL_94]], %[[VAL_7]] : index
// CHECK: %[[VAL_108:.*]] = arith.select %[[VAL_106]], %[[VAL_107]], %[[VAL_94]] : index
// CHECK: %[[VAL_109:.*]] = arith.addi %[[VAL_95]], %[[VAL_7]] : index
// CHECK: scf.yield %[[VAL_108]], %[[VAL_109]] : index, index
// CHECK: }
// CHECK: scf.for %[[VAL_110:.*]] = %[[VAL_111:.*]]#1 to %[[VAL_16]] step %[[VAL_7]] {
// CHECK: %[[VAL_112:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_110]]] : memref<?xf64>
// CHECK: %[[VAL_113:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_110]]] : memref<?xf64>
// CHECK: %[[VAL_114:.*]] = arith.addf %[[VAL_112]], %[[VAL_113]] : f64
// CHECK: memref.store %[[VAL_114]], %[[VAL_18]]{{\[}}%[[VAL_110]]] : memref<?xf64>
// CHECK: }
// CHECK: %[[VAL_115:.*]] = bufferization.to_tensor %[[VAL_18]] : memref<?xf64>
// CHECK: return %[[VAL_115]] : tensor<?xf64>
// CHECK: }
func.func @four_tensors_op(%arga: tensor<?xf64>,
%argb: tensor<?xf64, #SV>,
%argc: tensor<?xf64>,
%argd: tensor<?xf64, #SV>,
%argx: tensor<?xf64>) -> tensor<?xf64> {
%r = linalg.generic #trait_four_tensors
ins(%arga, %argb, %argc, %argd: tensor<?xf64>, tensor<?xf64, #SV>, tensor<?xf64>, tensor<?xf64, #SV>)
outs(%argx: tensor<?xf64>) {
^bb(%a: f64, %b: f64, %c: f64, %d: f64, %x: f64):
%0 = arith.addf %a, %b : f64
%1 = arith.addf %c, %d : f64
%2 = arith.addf %0, %1 : f64
linalg.yield %2 : f64
} -> tensor<?xf64>
return %r : tensor<?xf64>
}
#trait_red3s = {
indexing_maps = [
affine_map<(i) -> (i)>,
affine_map<(i) -> (i)>,
affine_map<(i) -> (i)>,
affine_map<(i) -> ()>
],
iterator_types = ["reduction"],
doc = "x += a(i) + b(i) + c(i)"
}
// CHECK-LABEL: func @red3s(
// CHECK-SAME: %[[VAL_0:.*0]]: tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_1:.*1]]: tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_2:.*2]]: tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME: %[[VAL_3:.*3]]: tensor<f64>) -> tensor<f64> {
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf64>
// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf64>
// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.positions %[[VAL_2]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.coordinates %[[VAL_2]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_2]] : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf64>
// CHECK-DAG: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_3]] : memref<f64>
// CHECK-DAG: %[[VAL_17:.*]] = memref.load %[[VAL_15]][] : memref<f64>
// CHECK-DAG: %[[VAL_18:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_19:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_21:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_22:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_23:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK: %[[VAL_24:.*]]:4 = scf.while (%[[VAL_25:.*]] = %[[VAL_18]], %[[VAL_26:.*]] = %[[VAL_20]], %[[VAL_27:.*]] = %[[VAL_22]], %[[VAL_28:.*]] = %[[VAL_17]]) : (index, index, index, f64) -> (index, index, index, f64) {
// CHECK: %[[VAL_29:.*]] = arith.cmpi ult, %[[VAL_25]], %[[VAL_19]] : index
// CHECK: %[[VAL_30:.*]] = arith.cmpi ult, %[[VAL_26]], %[[VAL_21]] : index
// CHECK: %[[VAL_31:.*]] = arith.andi %[[VAL_29]], %[[VAL_30]] : i1
// CHECK: %[[VAL_32:.*]] = arith.cmpi ult, %[[VAL_27]], %[[VAL_23]] : index
// CHECK: %[[VAL_33:.*]] = arith.andi %[[VAL_31]], %[[VAL_32]] : i1
// CHECK: scf.condition(%[[VAL_33]]) %[[VAL_25]], %[[VAL_26]], %[[VAL_27]], %[[VAL_28]] : index, index, index, f64
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_34:.*]]: index, %[[VAL_35:.*]]: index, %[[VAL_36:.*]]: index, %[[VAL_37:.*]]: f64):
// CHECK-DAG: %[[VAL_38:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_34]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_39:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_35]]] : memref<?xindex>
// CHECK-DAG: %[[VAL_42:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_36]]] : memref<?xindex>
// CHECK: %[[VAL_40:.*]] = arith.cmpi ult, %[[VAL_39]], %[[VAL_38]] : index
// CHECK: %[[VAL_41:.*]] = arith.select %[[VAL_40]], %[[VAL_39]], %[[VAL_38]] : index
// CHECK: %[[VAL_43:.*]] = arith.cmpi ult, %[[VAL_42]], %[[VAL_41]] : index
// CHECK: %[[VAL_44:.*]] = arith.select %[[VAL_43]], %[[VAL_42]], %[[VAL_41]] : index
// CHECK: %[[VAL_45:.*]] = arith.cmpi eq, %[[VAL_38]], %[[VAL_44]] : index
// CHECK: %[[VAL_46:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_44]] : index
// CHECK: %[[VAL_47:.*]] = arith.andi %[[VAL_45]], %[[VAL_46]] : i1
// CHECK: %[[VAL_48:.*]] = arith.cmpi eq, %[[VAL_42]], %[[VAL_44]] : index
// CHECK: %[[VAL_49:.*]] = arith.andi %[[VAL_47]], %[[VAL_48]] : i1
// CHECK: %[[VAL_50:.*]] = scf.if %[[VAL_49]] -> (f64) {
// CHECK: %[[VAL_51:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_34]]] : memref<?xf64>
// CHECK: %[[VAL_52:.*]] = arith.addf %[[VAL_37]], %[[VAL_51]] : f64
// CHECK: %[[VAL_53:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_35]]] : memref<?xf64>
// CHECK: %[[VAL_54:.*]] = arith.addf %[[VAL_52]], %[[VAL_53]] : f64
// CHECK: %[[VAL_55:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_36]]] : memref<?xf64>
// CHECK: %[[VAL_56:.*]] = arith.addf %[[VAL_54]], %[[VAL_55]] : f64
// CHECK: scf.yield %[[VAL_56]] : f64
// CHECK: } else {
// CHECK: %[[VAL_57:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_44]] : index
// CHECK: %[[VAL_58:.*]] = arith.cmpi eq, %[[VAL_42]], %[[VAL_44]] : index
// CHECK: %[[VAL_59:.*]] = arith.andi %[[VAL_57]], %[[VAL_58]] : i1
// CHECK: %[[VAL_60:.*]] = scf.if %[[VAL_59]] -> (f64) {
// CHECK: %[[VAL_61:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_35]]] : memref<?xf64>
// CHECK: %[[VAL_62:.*]] = arith.addf %[[VAL_37]], %[[VAL_61]] : f64
// CHECK: %[[VAL_63:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_36]]] : memref<?xf64>
// CHECK: %[[VAL_64:.*]] = arith.addf %[[VAL_62]], %[[VAL_63]] : f64
// CHECK: scf.yield %[[VAL_64]] : f64
// CHECK: } else {
// CHECK: %[[VAL_65:.*]] = arith.cmpi eq, %[[VAL_38]], %[[VAL_44]] : index
// CHECK: %[[VAL_66:.*]] = arith.cmpi eq, %[[VAL_42]], %[[VAL_44]] : index
// CHECK: %[[VAL_67:.*]] = arith.andi %[[VAL_65]], %[[VAL_66]] : i1
// CHECK: %[[VAL_68:.*]] = scf.if %[[VAL_67]] -> (f64) {
// CHECK: %[[VAL_69:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_34]]] : memref<?xf64>
// CHECK: %[[VAL_70:.*]] = arith.addf %[[VAL_37]], %[[VAL_69]] : f64
// CHECK: %[[VAL_71:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_36]]] : memref<?xf64>
// CHECK: %[[VAL_72:.*]] = arith.addf %[[VAL_70]], %[[VAL_71]] : f64
// CHECK: scf.yield %[[VAL_72]] : f64
// CHECK: } else {
// CHECK: %[[VAL_73:.*]] = arith.cmpi eq, %[[VAL_42]], %[[VAL_44]] : index
// CHECK: %[[VAL_74:.*]] = scf.if %[[VAL_73]] -> (f64) {
// CHECK: %[[VAL_75:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_36]]] : memref<?xf64>
// CHECK: %[[VAL_76:.*]] = arith.addf %[[VAL_37]], %[[VAL_75]] : f64
// CHECK: scf.yield %[[VAL_76]] : f64
// CHECK: } else {
// CHECK: %[[VAL_77:.*]] = arith.cmpi eq, %[[VAL_38]], %[[VAL_44]] : index
// CHECK: %[[VAL_78:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_44]] : index
// CHECK: %[[VAL_79:.*]] = arith.andi %[[VAL_77]], %[[VAL_78]] : i1
// CHECK: %[[VAL_80:.*]] = scf.if %[[VAL_79]] -> (f64) {
// CHECK: %[[VAL_81:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_34]]] : memref<?xf64>
// CHECK: %[[VAL_82:.*]] = arith.addf %[[VAL_37]], %[[VAL_81]] : f64
// CHECK: %[[VAL_83:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_35]]] : memref<?xf64>
// CHECK: %[[VAL_84:.*]] = arith.addf %[[VAL_82]], %[[VAL_83]] : f64
// CHECK: scf.yield %[[VAL_84]] : f64
// CHECK: } else {
// CHECK: %[[VAL_85:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_44]] : index
// CHECK: %[[VAL_86:.*]] = scf.if %[[VAL_85]] -> (f64) {
// CHECK: %[[VAL_87:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_35]]] : memref<?xf64>
// CHECK: %[[VAL_88:.*]] = arith.addf %[[VAL_37]], %[[VAL_87]] : f64
// CHECK: scf.yield %[[VAL_88]] : f64
// CHECK: } else {
// CHECK: %[[VAL_89:.*]] = arith.cmpi eq, %[[VAL_38]], %[[VAL_44]] : index
// CHECK: %[[VAL_90:.*]] = scf.if %[[VAL_89]] -> (f64) {
// CHECK: %[[VAL_91:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_34]]] : memref<?xf64>
// CHECK: %[[VAL_92:.*]] = arith.addf %[[VAL_37]], %[[VAL_91]] : f64
// CHECK: scf.yield %[[VAL_92]] : f64
// CHECK: } else {
// CHECK: scf.yield %[[VAL_37]] : f64
// CHECK: }
// CHECK: scf.yield %[[VAL_93:.*]] : f64
// CHECK: }
// CHECK: scf.yield %[[VAL_94:.*]] : f64
// CHECK: }
// CHECK: scf.yield %[[VAL_95:.*]] : f64
// CHECK: }
// CHECK: scf.yield %[[VAL_96:.*]] : f64
// CHECK: }
// CHECK: scf.yield %[[VAL_97:.*]] : f64
// CHECK: }
// CHECK: scf.yield %[[VAL_98:.*]] : f64
// CHECK: }
// CHECK: %[[VAL_99:.*]] = arith.cmpi eq, %[[VAL_38]], %[[VAL_44]] : index
// CHECK: %[[VAL_100:.*]] = arith.addi %[[VAL_34]], %[[VAL_5]] : index
// CHECK: %[[VAL_101:.*]] = arith.select %[[VAL_99]], %[[VAL_100]], %[[VAL_34]] : index
// CHECK: %[[VAL_102:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_44]] : index
// CHECK: %[[VAL_103:.*]] = arith.addi %[[VAL_35]], %[[VAL_5]] : index
// CHECK: %[[VAL_104:.*]] = arith.select %[[VAL_102]], %[[VAL_103]], %[[VAL_35]] : index
// CHECK: %[[VAL_105:.*]] = arith.cmpi eq, %[[VAL_42]], %[[VAL_44]] : index
// CHECK: %[[VAL_106:.*]] = arith.addi %[[VAL_36]], %[[VAL_5]] : index
// CHECK: %[[VAL_107:.*]] = arith.select %[[VAL_105]], %[[VAL_106]], %[[VAL_36]] : index
// CHECK: scf.yield %[[VAL_101]], %[[VAL_104]], %[[VAL_107]], %[[VAL_108:.*]] : index, index, index, f64
// CHECK: }
// CHECK: %[[VAL_109:.*]]:3 = scf.while (%[[VAL_110:.*]] = %[[VAL_111:.*]]#1, %[[VAL_112:.*]] = %[[VAL_111]]#2, %[[VAL_113:.*]] = %[[VAL_111]]#3) : (index, index, f64) -> (index, index, f64) {
// CHECK: %[[VAL_114:.*]] = arith.cmpi ult, %[[VAL_110]], %[[VAL_21]] : index
// CHECK: %[[VAL_115:.*]] = arith.cmpi ult, %[[VAL_112]], %[[VAL_23]] : index
// CHECK: %[[VAL_116:.*]] = arith.andi %[[VAL_114]], %[[VAL_115]] : i1
// CHECK: scf.condition(%[[VAL_116]]) %[[VAL_110]], %[[VAL_112]], %[[VAL_113]] : index, index, f64
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_117:.*]]: index, %[[VAL_118:.*]]: index, %[[VAL_119:.*]]: f64):
// CHECK: %[[VAL_120:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_117]]] : memref<?xindex>
// CHECK: %[[VAL_121:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_118]]] : memref<?xindex>
// CHECK: %[[VAL_122:.*]] = arith.cmpi ult, %[[VAL_121]], %[[VAL_120]] : index
// CHECK: %[[VAL_123:.*]] = arith.select %[[VAL_122]], %[[VAL_121]], %[[VAL_120]] : index
// CHECK: %[[VAL_124:.*]] = arith.cmpi eq, %[[VAL_120]], %[[VAL_123]] : index
// CHECK: %[[VAL_125:.*]] = arith.cmpi eq, %[[VAL_121]], %[[VAL_123]] : index
// CHECK: %[[VAL_126:.*]] = arith.andi %[[VAL_124]], %[[VAL_125]] : i1
// CHECK: %[[VAL_127:.*]] = scf.if %[[VAL_126]] -> (f64) {
// CHECK: %[[VAL_128:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_117]]] : memref<?xf64>
// CHECK: %[[VAL_129:.*]] = arith.addf %[[VAL_119]], %[[VAL_128]] : f64
// CHECK: %[[VAL_130:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_118]]] : memref<?xf64>
// CHECK: %[[VAL_131:.*]] = arith.addf %[[VAL_129]], %[[VAL_130]] : f64
// CHECK: scf.yield %[[VAL_131]] : f64
// CHECK: } else {
// CHECK: %[[VAL_132:.*]] = arith.cmpi eq, %[[VAL_121]], %[[VAL_123]] : index
// CHECK: %[[VAL_133:.*]] = scf.if %[[VAL_132]] -> (f64) {
// CHECK: %[[VAL_134:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_118]]] : memref<?xf64>
// CHECK: %[[VAL_135:.*]] = arith.addf %[[VAL_119]], %[[VAL_134]] : f64
// CHECK: scf.yield %[[VAL_135]] : f64
// CHECK: } else {
// CHECK: %[[VAL_136:.*]] = arith.cmpi eq, %[[VAL_120]], %[[VAL_123]] : index
// CHECK: %[[VAL_137:.*]] = scf.if %[[VAL_136]] -> (f64) {
// CHECK: %[[VAL_138:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_117]]] : memref<?xf64>
// CHECK: %[[VAL_139:.*]] = arith.addf %[[VAL_119]], %[[VAL_138]] : f64
// CHECK: scf.yield %[[VAL_139]] : f64
// CHECK: } else {
// CHECK: scf.yield %[[VAL_119]] : f64
// CHECK: }
// CHECK: scf.yield %[[VAL_140:.*]] : f64
// CHECK: }
// CHECK: scf.yield %[[VAL_141:.*]] : f64
// CHECK: }
// CHECK: %[[VAL_142:.*]] = arith.cmpi eq, %[[VAL_120]], %[[VAL_123]] : index
// CHECK: %[[VAL_143:.*]] = arith.addi %[[VAL_117]], %[[VAL_5]] : index
// CHECK: %[[VAL_144:.*]] = arith.select %[[VAL_142]], %[[VAL_143]], %[[VAL_117]] : index
// CHECK: %[[VAL_145:.*]] = arith.cmpi eq, %[[VAL_121]], %[[VAL_123]] : index
// CHECK: %[[VAL_146:.*]] = arith.addi %[[VAL_118]], %[[VAL_5]] : index
// CHECK: %[[VAL_147:.*]] = arith.select %[[VAL_145]], %[[VAL_146]], %[[VAL_118]] : index
// CHECK: scf.yield %[[VAL_144]], %[[VAL_147]], %[[VAL_148:.*]] : index, index, f64
// CHECK: }
// CHECK: %[[VAL_149:.*]]:3 = scf.while (%[[VAL_150:.*]] = %[[VAL_151:.*]]#0, %[[VAL_152:.*]] = %[[VAL_153:.*]]#1, %[[VAL_154:.*]] = %[[VAL_153]]#2) : (index, index, f64) -> (index, index, f64) {
// CHECK: %[[VAL_155:.*]] = arith.cmpi ult, %[[VAL_150]], %[[VAL_19]] : index
// CHECK: %[[VAL_156:.*]] = arith.cmpi ult, %[[VAL_152]], %[[VAL_23]] : index
// CHECK: %[[VAL_157:.*]] = arith.andi %[[VAL_155]], %[[VAL_156]] : i1
// CHECK: scf.condition(%[[VAL_157]]) %[[VAL_150]], %[[VAL_152]], %[[VAL_154]] : index, index, f64
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_158:.*]]: index, %[[VAL_159:.*]]: index, %[[VAL_160:.*]]: f64):
// CHECK: %[[VAL_161:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_158]]] : memref<?xindex>
// CHECK: %[[VAL_162:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_159]]] : memref<?xindex>
// CHECK: %[[VAL_163:.*]] = arith.cmpi ult, %[[VAL_162]], %[[VAL_161]] : index
// CHECK: %[[VAL_164:.*]] = arith.select %[[VAL_163]], %[[VAL_162]], %[[VAL_161]] : index
// CHECK: %[[VAL_165:.*]] = arith.cmpi eq, %[[VAL_161]], %[[VAL_164]] : index
// CHECK: %[[VAL_166:.*]] = arith.cmpi eq, %[[VAL_162]], %[[VAL_164]] : index
// CHECK: %[[VAL_167:.*]] = arith.andi %[[VAL_165]], %[[VAL_166]] : i1
// CHECK: %[[VAL_168:.*]] = scf.if %[[VAL_167]] -> (f64) {
// CHECK: %[[VAL_169:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_158]]] : memref<?xf64>
// CHECK: %[[VAL_170:.*]] = arith.addf %[[VAL_160]], %[[VAL_169]] : f64
// CHECK: %[[VAL_171:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_159]]] : memref<?xf64>
// CHECK: %[[VAL_172:.*]] = arith.addf %[[VAL_170]], %[[VAL_171]] : f64
// CHECK: scf.yield %[[VAL_172]] : f64
// CHECK: } else {
// CHECK: %[[VAL_173:.*]] = arith.cmpi eq, %[[VAL_162]], %[[VAL_164]] : index
// CHECK: %[[VAL_174:.*]] = scf.if %[[VAL_173]] -> (f64) {
// CHECK: %[[VAL_175:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_159]]] : memref<?xf64>
// CHECK: %[[VAL_176:.*]] = arith.addf %[[VAL_160]], %[[VAL_175]] : f64
// CHECK: scf.yield %[[VAL_176]] : f64
// CHECK: } else {
// CHECK: %[[VAL_177:.*]] = arith.cmpi eq, %[[VAL_161]], %[[VAL_164]] : index
// CHECK: %[[VAL_178:.*]] = scf.if %[[VAL_177]] -> (f64) {
// CHECK: %[[VAL_179:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_158]]] : memref<?xf64>
// CHECK: %[[VAL_180:.*]] = arith.addf %[[VAL_160]], %[[VAL_179]] : f64
// CHECK: scf.yield %[[VAL_180]] : f64
// CHECK: } else {
// CHECK: scf.yield %[[VAL_160]] : f64
// CHECK: }
// CHECK: scf.yield %[[VAL_181:.*]] : f64
// CHECK: }
// CHECK: scf.yield %[[VAL_182:.*]] : f64
// CHECK: }
// CHECK: %[[VAL_183:.*]] = arith.cmpi eq, %[[VAL_161]], %[[VAL_164]] : index
// CHECK: %[[VAL_184:.*]] = arith.addi %[[VAL_158]], %[[VAL_5]] : index
// CHECK: %[[VAL_185:.*]] = arith.select %[[VAL_183]], %[[VAL_184]], %[[VAL_158]] : index
// CHECK: %[[VAL_186:.*]] = arith.cmpi eq, %[[VAL_162]], %[[VAL_164]] : index
// CHECK: %[[VAL_187:.*]] = arith.addi %[[VAL_159]], %[[VAL_5]] : index
// CHECK: %[[VAL_188:.*]] = arith.select %[[VAL_186]], %[[VAL_187]], %[[VAL_159]] : index
// CHECK: scf.yield %[[VAL_185]], %[[VAL_188]], %[[VAL_189:.*]] : index, index, f64
// CHECK: }
// CHECK: %[[VAL_190:.*]] = scf.for %[[VAL_191:.*]] = %[[VAL_192:.*]]#1 to %[[VAL_23]] step %[[VAL_5]] iter_args(%[[VAL_193:.*]] = %[[VAL_192]]#2) -> (f64) {
// CHECK: %[[VAL_194:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_191]]] : memref<?xf64>
// CHECK: %[[VAL_195:.*]] = arith.addf %[[VAL_193]], %[[VAL_194]] : f64
// CHECK: scf.yield %[[VAL_195]] : f64
// CHECK: }
// CHECK: %[[VAL_196:.*]]:3 = scf.while (%[[VAL_197:.*]] = %[[VAL_198:.*]]#0, %[[VAL_199:.*]] = %[[VAL_200:.*]]#0, %[[VAL_201:.*]] = %[[VAL_202:.*]]) : (index, index, f64) -> (index, index, f64) {
// CHECK: %[[VAL_203:.*]] = arith.cmpi ult, %[[VAL_197]], %[[VAL_19]] : index
// CHECK: %[[VAL_204:.*]] = arith.cmpi ult, %[[VAL_199]], %[[VAL_21]] : index
// CHECK: %[[VAL_205:.*]] = arith.andi %[[VAL_203]], %[[VAL_204]] : i1
// CHECK: scf.condition(%[[VAL_205]]) %[[VAL_197]], %[[VAL_199]], %[[VAL_201]] : index, index, f64
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_206:.*]]: index, %[[VAL_207:.*]]: index, %[[VAL_208:.*]]: f64):
// CHECK: %[[VAL_209:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_206]]] : memref<?xindex>
// CHECK: %[[VAL_210:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_207]]] : memref<?xindex>
// CHECK: %[[VAL_211:.*]] = arith.cmpi ult, %[[VAL_210]], %[[VAL_209]] : index
// CHECK: %[[VAL_212:.*]] = arith.select %[[VAL_211]], %[[VAL_210]], %[[VAL_209]] : index
// CHECK: %[[VAL_213:.*]] = arith.cmpi eq, %[[VAL_209]], %[[VAL_212]] : index
// CHECK: %[[VAL_214:.*]] = arith.cmpi eq, %[[VAL_210]], %[[VAL_212]] : index
// CHECK: %[[VAL_215:.*]] = arith.andi %[[VAL_213]], %[[VAL_214]] : i1
// CHECK: %[[VAL_216:.*]] = scf.if %[[VAL_215]] -> (f64) {
// CHECK: %[[VAL_217:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_206]]] : memref<?xf64>
// CHECK: %[[VAL_218:.*]] = arith.addf %[[VAL_208]], %[[VAL_217]] : f64
// CHECK: %[[VAL_219:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_207]]] : memref<?xf64>
// CHECK: %[[VAL_220:.*]] = arith.addf %[[VAL_218]], %[[VAL_219]] : f64
// CHECK: scf.yield %[[VAL_220]] : f64
// CHECK: } else {
// CHECK: %[[VAL_221:.*]] = arith.cmpi eq, %[[VAL_210]], %[[VAL_212]] : index
// CHECK: %[[VAL_222:.*]] = scf.if %[[VAL_221]] -> (f64) {
// CHECK: %[[VAL_223:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_207]]] : memref<?xf64>
// CHECK: %[[VAL_224:.*]] = arith.addf %[[VAL_208]], %[[VAL_223]] : f64
// CHECK: scf.yield %[[VAL_224]] : f64
// CHECK: } else {
// CHECK: %[[VAL_225:.*]] = arith.cmpi eq, %[[VAL_209]], %[[VAL_212]] : index
// CHECK: %[[VAL_226:.*]] = scf.if %[[VAL_225]] -> (f64) {
// CHECK: %[[VAL_227:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_206]]] : memref<?xf64>
// CHECK: %[[VAL_228:.*]] = arith.addf %[[VAL_208]], %[[VAL_227]] : f64
// CHECK: scf.yield %[[VAL_228]] : f64
// CHECK: } else {
// CHECK: scf.yield %[[VAL_208]] : f64
// CHECK: }
// CHECK: scf.yield %[[VAL_229:.*]] : f64
// CHECK: }
// CHECK: scf.yield %[[VAL_230:.*]] : f64
// CHECK: }
// CHECK: %[[VAL_231:.*]] = arith.cmpi eq, %[[VAL_209]], %[[VAL_212]] : index
// CHECK: %[[VAL_232:.*]] = arith.addi %[[VAL_206]], %[[VAL_5]] : index
// CHECK: %[[VAL_233:.*]] = arith.select %[[VAL_231]], %[[VAL_232]], %[[VAL_206]] : index
// CHECK: %[[VAL_234:.*]] = arith.cmpi eq, %[[VAL_210]], %[[VAL_212]] : index
// CHECK: %[[VAL_235:.*]] = arith.addi %[[VAL_207]], %[[VAL_5]] : index
// CHECK: %[[VAL_236:.*]] = arith.select %[[VAL_234]], %[[VAL_235]], %[[VAL_207]] : index
// CHECK: scf.yield %[[VAL_233]], %[[VAL_236]], %[[VAL_237:.*]] : index, index, f64
// CHECK: }
// CHECK: %[[VAL_238:.*]] = scf.for %[[VAL_239:.*]] = %[[VAL_240:.*]]#1 to %[[VAL_21]] step %[[VAL_5]] iter_args(%[[VAL_241:.*]] = %[[VAL_240]]#2) -> (f64) {
// CHECK: %[[VAL_242:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_239]]] : memref<?xf64>
// CHECK: %[[VAL_243:.*]] = arith.addf %[[VAL_241]], %[[VAL_242]] : f64
// CHECK: scf.yield %[[VAL_243]] : f64
// CHECK: }
// CHECK: %[[VAL_244:.*]] = scf.for %[[VAL_245:.*]] = %[[VAL_246:.*]]#0 to %[[VAL_19]] step %[[VAL_5]] iter_args(%[[VAL_247:.*]] = %[[VAL_248:.*]]) -> (f64) {
// CHECK: %[[VAL_249:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_245]]] : memref<?xf64>
// CHECK: %[[VAL_250:.*]] = arith.addf %[[VAL_247]], %[[VAL_249]] : f64
// CHECK: scf.yield %[[VAL_250]] : f64
// CHECK: }
// CHECK: memref.store %[[VAL_251:.*]], %[[VAL_15]][] : memref<f64>
// CHECK: %[[VAL_252:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<f64>
// CHECK: return %[[VAL_252]] : tensor<f64>
// CHECK: }
func.func @red3s(%arga: tensor<?xf64, #SV>,
%argb: tensor<?xf64, #SV>,
%argc: tensor<?xf64, #SV>, %argx: tensor<f64>) ->tensor<f64>{
%0 = linalg.generic #trait_red3s
ins(%arga, %argb, %argc: tensor<?xf64, #SV>, tensor<?xf64, #SV>, tensor<?xf64, #SV>)
outs(%argx: tensor<f64>) {
^bb(%a: f64,%b: f64,%c: f64,%x: f64):
%0 = arith.addf %x, %a : f64
%1 = arith.addf %0, %b : f64
%2 = arith.addf %1, %c : f64
linalg.yield %2 : f64
} -> tensor<f64>
return %0 : tensor<f64>
}
|