File: sparse_1d.mlir

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (1570 lines) | stat: -rw-r--r-- 113,130 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
// RUN: mlir-opt %s -sparsification | FileCheck %s

#DV = #sparse_tensor.encoding<{ lvlTypes = [ "dense"      ] }>
#SV = #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>

#trait1 = {
  indexing_maps = [
    affine_map<(i) -> (i)>,  // a
    affine_map<(i) -> (i)>   // x (out)
  ],
  iterator_types = ["parallel"],
  doc = "x(i) = a(i) OP b"
}

// CHECK-LABEL:   func @add_d(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*]]: f32,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_8]] : memref<32xf32>)
// CHECK:           scf.for %[[VAL_9:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
// CHECK:             %[[VAL_10:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_9]]] : memref<?xf32>
// CHECK:             %[[VAL_11:.*]] = arith.addf %[[VAL_10]], %[[VAL_1]] : f32
// CHECK:             memref.store %[[VAL_11]], %[[VAL_8]]{{\[}}%[[VAL_9]]] : memref<32xf32>
// CHECK:           }
// CHECK:           %[[VAL_12:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf32>
// CHECK:           return %[[VAL_12]] : tensor<32xf32>
// CHECK:         }
func.func @add_d(%arga: tensor<32xf32, #DV>, %argb: f32, %argx: tensor<32xf32>) -> tensor<32xf32> {
  %0 = linalg.generic #trait1
     ins(%arga: tensor<32xf32, #DV>)
    outs(%argx: tensor<32xf32>) {
      ^bb(%a: f32, %x: f32):
        %0 = arith.addf %a, %argb : f32
        linalg.yield %0 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

// CHECK-LABEL:   func @add_d_init(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*]]: f32) -> tensor<32xf32> {
// CHECK:           %[[VAL_2:.*]] = arith.constant 32 : index
// CHECK:           %[[VAL_3:.*]] = arith.constant 0.000000e+00 : f32
// CHECK:           %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK:           %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK:           %[[VAL_INITTENSOR:.*]] = tensor.empty() : tensor<32xf32>
// CHECK:           %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>> to memref<?xf32>
// CHECK:           %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_INITTENSOR]] : memref<32xf32>
// CHECK:           linalg.fill ins(%[[VAL_3]] : f32) outs(%[[VAL_7]] : memref<32xf32>)
// CHECK:           scf.for %[[VAL_8:.*]] = %[[VAL_4]] to %[[VAL_2]] step %[[VAL_5]] {
// CHECK:             %[[VAL_9:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_8]]] : memref<?xf32>
// CHECK:             %[[VAL_10:.*]] = arith.addf %[[VAL_9]], %[[VAL_1]] : f32
// CHECK:             memref.store %[[VAL_10]], %[[VAL_7]]{{\[}}%[[VAL_8]]] : memref<32xf32>
// CHECK:           }
// CHECK:           %[[VAL_11:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf32>
// CHECK:           return %[[VAL_11]] : tensor<32xf32>
// CHECK:         }
func.func @add_d_init(%arga: tensor<32xf32, #DV>, %argb: f32) -> tensor<32xf32> {
  %u = tensor.empty() : tensor<32xf32>
  %0 = linalg.generic #trait1
     ins(%arga: tensor<32xf32, #DV>)
    outs(%u: tensor<32xf32>) {
      ^bb(%a: f32, %x: f32):
        %0 = arith.addf %a, %argb : f32
        linalg.yield %0 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

// CHECK-LABEL:   func @mul_d(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*]]: f32,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_8]] : memref<32xf32>)
// CHECK:           scf.for %[[VAL_9:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
// CHECK:             %[[VAL_10:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_9]]] : memref<?xf32>
// CHECK:             %[[VAL_11:.*]] = arith.mulf %[[VAL_10]], %[[VAL_1]] : f32
// CHECK:             memref.store %[[VAL_11]], %[[VAL_8]]{{\[}}%[[VAL_9]]] : memref<32xf32>
// CHECK:           }
// CHECK:           %[[VAL_12:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf32>
// CHECK:           return %[[VAL_12]] : tensor<32xf32>
// CHECK:         }
func.func @mul_d(%arga: tensor<32xf32, #DV>, %argb: f32, %argx: tensor<32xf32>) -> tensor<32xf32> {
  %0 = linalg.generic #trait1
     ins(%arga: tensor<32xf32, #DV>)
    outs(%argx: tensor<32xf32>) {
      ^bb(%a: f32, %x: f32):
        %0 = arith.mulf %a, %argb : f32
        linalg.yield %0 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

// CHECK-LABEL:   func @add_s(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*]]: f32,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant true
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG:       linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_11]] : memref<32xf32>)
// CHECK:           %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
// CHECK:             %[[VAL_17:.*]] = arith.cmpi ult, %[[VAL_15]], %[[VAL_13]] : index
// CHECK:             scf.condition(%[[VAL_17]]) %[[VAL_15]], %[[VAL_16]] : index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_18:.*]]: index, %[[VAL_19:.*]]: index):
// CHECK:             %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex>
// CHECK:             %[[VAL_21:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
// CHECK:             scf.if %[[VAL_21]] {
// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xf32>
// CHECK:               %[[VAL_23:.*]] = arith.addf %[[VAL_22]], %[[VAL_1]] : f32
// CHECK:               memref.store %[[VAL_23]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf32>
// CHECK:             } else {
// CHECK:               scf.if %[[VAL_5]] {
// CHECK:                 memref.store %[[VAL_1]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf32>
// CHECK:               } else {
// CHECK:               }
// CHECK:             }
// CHECK:             %[[VAL_24:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
// CHECK:             %[[VAL_25:.*]] = arith.addi %[[VAL_18]], %[[VAL_6]] : index
// CHECK:             %[[VAL_26:.*]] = arith.select %[[VAL_24]], %[[VAL_25]], %[[VAL_18]] : index
// CHECK:             %[[VAL_27:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
// CHECK:             scf.yield %[[VAL_26]], %[[VAL_27]] : index, index
// CHECK:           }
// CHECK:           scf.for %[[VAL_28:.*]] = %[[VAL_29:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
// CHECK:             memref.store %[[VAL_1]], %[[VAL_11]]{{\[}}%[[VAL_28]]] : memref<32xf32>
// CHECK:           }
// CHECK:           %[[VAL_30:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf32>
// CHECK:           return %[[VAL_30]] : tensor<32xf32>
// CHECK:         }
func.func @add_s(%arga: tensor<32xf32, #SV>, %argb: f32, %argx: tensor<32xf32>) -> tensor<32xf32> {
  %0 = linalg.generic #trait1
     ins(%arga: tensor<32xf32, #SV>)
    outs(%argx: tensor<32xf32>) {
      ^bb(%a: f32, %x: f32):
        %0 = arith.addf %a, %argb : f32
        linalg.yield %0 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

// CHECK-LABEL:   func @repeated_add_s(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG:       %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]]
// CHECK-DAG:       %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG:       linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_8]] : memref<32xf32>)
// CHECK:           scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_3]] {
// CHECK:             %[[VAL_12:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_11]]] : memref<?xindex>
// CHECK:             %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref<?xf32>
// CHECK:             %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref<?xf32>
// CHECK:             %[[VAL_15:.*]] = arith.addf %[[VAL_13]], %[[VAL_14]] : f32
// CHECK:             %[[VAL_16:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref<?xf32>
// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref<?xf32>
// CHECK:             %[[VAL_18:.*]] = arith.addf %[[VAL_16]], %[[VAL_17]] : f32
// CHECK:             %[[VAL_19:.*]] = arith.addf %[[VAL_15]], %[[VAL_18]] : f32
// CHECK:             memref.store %[[VAL_19]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xf32>
// CHECK:           }
// CHECK:           %[[VAL_20:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf32>
// CHECK:           return %[[VAL_20]] : tensor<32xf32>
// CHECK:         }
func.func @repeated_add_s(%arga: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> {
  %0 = linalg.generic #trait1
     ins(%arga: tensor<32xf32, #SV>)
    outs(%argx: tensor<32xf32>) {
      ^bb(%a: f32, %x: f32):
        %0 = arith.addf %a, %a : f32  // same tensor
        %1 = arith.addf %a, %a : f32  // should yield
        %2 = arith.addf %0, %1 : f32  // one guard
        linalg.yield %2 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

// CHECK-LABEL:   func @mul_s(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*]]: f32,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG:       linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_9]] : memref<32xf32>)
// CHECK-DAG:       %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK:           scf.for %[[VAL_12:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_4]] {
// CHECK:             %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref<?xindex>
// CHECK:             %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_12]]] : memref<?xf32>
// CHECK:             %[[VAL_15:.*]] = arith.mulf %[[VAL_14]], %[[VAL_1]] : f32
// CHECK:             memref.store %[[VAL_15]], %[[VAL_9]]{{\[}}%[[VAL_13]]] : memref<32xf32>
// CHECK:           }
// CHECK:           %[[VAL_16:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf32>
// CHECK:           return %[[VAL_16]] : tensor<32xf32>
// CHECK:         }
func.func @mul_s(%arga: tensor<32xf32, #SV>, %argb: f32, %argx: tensor<32xf32>) -> tensor<32xf32> {
  %0 = linalg.generic #trait1
     ins(%arga: tensor<32xf32, #SV>)
    outs(%argx: tensor<32xf32>) {
      ^bb(%a: f32, %x: f32):
        %0 = arith.mulf %a, %argb : f32
        linalg.yield %0 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

#trait2 = {
  indexing_maps = [
    affine_map<(i) -> (i)>,  // a
    affine_map<(i) -> (i)>,  // b
    affine_map<(i) -> (i)>   // x (out)
  ],
  iterator_types = ["parallel"],
  doc = "x(i) = a(i) OP b(i)"
}

// CHECK-LABEL:   func @add_dd(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32>
// CHECK-DAG:       %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_9]] : memref<32xf32>)
// CHECK:           scf.for %[[VAL_10:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
// CHECK:             %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf32>
// CHECK:             %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_10]]] : memref<32xf32>
// CHECK:             %[[VAL_13:.*]] = arith.addf %[[VAL_11]], %[[VAL_12]] : f32
// CHECK:             memref.store %[[VAL_13]], %[[VAL_9]]{{\[}}%[[VAL_10]]] : memref<32xf32>
// CHECK:           }
// CHECK:           %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf32>
// CHECK:           return %[[VAL_14]] : tensor<32xf32>
// CHECK:         }
func.func @add_dd(%arga: tensor<32xf32, #DV>, %argb: tensor<32xf32>, %argx: tensor<32xf32>) -> tensor<32xf32> {
  %0 = linalg.generic #trait2
     ins(%arga, %argb: tensor<32xf32, #DV>, tensor<32xf32>)
    outs(%argx: tensor<32xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

// CHECK-LABEL:   func @mul_dd(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32>
// CHECK-DAG:       %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_9]] : memref<32xf32>)
// CHECK:           scf.for %[[VAL_10:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
// CHECK:             %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf32>
// CHECK:             %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_10]]] : memref<32xf32>
// CHECK:             %[[VAL_13:.*]] = arith.mulf %[[VAL_11]], %[[VAL_12]] : f32
// CHECK:             memref.store %[[VAL_13]], %[[VAL_9]]{{\[}}%[[VAL_10]]] : memref<32xf32>
// CHECK:           }
// CHECK:           %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf32>
// CHECK:           return %[[VAL_14]] : tensor<32xf32>
// CHECK:         }
func.func @mul_dd(%arga: tensor<32xf32, #DV>, %argb: tensor<32xf32>, %argx: tensor<32xf32>) -> tensor<32xf32> {
  %0 = linalg.generic #trait2
     ins(%arga, %argb: tensor<32xf32, #DV>, tensor<32xf32>)
    outs(%argx: tensor<32xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

// CHECK-LABEL:   func @add_ds(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xf32>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant true
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_0]] : memref<32xf32>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG:       linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_12]] : memref<32xf32>)
// CHECK-DAG:       %[[VAL_13:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_14:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_6]]] : memref<?xindex>
// CHECK:           %[[VAL_15:.*]]:2 = scf.while (%[[VAL_16:.*]] = %[[VAL_13]], %[[VAL_17:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
// CHECK:             %[[VAL_18:.*]] = arith.cmpi ult, %[[VAL_16]], %[[VAL_14]] : index
// CHECK:             scf.condition(%[[VAL_18]]) %[[VAL_16]], %[[VAL_17]] : index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_19:.*]]: index, %[[VAL_20:.*]]: index):
// CHECK:             %[[VAL_21:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_19]]] : memref<?xindex>
// CHECK:             %[[VAL_22:.*]] = arith.cmpi eq, %[[VAL_21]], %[[VAL_20]] : index
// CHECK:             scf.if %[[VAL_22]] {
// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK:               %[[VAL_24:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<?xf32>
// CHECK:               %[[VAL_25:.*]] = arith.addf %[[VAL_23]], %[[VAL_24]] : f32
// CHECK:               memref.store %[[VAL_25]], %[[VAL_12]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK:             } else {
// CHECK:               scf.if %[[VAL_5]] {
// CHECK:                 %[[VAL_26:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK:                 memref.store %[[VAL_26]], %[[VAL_12]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK:               } else {
// CHECK:               }
// CHECK:             }
// CHECK:             %[[VAL_27:.*]] = arith.cmpi eq, %[[VAL_21]], %[[VAL_20]] : index
// CHECK:             %[[VAL_28:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
// CHECK:             %[[VAL_29:.*]] = arith.select %[[VAL_27]], %[[VAL_28]], %[[VAL_19]] : index
// CHECK:             %[[VAL_30:.*]] = arith.addi %[[VAL_20]], %[[VAL_6]] : index
// CHECK:             scf.yield %[[VAL_29]], %[[VAL_30]] : index, index
// CHECK:           }
// CHECK:           scf.for %[[VAL_31:.*]] = %[[VAL_32:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
// CHECK:             %[[VAL_33:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_31]]] : memref<32xf32>
// CHECK:             memref.store %[[VAL_33]], %[[VAL_12]]{{\[}}%[[VAL_31]]] : memref<32xf32>
// CHECK:           }
// CHECK:           %[[VAL_34:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf32>
// CHECK:           return %[[VAL_34]] : tensor<32xf32>
// CHECK:         }
func.func @add_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> {
  %0 = linalg.generic #trait2
     ins(%arga, %argb: tensor<32xf32>, tensor<32xf32, #SV>)
    outs(%argx: tensor<32xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

// CHECK-LABEL:   func @mul_ds(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xf32>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_5:.*]] = bufferization.to_memref %[[VAL_0]] : memref<32xf32>
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG:       linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_10]] : memref<32xf32>)
// CHECK-DAG:       %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK:           scf.for %[[VAL_13:.*]] = %[[VAL_11]] to %[[VAL_12]] step %[[VAL_4]] {
// CHECK:             %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_13]]] : memref<?xindex>
// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_14]]] : memref<32xf32>
// CHECK:             %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_13]]] : memref<?xf32>
// CHECK:             %[[VAL_17:.*]] = arith.mulf %[[VAL_15]], %[[VAL_16]] : f32
// CHECK:             memref.store %[[VAL_17]], %[[VAL_10]]{{\[}}%[[VAL_14]]] : memref<32xf32>
// CHECK:           }
// CHECK:           %[[VAL_18:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32xf32>
// CHECK:           return %[[VAL_18]] : tensor<32xf32>
// CHECK:         }
func.func @mul_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> {
  %0 = linalg.generic #trait2
     ins(%arga, %argb: tensor<32xf32>, tensor<32xf32, #SV>)
    outs(%argx: tensor<32xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

// CHECK-LABEL:   func @add_sd(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant true
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32>
// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG:       linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_12]] : memref<32xf32>)
// CHECK-DAG:       %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
// CHECK:           %[[VAL_15:.*]]:2 = scf.while (%[[VAL_16:.*]] = %[[VAL_13]], %[[VAL_17:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
// CHECK:             %[[VAL_18:.*]] = arith.cmpi ult, %[[VAL_16]], %[[VAL_14]] : index
// CHECK:             scf.condition(%[[VAL_18]]) %[[VAL_16]], %[[VAL_17]] : index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_19:.*]]: index, %[[VAL_20:.*]]: index):
// CHECK:             %[[VAL_21:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_19]]] : memref<?xindex>
// CHECK:             %[[VAL_22:.*]] = arith.cmpi eq, %[[VAL_21]], %[[VAL_20]] : index
// CHECK:             scf.if %[[VAL_22]] {
// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_19]]] : memref<?xf32>
// CHECK:               %[[VAL_24:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK:               %[[VAL_25:.*]] = arith.addf %[[VAL_23]], %[[VAL_24]] : f32
// CHECK:               memref.store %[[VAL_25]], %[[VAL_12]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK:             } else {
// CHECK:               scf.if %[[VAL_5]] {
// CHECK:                 %[[VAL_26:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK:                 memref.store %[[VAL_26]], %[[VAL_12]]{{\[}}%[[VAL_20]]] : memref<32xf32>
// CHECK:               } else {
// CHECK:               }
// CHECK:             }
// CHECK:             %[[VAL_27:.*]] = arith.cmpi eq, %[[VAL_21]], %[[VAL_20]] : index
// CHECK:             %[[VAL_28:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
// CHECK:             %[[VAL_29:.*]] = arith.select %[[VAL_27]], %[[VAL_28]], %[[VAL_19]] : index
// CHECK:             %[[VAL_30:.*]] = arith.addi %[[VAL_20]], %[[VAL_6]] : index
// CHECK:             scf.yield %[[VAL_29]], %[[VAL_30]] : index, index
// CHECK:           }
// CHECK:           scf.for %[[VAL_31:.*]] = %[[VAL_32:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
// CHECK:             %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_31]]] : memref<32xf32>
// CHECK:             memref.store %[[VAL_33]], %[[VAL_12]]{{\[}}%[[VAL_31]]] : memref<32xf32>
// CHECK:           }
// CHECK:           %[[VAL_34:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf32>
// CHECK:           return %[[VAL_34]] : tensor<32xf32>
// CHECK:         }
func.func @add_sd(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32>, %argx: tensor<32xf32>) -> tensor<32xf32> {
  %0 = linalg.generic #trait2
     ins(%arga, %argb: tensor<32xf32, #SV>, tensor<32xf32>)
    outs(%argx: tensor<32xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

// CHECK-LABEL:   func @mul_sd(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32xf32>,
// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32>
// CHECK-DAG:       %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG:       linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_10]] : memref<32xf32>)
// CHECK-DAG:       %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_12:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK:           scf.for %[[VAL_13:.*]] = %[[VAL_11]] to %[[VAL_12]] step %[[VAL_4]] {
// CHECK:             %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_13]]] : memref<?xindex>
// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_13]]] : memref<?xf32>
// CHECK:             %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_14]]] : memref<32xf32>
// CHECK:             %[[VAL_17:.*]] = arith.mulf %[[VAL_15]], %[[VAL_16]] : f32
// CHECK:             memref.store %[[VAL_17]], %[[VAL_10]]{{\[}}%[[VAL_14]]] : memref<32xf32>
// CHECK:           }
// CHECK:           %[[VAL_18:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32xf32>
// CHECK:           return %[[VAL_18]] : tensor<32xf32>
// CHECK:         }
func.func @mul_sd(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32>, %argx: tensor<32xf32>) -> tensor<32xf32> {
  %0 = linalg.generic #trait2
     ins(%arga, %argb: tensor<32xf32, #SV>, tensor<32xf32>)
    outs(%argx: tensor<32xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

// CHECK-LABEL:   func @add_ss(
// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_2:.*2]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG:       linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_12]] : memref<32xf32>)
// CHECK-DAG:       %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_14:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK:           %[[VAL_17:.*]]:2 = scf.while (%[[VAL_18:.*]] = %[[VAL_13]], %[[VAL_19:.*]] = %[[VAL_15]]) : (index, index) -> (index, index) {
// CHECK:             %[[VAL_20:.*]] = arith.cmpi ult, %[[VAL_18]], %[[VAL_14]] : index
// CHECK:             %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_16]] : index
// CHECK:             %[[VAL_22:.*]] = arith.andi %[[VAL_20]], %[[VAL_21]] : i1
// CHECK:             scf.condition(%[[VAL_22]]) %[[VAL_18]], %[[VAL_19]] : index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_23:.*]]: index, %[[VAL_24:.*]]: index):
// CHECK:             %[[VAL_25:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_23]]] : memref<?xindex>
// CHECK:             %[[VAL_26:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK:             %[[VAL_27:.*]] = arith.cmpi ult, %[[VAL_26]], %[[VAL_25]] : index
// CHECK:             %[[VAL_28:.*]] = arith.select %[[VAL_27]], %[[VAL_26]], %[[VAL_25]] : index
// CHECK:             %[[VAL_29:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_28]] : index
// CHECK:             %[[VAL_30:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_28]] : index
// CHECK:             %[[VAL_31:.*]] = arith.andi %[[VAL_29]], %[[VAL_30]] : i1
// CHECK:             scf.if %[[VAL_31]] {
// CHECK:               %[[VAL_32:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_23]]] : memref<?xf32>
// CHECK:               %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK:               %[[VAL_34:.*]] = arith.addf %[[VAL_32]], %[[VAL_33]] : f32
// CHECK:               memref.store %[[VAL_34]], %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<32xf32>
// CHECK:             } else {
// CHECK:               %[[VAL_35:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_28]] : index
// CHECK:               scf.if %[[VAL_35]] {
// CHECK:                 %[[VAL_36:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_23]]] : memref<?xf32>
// CHECK:                 memref.store %[[VAL_36]], %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<32xf32>
// CHECK:               } else {
// CHECK:                 %[[VAL_37:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_28]] : index
// CHECK:                 scf.if %[[VAL_37]] {
// CHECK:                   %[[VAL_38:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK:                   memref.store %[[VAL_38]], %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<32xf32>
// CHECK:                 } else {
// CHECK:                 }
// CHECK:               }
// CHECK:             }
// CHECK:             %[[VAL_39:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_28]] : index
// CHECK:             %[[VAL_40:.*]] = arith.addi %[[VAL_23]], %[[VAL_4]] : index
// CHECK:             %[[VAL_41:.*]] = arith.select %[[VAL_39]], %[[VAL_40]], %[[VAL_23]] : index
// CHECK:             %[[VAL_42:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_28]] : index
// CHECK:             %[[VAL_43:.*]] = arith.addi %[[VAL_24]], %[[VAL_4]] : index
// CHECK:             %[[VAL_44:.*]] = arith.select %[[VAL_42]], %[[VAL_43]], %[[VAL_24]] : index
// CHECK:             scf.yield %[[VAL_41]], %[[VAL_44]] : index, index
// CHECK:           }
// CHECK:           scf.for %[[VAL_45:.*]] = %[[VAL_46:.*]]#0 to %[[VAL_14]] step %[[VAL_4]] {
// CHECK:             %[[VAL_47:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_45]]] : memref<?xindex>
// CHECK:             %[[VAL_48:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_45]]] : memref<?xf32>
// CHECK:             memref.store %[[VAL_48]], %[[VAL_12]]{{\[}}%[[VAL_47]]] : memref<32xf32>
// CHECK:           }
// CHECK:           scf.for %[[VAL_49:.*]] = %[[VAL_50:.*]]#1 to %[[VAL_16]] step %[[VAL_4]] {
// CHECK:             %[[VAL_51:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_49]]] : memref<?xindex>
// CHECK:             %[[VAL_52:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_49]]] : memref<?xf32>
// CHECK:             memref.store %[[VAL_52]], %[[VAL_12]]{{\[}}%[[VAL_51]]] : memref<32xf32>
// CHECK:           }
// CHECK:           %[[VAL_53:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf32>
// CHECK:           return %[[VAL_53]] : tensor<32xf32>
// CHECK:         }
func.func @add_ss(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> {
  %0 = linalg.generic #trait2
     ins(%arga, %argb: tensor<32xf32, #SV>, tensor<32xf32, #SV>)
    outs(%argx: tensor<32xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

// CHECK-LABEL:   func @mul_ss(
// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_2:.*2]]: tensor<32xf32>) -> tensor<32xf32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]]
// CHECK-DAG:       linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_12]] : memref<32xf32>)
// CHECK-DAG:       %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_14:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK:           %[[VAL_17:.*]]:2 = scf.while (%[[VAL_18:.*]] = %[[VAL_13]], %[[VAL_19:.*]] = %[[VAL_15]]) : (index, index) -> (index, index) {
// CHECK:             %[[VAL_20:.*]] = arith.cmpi ult, %[[VAL_18]], %[[VAL_14]] : index
// CHECK:             %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_16]] : index
// CHECK:             %[[VAL_22:.*]] = arith.andi %[[VAL_20]], %[[VAL_21]] : i1
// CHECK:             scf.condition(%[[VAL_22]]) %[[VAL_18]], %[[VAL_19]] : index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_23:.*]]: index, %[[VAL_24:.*]]: index):
// CHECK:             %[[VAL_25:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_23]]] : memref<?xindex>
// CHECK:             %[[VAL_26:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK:             %[[VAL_27:.*]] = arith.cmpi ult, %[[VAL_26]], %[[VAL_25]] : index
// CHECK:             %[[VAL_28:.*]] = arith.select %[[VAL_27]], %[[VAL_26]], %[[VAL_25]] : index
// CHECK:             %[[VAL_29:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_28]] : index
// CHECK:             %[[VAL_30:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_28]] : index
// CHECK:             %[[VAL_31:.*]] = arith.andi %[[VAL_29]], %[[VAL_30]] : i1
// CHECK:             scf.if %[[VAL_31]] {
// CHECK:               %[[VAL_32:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_23]]] : memref<?xf32>
// CHECK:               %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK:               %[[VAL_34:.*]] = arith.mulf %[[VAL_32]], %[[VAL_33]] : f32
// CHECK:               memref.store %[[VAL_34]], %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<32xf32>
// CHECK:             } else {
// CHECK:             }
// CHECK:             %[[VAL_35:.*]] = arith.cmpi eq, %[[VAL_25]], %[[VAL_28]] : index
// CHECK:             %[[VAL_36:.*]] = arith.addi %[[VAL_23]], %[[VAL_4]] : index
// CHECK:             %[[VAL_37:.*]] = arith.select %[[VAL_35]], %[[VAL_36]], %[[VAL_23]] : index
// CHECK:             %[[VAL_38:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_28]] : index
// CHECK:             %[[VAL_39:.*]] = arith.addi %[[VAL_24]], %[[VAL_4]] : index
// CHECK:             %[[VAL_40:.*]] = arith.select %[[VAL_38]], %[[VAL_39]], %[[VAL_24]] : index
// CHECK:             scf.yield %[[VAL_37]], %[[VAL_40]] : index, index
// CHECK:           }
// CHECK:           %[[VAL_41:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf32>
// CHECK:           return %[[VAL_41]] : tensor<32xf32>
// CHECK:         }
func.func @mul_ss(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> {
  %0 = linalg.generic #trait2
     ins(%arga, %argb: tensor<32xf32, #SV>, tensor<32xf32, #SV>)
    outs(%argx: tensor<32xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        linalg.yield %0 : f32
  } -> tensor<32xf32>
  return %0 : tensor<32xf32>
}

// CHECK-LABEL:   func @two_way_inv(
// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_2:.*2]]: f32,
// CHECK-SAME:      %[[VAL_3:.*3]]: tensor<16xf32>) -> tensor<16xf32> {
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_3]]
// CHECK-DAG:       linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_13]] : memref<16xf32>)
// CHECK-DAG:       %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_16:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_17:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK:           %[[VAL_18:.*]]:2 = scf.while (%[[VAL_19:.*]] = %[[VAL_14]], %[[VAL_20:.*]] = %[[VAL_16]]) : (index, index) -> (index, index) {
// CHECK:             %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_15]] : index
// CHECK:             %[[VAL_22:.*]] = arith.cmpi ult, %[[VAL_20]], %[[VAL_17]] : index
// CHECK:             %[[VAL_23:.*]] = arith.andi %[[VAL_21]], %[[VAL_22]] : i1
// CHECK:             scf.condition(%[[VAL_23]]) %[[VAL_19]], %[[VAL_20]] : index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_24:.*]]: index, %[[VAL_25:.*]]: index):
// CHECK:             %[[VAL_26:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK:             %[[VAL_27:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_25]]] : memref<?xindex>
// CHECK:             %[[VAL_28:.*]] = arith.cmpi ult, %[[VAL_27]], %[[VAL_26]] : index
// CHECK:             %[[VAL_29:.*]] = arith.select %[[VAL_28]], %[[VAL_27]], %[[VAL_26]] : index
// CHECK:             %[[VAL_30:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_29]] : index
// CHECK:             %[[VAL_31:.*]] = arith.cmpi eq, %[[VAL_27]], %[[VAL_29]] : index
// CHECK:             %[[VAL_32:.*]] = arith.andi %[[VAL_30]], %[[VAL_31]] : i1
// CHECK:             scf.if %[[VAL_32]] {
// CHECK:               %[[VAL_33:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK:               %[[VAL_34:.*]] = arith.mulf %[[VAL_33]], %[[VAL_2]] : f32
// CHECK:               %[[VAL_35:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK:               %[[VAL_36:.*]] = arith.mulf %[[VAL_35]], %[[VAL_2]] : f32
// CHECK:               %[[VAL_37:.*]] = arith.addf %[[VAL_34]], %[[VAL_36]] : f32
// CHECK:               memref.store %[[VAL_37]], %[[VAL_13]]{{\[}}%[[VAL_29]]] : memref<16xf32>
// CHECK:             } else {
// CHECK:               %[[VAL_38:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_29]] : index
// CHECK:               scf.if %[[VAL_38]] {
// CHECK:                 %[[VAL_39:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK:                 %[[VAL_40:.*]] = arith.mulf %[[VAL_39]], %[[VAL_2]] : f32
// CHECK:                 memref.store %[[VAL_40]], %[[VAL_13]]{{\[}}%[[VAL_29]]] : memref<16xf32>
// CHECK:               } else {
// CHECK:                 %[[VAL_41:.*]] = arith.cmpi eq, %[[VAL_27]], %[[VAL_29]] : index
// CHECK:                 scf.if %[[VAL_41]] {
// CHECK:                   %[[VAL_42:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK:                   %[[VAL_43:.*]] = arith.mulf %[[VAL_42]], %[[VAL_2]] : f32
// CHECK:                   memref.store %[[VAL_43]], %[[VAL_13]]{{\[}}%[[VAL_29]]] : memref<16xf32>
// CHECK:                 } else {
// CHECK:                 }
// CHECK:               }
// CHECK:             }
// CHECK:             %[[VAL_44:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_29]] : index
// CHECK:             %[[VAL_45:.*]] = arith.addi %[[VAL_24]], %[[VAL_5]] : index
// CHECK:             %[[VAL_46:.*]] = arith.select %[[VAL_44]], %[[VAL_45]], %[[VAL_24]] : index
// CHECK:             %[[VAL_47:.*]] = arith.cmpi eq, %[[VAL_27]], %[[VAL_29]] : index
// CHECK:             %[[VAL_48:.*]] = arith.addi %[[VAL_25]], %[[VAL_5]] : index
// CHECK:             %[[VAL_49:.*]] = arith.select %[[VAL_47]], %[[VAL_48]], %[[VAL_25]] : index
// CHECK:             scf.yield %[[VAL_46]], %[[VAL_49]] : index, index
// CHECK:           }
// CHECK:           scf.for %[[VAL_50:.*]] = %[[VAL_51:.*]]#0 to %[[VAL_15]] step %[[VAL_5]] {
// CHECK:             %[[VAL_52:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_50]]] : memref<?xindex>
// CHECK:             %[[VAL_53:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_50]]] : memref<?xf32>
// CHECK:             %[[VAL_54:.*]] = arith.mulf %[[VAL_53]], %[[VAL_2]] : f32
// CHECK:             memref.store %[[VAL_54]], %[[VAL_13]]{{\[}}%[[VAL_52]]] : memref<16xf32>
// CHECK:           }
// CHECK:           scf.for %[[VAL_55:.*]] = %[[VAL_56:.*]]#1 to %[[VAL_17]] step %[[VAL_5]] {
// CHECK:             %[[VAL_57:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_55]]] : memref<?xindex>
// CHECK:             %[[VAL_58:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_55]]] : memref<?xf32>
// CHECK:             %[[VAL_59:.*]] = arith.mulf %[[VAL_58]], %[[VAL_2]] : f32
// CHECK:             memref.store %[[VAL_59]], %[[VAL_13]]{{\[}}%[[VAL_57]]] : memref<16xf32>
// CHECK:           }
// CHECK:           %[[VAL_60:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<16xf32>
// CHECK:           return %[[VAL_60]] : tensor<16xf32>
// CHECK:         }
func.func @two_way_inv(%arga: tensor<16xf32, #SV>, %argb: tensor<16xf32, #SV>, %argc: f32, %argx: tensor<16xf32>) -> tensor<16xf32> {
  // Kernel "x(i) = a(i) * c + b(i) * c".
  %0 = linalg.generic #trait2
    ins(%arga, %argb: tensor<16xf32, #SV>, tensor<16xf32, #SV>)
    outs(%argx: tensor<16xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.mulf %a, %argc : f32
        %1 = arith.mulf %b, %argc : f32
        %2 = arith.addf %0, %1 : f32
        linalg.yield %2 : f32
  } -> tensor<16xf32>
  return %0 : tensor<16xf32>
}

// CHECK-LABEL:   func @two_way_inv_alt(
// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_2:.*2]]: f32,
// CHECK-SAME:      %[[VAL_3:.*3]]: tensor<16xf32>) -> tensor<16xf32> {
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_3]]
// CHECK-DAG:       linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_13]] : memref<16xf32>)
// CHECK-DAG:       %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_16:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_17:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK:           %[[VAL_18:.*]]:2 = scf.while (%[[VAL_19:.*]] = %[[VAL_14]], %[[VAL_20:.*]] = %[[VAL_16]]) : (index, index) -> (index, index) {
// CHECK:             %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_15]] : index
// CHECK:             %[[VAL_22:.*]] = arith.cmpi ult, %[[VAL_20]], %[[VAL_17]] : index
// CHECK:             %[[VAL_23:.*]] = arith.andi %[[VAL_21]], %[[VAL_22]] : i1
// CHECK:             scf.condition(%[[VAL_23]]) %[[VAL_19]], %[[VAL_20]] : index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_24:.*]]: index, %[[VAL_25:.*]]: index):
// CHECK:             %[[VAL_26:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK:             %[[VAL_27:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_25]]] : memref<?xindex>
// CHECK:             %[[VAL_28:.*]] = arith.cmpi ult, %[[VAL_27]], %[[VAL_26]] : index
// CHECK:             %[[VAL_29:.*]] = arith.select %[[VAL_28]], %[[VAL_27]], %[[VAL_26]] : index
// CHECK:             %[[VAL_30:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_29]] : index
// CHECK:             %[[VAL_31:.*]] = arith.cmpi eq, %[[VAL_27]], %[[VAL_29]] : index
// CHECK:             %[[VAL_32:.*]] = arith.andi %[[VAL_30]], %[[VAL_31]] : i1
// CHECK:             scf.if %[[VAL_32]] {
// CHECK:               %[[VAL_33:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK:               %[[VAL_34:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK:               %[[VAL_35:.*]] = arith.addf %[[VAL_33]], %[[VAL_34]] : f32
// CHECK:               %[[VAL_36:.*]] = arith.mulf %[[VAL_35]], %[[VAL_2]] : f32
// CHECK:               memref.store %[[VAL_36]], %[[VAL_13]]{{\[}}%[[VAL_29]]] : memref<16xf32>
// CHECK:             } else {
// CHECK:               %[[VAL_37:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_29]] : index
// CHECK:               scf.if %[[VAL_37]] {
// CHECK:                 %[[VAL_38:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK:                 %[[VAL_39:.*]] = arith.mulf %[[VAL_38]], %[[VAL_2]] : f32
// CHECK:                 memref.store %[[VAL_39]], %[[VAL_13]]{{\[}}%[[VAL_29]]] : memref<16xf32>
// CHECK:               } else {
// CHECK:                 %[[VAL_40:.*]] = arith.cmpi eq, %[[VAL_27]], %[[VAL_29]] : index
// CHECK:                 scf.if %[[VAL_40]] {
// CHECK:                   %[[VAL_41:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK:                   %[[VAL_42:.*]] = arith.mulf %[[VAL_41]], %[[VAL_2]] : f32
// CHECK:                   memref.store %[[VAL_42]], %[[VAL_13]]{{\[}}%[[VAL_29]]] : memref<16xf32>
// CHECK:                 } else {
// CHECK:                 }
// CHECK:               }
// CHECK:             }
// CHECK:             %[[VAL_43:.*]] = arith.cmpi eq, %[[VAL_26]], %[[VAL_29]] : index
// CHECK:             %[[VAL_44:.*]] = arith.addi %[[VAL_24]], %[[VAL_5]] : index
// CHECK:             %[[VAL_45:.*]] = arith.select %[[VAL_43]], %[[VAL_44]], %[[VAL_24]] : index
// CHECK:             %[[VAL_46:.*]] = arith.cmpi eq, %[[VAL_27]], %[[VAL_29]] : index
// CHECK:             %[[VAL_47:.*]] = arith.addi %[[VAL_25]], %[[VAL_5]] : index
// CHECK:             %[[VAL_48:.*]] = arith.select %[[VAL_46]], %[[VAL_47]], %[[VAL_25]] : index
// CHECK:             scf.yield %[[VAL_45]], %[[VAL_48]] : index, index
// CHECK:           }
// CHECK:           scf.for %[[VAL_49:.*]] = %[[VAL_50:.*]]#0 to %[[VAL_15]] step %[[VAL_5]] {
// CHECK:             %[[VAL_51:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_49]]] : memref<?xindex>
// CHECK:             %[[VAL_52:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_49]]] : memref<?xf32>
// CHECK:             %[[VAL_53:.*]] = arith.mulf %[[VAL_52]], %[[VAL_2]] : f32
// CHECK:             memref.store %[[VAL_53]], %[[VAL_13]]{{\[}}%[[VAL_51]]] : memref<16xf32>
// CHECK:           }
// CHECK:           scf.for %[[VAL_54:.*]] = %[[VAL_55:.*]]#1 to %[[VAL_17]] step %[[VAL_5]] {
// CHECK:             %[[VAL_56:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_54]]] : memref<?xindex>
// CHECK:             %[[VAL_57:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_54]]] : memref<?xf32>
// CHECK:             %[[VAL_58:.*]] = arith.mulf %[[VAL_57]], %[[VAL_2]] : f32
// CHECK:             memref.store %[[VAL_58]], %[[VAL_13]]{{\[}}%[[VAL_56]]] : memref<16xf32>
// CHECK:           }
// CHECK:           %[[VAL_59:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<16xf32>
// CHECK:           return %[[VAL_59]] : tensor<16xf32>
// CHECK:         }
func.func @two_way_inv_alt(%arga: tensor<16xf32, #SV>,
                      %argb: tensor<16xf32, #SV>, %argc: f32, %argx: tensor<16xf32>) -> tensor<16xf32> {
  // Same kernel, but now expressed as "x(i) = (a(i) + b(i)) * c".
  %0 = linalg.generic #trait2
    ins(%arga, %argb: tensor<16xf32, #SV>, tensor<16xf32, #SV>)
    outs(%argx: tensor<16xf32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        %1 = arith.mulf %0, %argc : f32
        linalg.yield %1 : f32
  } -> tensor<16xf32>
  return %0 : tensor<16xf32>
}

#trait_sum_reduction = {
  indexing_maps = [
    affine_map<(i) -> (i)>,  // a
    affine_map<(i) -> ()>    // x (scalar out)
  ],
  iterator_types = ["reduction"],
  doc = "x += SUM_i a(i)"
}

// CHECK-LABEL:   func @sum_reduction(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<?xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<f32>) -> tensor<f32> {
// CHECK-DAG:       %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<?xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_1]] : memref<f32>
// CHECK-DAG:       %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = memref.load %[[VAL_6]][] : memref<f32>
// CHECK:           %[[VAL_11:.*]] = scf.for %[[VAL_12:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] iter_args(%[[VAL_13:.*]] = %[[VAL_10]]) -> (f32) {
// CHECK:             %[[VAL_14:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_12]]] : memref<?xf32>
// CHECK:             %[[VAL_15:.*]] = arith.addf %[[VAL_13]], %[[VAL_14]] : f32
// CHECK:             scf.yield %[[VAL_15]] : f32
// CHECK:           }
// CHECK:           memref.store %[[VAL_11]], %[[VAL_6]][] : memref<f32>
// CHECK:           %[[VAL_17:.*]] = bufferization.to_tensor %[[VAL_6]] : memref<f32>
// CHECK:           return %[[VAL_17]] : tensor<f32>
// CHECK:         }
func.func @sum_reduction(%arga: tensor<?xf32, #SV>, %argx: tensor<f32>) -> tensor<f32> {
  %0 = linalg.generic #trait_sum_reduction
    ins(%arga: tensor<?xf32, #SV>)
    outs(%argx: tensor<f32>) {
      ^bb(%a: f32, %x: f32):
        %0 = arith.addf %x, %a : f32
        linalg.yield %0 : f32
  } -> tensor<f32>
  return %0 : tensor<f32>
}

#trait_sum_reduction2 = {
  indexing_maps = [
    affine_map<(i) -> (i)>, // a
    affine_map<(i) -> (i)>, // b
    affine_map<(i)-> ()>    // x (scalar out)
  ],
  iterator_types = ["reduction"],
  doc = "x += SUM_i a(i) + b(i)"
}

// CHECK-LABEL:   func @sum_reduction_ss(
// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_2:.*2]]: tensor<f32>) -> tensor<f32> {
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<f32>
// CHECK-DAG:           %[[VAL_13:.*]] = memref.load %[[VAL_11]][] : memref<f32>
// CHECK-DAG:           %[[VAL_14:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG:           %[[VAL_15:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:           %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK-DAG:           %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK:           %[[VAL_18:.*]]:3 = scf.while (%[[VAL_19:.*]] = %[[VAL_14]], %[[VAL_20:.*]] = %[[VAL_16]], %[[VAL_21:.*]] = %[[VAL_13]]) : (index, index, f32) -> (index, index, f32) {
// CHECK:             %[[VAL_22:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_15]] : index
// CHECK:             %[[VAL_23:.*]] = arith.cmpi ult, %[[VAL_20]], %[[VAL_17]] : index
// CHECK:             %[[VAL_24:.*]] = arith.andi %[[VAL_22]], %[[VAL_23]] : i1
// CHECK:             scf.condition(%[[VAL_24]]) %[[VAL_19]], %[[VAL_20]], %[[VAL_21]] : index, index, f32
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_25:.*]]: index, %[[VAL_26:.*]]: index, %[[VAL_27:.*]]: f32):
// CHECK:             %[[VAL_28:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_25]]] : memref<?xindex>
// CHECK:             %[[VAL_29:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_26]]] : memref<?xindex>
// CHECK:             %[[VAL_30:.*]] = arith.cmpi ult, %[[VAL_29]], %[[VAL_28]] : index
// CHECK:             %[[VAL_31:.*]] = arith.select %[[VAL_30]], %[[VAL_29]], %[[VAL_28]] : index
// CHECK:             %[[VAL_32:.*]] = arith.cmpi eq, %[[VAL_28]], %[[VAL_31]] : index
// CHECK:             %[[VAL_33:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_31]] : index
// CHECK:             %[[VAL_34:.*]] = arith.andi %[[VAL_32]], %[[VAL_33]] : i1
// CHECK:             %[[VAL_35:.*]] = scf.if %[[VAL_34]] -> (f32) {
// CHECK:               %[[VAL_36:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK:               %[[VAL_37:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_26]]] : memref<?xf32>
// CHECK:               %[[VAL_38:.*]] = arith.addf %[[VAL_36]], %[[VAL_37]] : f32
// CHECK:               %[[VAL_39:.*]] = arith.addf %[[VAL_27]], %[[VAL_38]] : f32
// CHECK:               scf.yield %[[VAL_39]] : f32
// CHECK:             } else {
// CHECK:               %[[VAL_40:.*]] = arith.cmpi eq, %[[VAL_28]], %[[VAL_31]] : index
// CHECK:               %[[VAL_41:.*]] = scf.if %[[VAL_40]] -> (f32) {
// CHECK:                 %[[VAL_42:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_25]]] : memref<?xf32>
// CHECK:                 %[[VAL_43:.*]] = arith.addf %[[VAL_27]], %[[VAL_42]] : f32
// CHECK:                 scf.yield %[[VAL_43]] : f32
// CHECK:               } else {
// CHECK:                 %[[VAL_44:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_31]] : index
// CHECK:                 %[[VAL_45:.*]] = scf.if %[[VAL_44]] -> (f32) {
// CHECK:                   %[[VAL_46:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_26]]] : memref<?xf32>
// CHECK:                   %[[VAL_47:.*]] = arith.addf %[[VAL_27]], %[[VAL_46]] : f32
// CHECK:                   scf.yield %[[VAL_47]] : f32
// CHECK:                 } else {
// CHECK:                   scf.yield %[[VAL_27]] : f32
// CHECK:                 }
// CHECK:                 scf.yield %[[VAL_48:.*]] : f32
// CHECK:               }
// CHECK:               scf.yield %[[VAL_49:.*]] : f32
// CHECK:             }
// CHECK:             %[[VAL_50:.*]] = arith.cmpi eq, %[[VAL_28]], %[[VAL_31]] : index
// CHECK:             %[[VAL_51:.*]] = arith.addi %[[VAL_25]], %[[VAL_4]] : index
// CHECK:             %[[VAL_52:.*]] = arith.select %[[VAL_50]], %[[VAL_51]], %[[VAL_25]] : index
// CHECK:             %[[VAL_53:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_31]] : index
// CHECK:             %[[VAL_54:.*]] = arith.addi %[[VAL_26]], %[[VAL_4]] : index
// CHECK:             %[[VAL_55:.*]] = arith.select %[[VAL_53]], %[[VAL_54]], %[[VAL_26]] : index
// CHECK:             scf.yield %[[VAL_52]], %[[VAL_55]], %[[VAL_56:.*]] : index, index, f32
// CHECK:           }
// CHECK:           %[[VAL_57:.*]] = scf.for %[[VAL_58:.*]] = %[[VAL_59:.*]]#0 to %[[VAL_15]] step %[[VAL_4]] iter_args(%[[VAL_60:.*]] = %[[VAL_59]]#2) -> (f32) {
// CHECK:             %[[VAL_61:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_58]]] : memref<?xf32>
// CHECK:             %[[VAL_62:.*]] = arith.addf %[[VAL_60]], %[[VAL_61]] : f32
// CHECK:             scf.yield %[[VAL_62]] : f32
// CHECK:           }
// CHECK:           %[[VAL_63:.*]] = scf.for %[[VAL_64:.*]] = %[[VAL_65:.*]]#1 to %[[VAL_17]] step %[[VAL_4]] iter_args(%[[VAL_66:.*]] = %[[VAL_67:.*]]) -> (f32) {
// CHECK:             %[[VAL_68:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_64]]] : memref<?xf32>
// CHECK:             %[[VAL_69:.*]] = arith.addf %[[VAL_66]], %[[VAL_68]] : f32
// CHECK:             scf.yield %[[VAL_69]] : f32
// CHECK:           }
// CHECK:           memref.store %[[VAL_70:.*]], %[[VAL_11]][] : memref<f32>
// CHECK:           %[[VAL_71:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<f32>
// CHECK:           return %[[VAL_71]] : tensor<f32>
// CHECK:         }
func.func @sum_reduction_ss(%arga: tensor<16xf32, #SV>,
                       %argb: tensor<16xf32, #SV>,
                       %argx: tensor<f32>) -> tensor<f32> {
  // Just for testing. This case would be better expressed
  // as two separate reductions kernels.
  %0 = linalg.generic #trait_sum_reduction2
    ins(%arga, %argb: tensor<16xf32, #SV>, tensor<16xf32, #SV>)
    outs(%argx: tensor<f32>) {
      ^bb(%a: f32, %b: f32, %x: f32):
        %0 = arith.addf %a, %b : f32
        %1 = arith.addf %x, %0 : f32
        linalg.yield %1 : f32
  } -> tensor<f32>
  return %0 : tensor<f32>
}

#trait_sum_reduction_inv = {
  indexing_maps = [
    affine_map<(i) -> (i)>, // a
    affine_map<(i) -> ()>,  // b
    affine_map<(i) -> (i)>, // c
    affine_map<(i) -> ()>   // x (out)
  ],
  iterator_types = ["reduction"],
  doc = "x += SUM_i a(i) * b + c(i)"
}

// CHECK-LABEL:   func @sum_reduction_inv(
// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<f32>,
// CHECK-SAME:      %[[VAL_2:.*2]]: tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_3:.*3]]: tensor<f32>) -> tensor<f32> {
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<f32>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.positions %[[VAL_2]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.coordinates %[[VAL_2]] {level = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_2]] : tensor<16xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf32>
// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_3]] : memref<f32>
// CHECK-DAG:       %[[VAL_15:.*]] = memref.load %[[VAL_13]][] : memref<f32>
// CHECK-DAG:       %[[VAL_16:.*]] = memref.load %[[VAL_9]][] : memref<f32>
// CHECK-DAG:       %[[VAL_17:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_18:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_19:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_20:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK:           %[[VAL_21:.*]]:3 = scf.while (%[[VAL_22:.*]] = %[[VAL_17]], %[[VAL_23:.*]] = %[[VAL_19]], %[[VAL_24:.*]] = %[[VAL_15]]) : (index, index, f32) -> (index, index, f32) {
// CHECK:             %[[VAL_25:.*]] = arith.cmpi ult, %[[VAL_22]], %[[VAL_18]] : index
// CHECK:             %[[VAL_26:.*]] = arith.cmpi ult, %[[VAL_23]], %[[VAL_20]] : index
// CHECK:             %[[VAL_27:.*]] = arith.andi %[[VAL_25]], %[[VAL_26]] : i1
// CHECK:             scf.condition(%[[VAL_27]]) %[[VAL_22]], %[[VAL_23]], %[[VAL_24]] : index, index, f32
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_28:.*]]: index, %[[VAL_29:.*]]: index, %[[VAL_30:.*]]: f32):
// CHECK:             %[[VAL_31:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_28]]] : memref<?xindex>
// CHECK:             %[[VAL_32:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_29]]] : memref<?xindex>
// CHECK:             %[[VAL_33:.*]] = arith.cmpi ult, %[[VAL_32]], %[[VAL_31]] : index
// CHECK:             %[[VAL_34:.*]] = arith.select %[[VAL_33]], %[[VAL_32]], %[[VAL_31]] : index
// CHECK:             %[[VAL_35:.*]] = arith.cmpi eq, %[[VAL_31]], %[[VAL_34]] : index
// CHECK:             %[[VAL_36:.*]] = arith.cmpi eq, %[[VAL_32]], %[[VAL_34]] : index
// CHECK:             %[[VAL_37:.*]] = arith.andi %[[VAL_35]], %[[VAL_36]] : i1
// CHECK:             %[[VAL_38:.*]] = scf.if %[[VAL_37]] -> (f32) {
// CHECK:               %[[VAL_39:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_28]]] : memref<?xf32>
// CHECK:               %[[VAL_40:.*]] = arith.mulf %[[VAL_39]], %[[VAL_16]] : f32
// CHECK:               %[[VAL_41:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_29]]] : memref<?xf32>
// CHECK:               %[[VAL_42:.*]] = arith.addf %[[VAL_40]], %[[VAL_41]] : f32
// CHECK:               %[[VAL_43:.*]] = arith.addf %[[VAL_30]], %[[VAL_42]] : f32
// CHECK:               scf.yield %[[VAL_43]] : f32
// CHECK:             } else {
// CHECK:               %[[VAL_44:.*]] = arith.cmpi eq, %[[VAL_31]], %[[VAL_34]] : index
// CHECK:               %[[VAL_45:.*]] = scf.if %[[VAL_44]] -> (f32) {
// CHECK:                 %[[VAL_46:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_28]]] : memref<?xf32>
// CHECK:                 %[[VAL_47:.*]] = arith.mulf %[[VAL_46]], %[[VAL_16]] : f32
// CHECK:                 %[[VAL_48:.*]] = arith.addf %[[VAL_30]], %[[VAL_47]] : f32
// CHECK:                 scf.yield %[[VAL_48]] : f32
// CHECK:               } else {
// CHECK:                 %[[VAL_49:.*]] = arith.cmpi eq, %[[VAL_32]], %[[VAL_34]] : index
// CHECK:                 %[[VAL_50:.*]] = scf.if %[[VAL_49]] -> (f32) {
// CHECK:                   %[[VAL_51:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_29]]] : memref<?xf32>
// CHECK:                   %[[VAL_52:.*]] = arith.addf %[[VAL_30]], %[[VAL_51]] : f32
// CHECK:                   scf.yield %[[VAL_52]] : f32
// CHECK:                 } else {
// CHECK:                   scf.yield %[[VAL_30]] : f32
// CHECK:                 }
// CHECK:                 scf.yield %[[VAL_53:.*]] : f32
// CHECK:               }
// CHECK:               scf.yield %[[VAL_54:.*]] : f32
// CHECK:             }
// CHECK:             %[[VAL_55:.*]] = arith.cmpi eq, %[[VAL_31]], %[[VAL_34]] : index
// CHECK:             %[[VAL_56:.*]] = arith.addi %[[VAL_28]], %[[VAL_5]] : index
// CHECK:             %[[VAL_57:.*]] = arith.select %[[VAL_55]], %[[VAL_56]], %[[VAL_28]] : index
// CHECK:             %[[VAL_58:.*]] = arith.cmpi eq, %[[VAL_32]], %[[VAL_34]] : index
// CHECK:             %[[VAL_59:.*]] = arith.addi %[[VAL_29]], %[[VAL_5]] : index
// CHECK:             %[[VAL_60:.*]] = arith.select %[[VAL_58]], %[[VAL_59]], %[[VAL_29]] : index
// CHECK:             scf.yield %[[VAL_57]], %[[VAL_60]], %[[VAL_61:.*]] : index, index, f32
// CHECK:           }
// CHECK:           %[[VAL_62:.*]] = scf.for %[[VAL_63:.*]] = %[[VAL_64:.*]]#0 to %[[VAL_18]] step %[[VAL_5]] iter_args(%[[VAL_65:.*]] = %[[VAL_64]]#2) -> (f32) {
// CHECK:             %[[VAL_66:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_63]]] : memref<?xf32>
// CHECK:             %[[VAL_67:.*]] = arith.mulf %[[VAL_66]], %[[VAL_16]] : f32
// CHECK:             %[[VAL_68:.*]] = arith.addf %[[VAL_65]], %[[VAL_67]] : f32
// CHECK:             scf.yield %[[VAL_68]] : f32
// CHECK:           }
// CHECK:           %[[VAL_69:.*]] = scf.for %[[VAL_70:.*]] = %[[VAL_71:.*]]#1 to %[[VAL_20]] step %[[VAL_5]] iter_args(%[[VAL_72:.*]] = %[[VAL_73:.*]]) -> (f32) {
// CHECK:             %[[VAL_74:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_70]]] : memref<?xf32>
// CHECK:             %[[VAL_75:.*]] = arith.addf %[[VAL_72]], %[[VAL_74]] : f32
// CHECK:             scf.yield %[[VAL_75]] : f32
// CHECK:           }
// CHECK:           memref.store %[[VAL_76:.*]], %[[VAL_13]][] : memref<f32>
// CHECK:           %[[VAL_77:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<f32>
// CHECK:           return %[[VAL_77]] : tensor<f32>
// CHECK:         }
func.func @sum_reduction_inv(%arga: tensor<16xf32, #SV>,
                        %argb: tensor<f32>,
                        %argc: tensor<16xf32, #SV>,
                        %argx: tensor<f32>) -> tensor<f32> {
  // Just for testing. This case would be better expressed
  // as two separate reductions kernels.
  %0 = linalg.generic #trait_sum_reduction_inv
    ins(%arga, %argb, %argc : tensor<16xf32, #SV>, tensor<f32>, tensor<16xf32, #SV>)
    outs(%argx: tensor<f32>) {
      ^bb(%a: f32, %b: f32, %c: f32, %x: f32):
        %0 = arith.mulf %a, %b : f32
        %1 = arith.addf %0, %c : f32
        %2 = arith.addf %x, %1 : f32
        linalg.yield %2 : f32
  } -> tensor<f32>
  return %0 : tensor<f32>
}

#trait_four_tensors = {
  indexing_maps = [
    affine_map<(i) -> (i)>,  // A
    affine_map<(i) -> (i)>,  // B
    affine_map<(i) -> (i)>,  // C
    affine_map<(i) -> (i)>,  // D
    affine_map<(i) -> (i)>   // X (out)
  ],
  iterator_types = ["parallel"],
  doc = "X(i) = A(i) + B(i) + C(i) + D(i)"
}

// CHECK-LABEL:   func @four_tensors_op(
// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<?xf64>,
// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_2:.*2]]: tensor<?xf64>,
// CHECK-SAME:      %[[VAL_3:.*3]]: tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_4:.*]]: tensor<?xf64>) -> tensor<?xf64> {
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant true
// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref<?xf64>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf64>
// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<?xf64>
// CHECK-DAG:       %[[VAL_13:.*]] = sparse_tensor.positions %[[VAL_3]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_14:.*]] = sparse_tensor.coordinates %[[VAL_3]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_15:.*]] = sparse_tensor.values %[[VAL_3]] : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf64>
// CHECK-DAG:       %[[VAL_16:.*]] = tensor.dim %[[VAL_0]], %[[VAL_5]] : tensor<?xf64>
// CHECK-DAG:       %[[VAL_18:.*]] = bufferization.to_memref %[[VAL_4]]
// CHECK-DAG:       linalg.fill ins(%{{.*}} : f64) outs(%[[VAL_18]] : memref<?xf64>)
// CHECK-DAG:       %[[VAL_19:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_7]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_21:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_22:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_7]]] : memref<?xindex>
// CHECK:           %[[VAL_23:.*]]:3 = scf.while (%[[VAL_24:.*]] = %[[VAL_19]], %[[VAL_25:.*]] = %[[VAL_21]], %[[VAL_26:.*]] = %[[VAL_5]]) : (index, index, index) -> (index, index, index) {
// CHECK:             %[[VAL_27:.*]] = arith.cmpi ult, %[[VAL_24]], %[[VAL_20]] : index
// CHECK:             %[[VAL_28:.*]] = arith.cmpi ult, %[[VAL_25]], %[[VAL_22]] : index
// CHECK:             %[[VAL_29:.*]] = arith.andi %[[VAL_27]], %[[VAL_28]] : i1
// CHECK:             scf.condition(%[[VAL_29]]) %[[VAL_24]], %[[VAL_25]], %[[VAL_26]] : index, index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_30:.*]]: index, %[[VAL_31:.*]]: index, %[[VAL_32:.*]]: index):
// CHECK:             %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_30]]] : memref<?xindex>
// CHECK:             %[[VAL_34:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_31]]] : memref<?xindex>
// CHECK:             %[[VAL_35:.*]] = arith.cmpi eq, %[[VAL_33]], %[[VAL_32]] : index
// CHECK:             %[[VAL_36:.*]] = arith.cmpi eq, %[[VAL_34]], %[[VAL_32]] : index
// CHECK:             %[[VAL_37:.*]] = arith.andi %[[VAL_35]], %[[VAL_36]] : i1
// CHECK:             scf.if %[[VAL_37]] {
// CHECK:               %[[VAL_38:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK:               %[[VAL_39:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<?xf64>
// CHECK:               %[[VAL_40:.*]] = arith.addf %[[VAL_38]], %[[VAL_39]] : f64
// CHECK:               %[[VAL_41:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK:               %[[VAL_42:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_31]]] : memref<?xf64>
// CHECK:               %[[VAL_43:.*]] = arith.addf %[[VAL_41]], %[[VAL_42]] : f64
// CHECK:               %[[VAL_44:.*]] = arith.addf %[[VAL_40]], %[[VAL_43]] : f64
// CHECK:               memref.store %[[VAL_44]], %[[VAL_18]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK:             } else {
// CHECK:               %[[VAL_45:.*]] = arith.cmpi eq, %[[VAL_33]], %[[VAL_32]] : index
// CHECK:               scf.if %[[VAL_45]] {
// CHECK:                 %[[VAL_46:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK:                 %[[VAL_47:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<?xf64>
// CHECK:                 %[[VAL_48:.*]] = arith.addf %[[VAL_46]], %[[VAL_47]] : f64
// CHECK:                 %[[VAL_49:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK:                 %[[VAL_50:.*]] = arith.addf %[[VAL_48]], %[[VAL_49]] : f64
// CHECK:                 memref.store %[[VAL_50]], %[[VAL_18]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK:               } else {
// CHECK:                 %[[VAL_51:.*]] = arith.cmpi eq, %[[VAL_34]], %[[VAL_32]] : index
// CHECK:                 scf.if %[[VAL_51]] {
// CHECK:                   %[[VAL_52:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK:                   %[[VAL_53:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK:                   %[[VAL_54:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_31]]] : memref<?xf64>
// CHECK:                   %[[VAL_55:.*]] = arith.addf %[[VAL_53]], %[[VAL_54]] : f64
// CHECK:                   %[[VAL_56:.*]] = arith.addf %[[VAL_52]], %[[VAL_55]] : f64
// CHECK:                   memref.store %[[VAL_56]], %[[VAL_18]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK:                 } else {
// CHECK:                   scf.if %[[VAL_6]] {
// CHECK:                     %[[VAL_57:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK:                     %[[VAL_58:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK:                     %[[VAL_59:.*]] = arith.addf %[[VAL_57]], %[[VAL_58]] : f64
// CHECK:                     memref.store %[[VAL_59]], %[[VAL_18]]{{\[}}%[[VAL_32]]] : memref<?xf64>
// CHECK:                   } else {
// CHECK:                   }
// CHECK:                 }
// CHECK:               }
// CHECK:             }
// CHECK:             %[[VAL_60:.*]] = arith.cmpi eq, %[[VAL_33]], %[[VAL_32]] : index
// CHECK:             %[[VAL_61:.*]] = arith.addi %[[VAL_30]], %[[VAL_7]] : index
// CHECK:             %[[VAL_62:.*]] = arith.select %[[VAL_60]], %[[VAL_61]], %[[VAL_30]] : index
// CHECK:             %[[VAL_63:.*]] = arith.cmpi eq, %[[VAL_34]], %[[VAL_32]] : index
// CHECK:             %[[VAL_64:.*]] = arith.addi %[[VAL_31]], %[[VAL_7]] : index
// CHECK:             %[[VAL_65:.*]] = arith.select %[[VAL_63]], %[[VAL_64]], %[[VAL_31]] : index
// CHECK:             %[[VAL_66:.*]] = arith.addi %[[VAL_32]], %[[VAL_7]] : index
// CHECK:             scf.yield %[[VAL_62]], %[[VAL_65]], %[[VAL_66]] : index, index, index
// CHECK:           }
// CHECK:           %[[VAL_67:.*]]:2 = scf.while (%[[VAL_68:.*]] = %[[VAL_69:.*]]#0, %[[VAL_70:.*]] = %[[VAL_69]]#2) : (index, index) -> (index, index) {
// CHECK:             %[[VAL_71:.*]] = arith.cmpi ult, %[[VAL_68]], %[[VAL_20]] : index
// CHECK:             scf.condition(%[[VAL_71]]) %[[VAL_68]], %[[VAL_70]] : index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_72:.*]]: index, %[[VAL_73:.*]]: index):
// CHECK:             %[[VAL_74:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_72]]] : memref<?xindex>
// CHECK:             %[[VAL_75:.*]] = arith.cmpi eq, %[[VAL_74]], %[[VAL_73]] : index
// CHECK:             scf.if %[[VAL_75]] {
// CHECK:               %[[VAL_76:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_73]]] : memref<?xf64>
// CHECK:               %[[VAL_77:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_72]]] : memref<?xf64>
// CHECK:               %[[VAL_78:.*]] = arith.addf %[[VAL_76]], %[[VAL_77]] : f64
// CHECK:               %[[VAL_79:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_73]]] : memref<?xf64>
// CHECK:               %[[VAL_80:.*]] = arith.addf %[[VAL_78]], %[[VAL_79]] : f64
// CHECK:               memref.store %[[VAL_80]], %[[VAL_18]]{{\[}}%[[VAL_73]]] : memref<?xf64>
// CHECK:             } else {
// CHECK:               scf.if %[[VAL_6]] {
// CHECK:                 %[[VAL_81:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_73]]] : memref<?xf64>
// CHECK:                 %[[VAL_82:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_73]]] : memref<?xf64>
// CHECK:                 %[[VAL_83:.*]] = arith.addf %[[VAL_81]], %[[VAL_82]] : f64
// CHECK:                 memref.store %[[VAL_83]], %[[VAL_18]]{{\[}}%[[VAL_73]]] : memref<?xf64>
// CHECK:               } else {
// CHECK:               }
// CHECK:             }
// CHECK:             %[[VAL_84:.*]] = arith.cmpi eq, %[[VAL_74]], %[[VAL_73]] : index
// CHECK:             %[[VAL_85:.*]] = arith.addi %[[VAL_72]], %[[VAL_7]] : index
// CHECK:             %[[VAL_86:.*]] = arith.select %[[VAL_84]], %[[VAL_85]], %[[VAL_72]] : index
// CHECK:             %[[VAL_87:.*]] = arith.addi %[[VAL_73]], %[[VAL_7]] : index
// CHECK:             scf.yield %[[VAL_86]], %[[VAL_87]] : index, index
// CHECK:           }
// CHECK:           %[[VAL_88:.*]]:2 = scf.while (%[[VAL_89:.*]] = %[[VAL_90:.*]]#1, %[[VAL_91:.*]] = %[[VAL_92:.*]]#1) : (index, index) -> (index, index) {
// CHECK:             %[[VAL_93:.*]] = arith.cmpi ult, %[[VAL_89]], %[[VAL_22]] : index
// CHECK:             scf.condition(%[[VAL_93]]) %[[VAL_89]], %[[VAL_91]] : index, index
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_94:.*]]: index, %[[VAL_95:.*]]: index):
// CHECK:             %[[VAL_96:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_94]]] : memref<?xindex>
// CHECK:             %[[VAL_97:.*]] = arith.cmpi eq, %[[VAL_96]], %[[VAL_95]] : index
// CHECK:             scf.if %[[VAL_97]] {
// CHECK:               %[[VAL_98:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_95]]] : memref<?xf64>
// CHECK:               %[[VAL_99:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_95]]] : memref<?xf64>
// CHECK:               %[[VAL_100:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_94]]] : memref<?xf64>
// CHECK:               %[[VAL_101:.*]] = arith.addf %[[VAL_99]], %[[VAL_100]] : f64
// CHECK:               %[[VAL_102:.*]] = arith.addf %[[VAL_98]], %[[VAL_101]] : f64
// CHECK:               memref.store %[[VAL_102]], %[[VAL_18]]{{\[}}%[[VAL_95]]] : memref<?xf64>
// CHECK:             } else {
// CHECK:               scf.if %[[VAL_6]] {
// CHECK:                 %[[VAL_103:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_95]]] : memref<?xf64>
// CHECK:                 %[[VAL_104:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_95]]] : memref<?xf64>
// CHECK:                 %[[VAL_105:.*]] = arith.addf %[[VAL_103]], %[[VAL_104]] : f64
// CHECK:                 memref.store %[[VAL_105]], %[[VAL_18]]{{\[}}%[[VAL_95]]] : memref<?xf64>
// CHECK:               } else {
// CHECK:               }
// CHECK:             }
// CHECK:             %[[VAL_106:.*]] = arith.cmpi eq, %[[VAL_96]], %[[VAL_95]] : index
// CHECK:             %[[VAL_107:.*]] = arith.addi %[[VAL_94]], %[[VAL_7]] : index
// CHECK:             %[[VAL_108:.*]] = arith.select %[[VAL_106]], %[[VAL_107]], %[[VAL_94]] : index
// CHECK:             %[[VAL_109:.*]] = arith.addi %[[VAL_95]], %[[VAL_7]] : index
// CHECK:             scf.yield %[[VAL_108]], %[[VAL_109]] : index, index
// CHECK:           }
// CHECK:           scf.for %[[VAL_110:.*]] = %[[VAL_111:.*]]#1 to %[[VAL_16]] step %[[VAL_7]] {
// CHECK:             %[[VAL_112:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_110]]] : memref<?xf64>
// CHECK:             %[[VAL_113:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_110]]] : memref<?xf64>
// CHECK:             %[[VAL_114:.*]] = arith.addf %[[VAL_112]], %[[VAL_113]] : f64
// CHECK:             memref.store %[[VAL_114]], %[[VAL_18]]{{\[}}%[[VAL_110]]] : memref<?xf64>
// CHECK:           }
// CHECK:           %[[VAL_115:.*]] = bufferization.to_tensor %[[VAL_18]] : memref<?xf64>
// CHECK:           return %[[VAL_115]] : tensor<?xf64>
// CHECK:         }
func.func @four_tensors_op(%arga: tensor<?xf64>,
                      %argb: tensor<?xf64, #SV>,
                      %argc: tensor<?xf64>,
                      %argd: tensor<?xf64, #SV>,
                      %argx: tensor<?xf64>) -> tensor<?xf64> {
  %r = linalg.generic #trait_four_tensors
    ins(%arga, %argb, %argc, %argd: tensor<?xf64>, tensor<?xf64, #SV>, tensor<?xf64>, tensor<?xf64, #SV>)
    outs(%argx: tensor<?xf64>) {
      ^bb(%a: f64, %b: f64, %c: f64, %d: f64, %x: f64):
        %0 = arith.addf %a, %b : f64
        %1 = arith.addf %c, %d : f64
        %2 = arith.addf %0, %1 : f64
        linalg.yield %2 : f64
  } -> tensor<?xf64>
  return %r : tensor<?xf64>
}

#trait_red3s = {
  indexing_maps = [
    affine_map<(i) -> (i)>,
    affine_map<(i) -> (i)>,
    affine_map<(i) -> (i)>,
    affine_map<(i) -> ()>
  ],
  iterator_types = ["reduction"],
  doc = "x += a(i) + b(i) + c(i)"
}

// CHECK-LABEL:   func @red3s(
// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_2:.*2]]: tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>,
// CHECK-SAME:      %[[VAL_3:.*3]]: tensor<f64>) -> tensor<f64> {
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf64>
// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf64>
// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.positions %[[VAL_2]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_13:.*]] = sparse_tensor.coordinates %[[VAL_2]] {level = 0 : index} : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK-DAG:       %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_2]] : tensor<?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf64>
// CHECK-DAG:       %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_3]] : memref<f64>
// CHECK-DAG:       %[[VAL_17:.*]] = memref.load %[[VAL_15]][] : memref<f64>
// CHECK-DAG:       %[[VAL_18:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_19:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_21:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_22:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK-DAG:       %[[VAL_23:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_5]]] : memref<?xindex>
// CHECK:           %[[VAL_24:.*]]:4 = scf.while (%[[VAL_25:.*]] = %[[VAL_18]], %[[VAL_26:.*]] = %[[VAL_20]], %[[VAL_27:.*]] = %[[VAL_22]], %[[VAL_28:.*]] = %[[VAL_17]]) : (index, index, index, f64) -> (index, index, index, f64) {
// CHECK:             %[[VAL_29:.*]] = arith.cmpi ult, %[[VAL_25]], %[[VAL_19]] : index
// CHECK:             %[[VAL_30:.*]] = arith.cmpi ult, %[[VAL_26]], %[[VAL_21]] : index
// CHECK:             %[[VAL_31:.*]] = arith.andi %[[VAL_29]], %[[VAL_30]] : i1
// CHECK:             %[[VAL_32:.*]] = arith.cmpi ult, %[[VAL_27]], %[[VAL_23]] : index
// CHECK:             %[[VAL_33:.*]] = arith.andi %[[VAL_31]], %[[VAL_32]] : i1
// CHECK:             scf.condition(%[[VAL_33]]) %[[VAL_25]], %[[VAL_26]], %[[VAL_27]], %[[VAL_28]] : index, index, index, f64
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_34:.*]]: index, %[[VAL_35:.*]]: index, %[[VAL_36:.*]]: index, %[[VAL_37:.*]]: f64):
// CHECK-DAG:         %[[VAL_38:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_34]]] : memref<?xindex>
// CHECK-DAG:         %[[VAL_39:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_35]]] : memref<?xindex>
// CHECK-DAG:         %[[VAL_42:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_36]]] : memref<?xindex>
// CHECK:             %[[VAL_40:.*]] = arith.cmpi ult, %[[VAL_39]], %[[VAL_38]] : index
// CHECK:             %[[VAL_41:.*]] = arith.select %[[VAL_40]], %[[VAL_39]], %[[VAL_38]] : index
// CHECK:             %[[VAL_43:.*]] = arith.cmpi ult, %[[VAL_42]], %[[VAL_41]] : index
// CHECK:             %[[VAL_44:.*]] = arith.select %[[VAL_43]], %[[VAL_42]], %[[VAL_41]] : index
// CHECK:             %[[VAL_45:.*]] = arith.cmpi eq, %[[VAL_38]], %[[VAL_44]] : index
// CHECK:             %[[VAL_46:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_44]] : index
// CHECK:             %[[VAL_47:.*]] = arith.andi %[[VAL_45]], %[[VAL_46]] : i1
// CHECK:             %[[VAL_48:.*]] = arith.cmpi eq, %[[VAL_42]], %[[VAL_44]] : index
// CHECK:             %[[VAL_49:.*]] = arith.andi %[[VAL_47]], %[[VAL_48]] : i1
// CHECK:             %[[VAL_50:.*]] = scf.if %[[VAL_49]] -> (f64) {
// CHECK:               %[[VAL_51:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_34]]] : memref<?xf64>
// CHECK:               %[[VAL_52:.*]] = arith.addf %[[VAL_37]], %[[VAL_51]] : f64
// CHECK:               %[[VAL_53:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_35]]] : memref<?xf64>
// CHECK:               %[[VAL_54:.*]] = arith.addf %[[VAL_52]], %[[VAL_53]] : f64
// CHECK:               %[[VAL_55:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_36]]] : memref<?xf64>
// CHECK:               %[[VAL_56:.*]] = arith.addf %[[VAL_54]], %[[VAL_55]] : f64
// CHECK:               scf.yield %[[VAL_56]] : f64
// CHECK:             } else {
// CHECK:               %[[VAL_57:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_44]] : index
// CHECK:               %[[VAL_58:.*]] = arith.cmpi eq, %[[VAL_42]], %[[VAL_44]] : index
// CHECK:               %[[VAL_59:.*]] = arith.andi %[[VAL_57]], %[[VAL_58]] : i1
// CHECK:               %[[VAL_60:.*]] = scf.if %[[VAL_59]] -> (f64) {
// CHECK:                 %[[VAL_61:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_35]]] : memref<?xf64>
// CHECK:                 %[[VAL_62:.*]] = arith.addf %[[VAL_37]], %[[VAL_61]] : f64
// CHECK:                 %[[VAL_63:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_36]]] : memref<?xf64>
// CHECK:                 %[[VAL_64:.*]] = arith.addf %[[VAL_62]], %[[VAL_63]] : f64
// CHECK:                 scf.yield %[[VAL_64]] : f64
// CHECK:               } else {
// CHECK:                 %[[VAL_65:.*]] = arith.cmpi eq, %[[VAL_38]], %[[VAL_44]] : index
// CHECK:                 %[[VAL_66:.*]] = arith.cmpi eq, %[[VAL_42]], %[[VAL_44]] : index
// CHECK:                 %[[VAL_67:.*]] = arith.andi %[[VAL_65]], %[[VAL_66]] : i1
// CHECK:                 %[[VAL_68:.*]] = scf.if %[[VAL_67]] -> (f64) {
// CHECK:                   %[[VAL_69:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_34]]] : memref<?xf64>
// CHECK:                   %[[VAL_70:.*]] = arith.addf %[[VAL_37]], %[[VAL_69]] : f64
// CHECK:                   %[[VAL_71:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_36]]] : memref<?xf64>
// CHECK:                   %[[VAL_72:.*]] = arith.addf %[[VAL_70]], %[[VAL_71]] : f64
// CHECK:                   scf.yield %[[VAL_72]] : f64
// CHECK:                 } else {
// CHECK:                   %[[VAL_73:.*]] = arith.cmpi eq, %[[VAL_42]], %[[VAL_44]] : index
// CHECK:                   %[[VAL_74:.*]] = scf.if %[[VAL_73]] -> (f64) {
// CHECK:                     %[[VAL_75:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_36]]] : memref<?xf64>
// CHECK:                     %[[VAL_76:.*]] = arith.addf %[[VAL_37]], %[[VAL_75]] : f64
// CHECK:                     scf.yield %[[VAL_76]] : f64
// CHECK:                   } else {
// CHECK:                     %[[VAL_77:.*]] = arith.cmpi eq, %[[VAL_38]], %[[VAL_44]] : index
// CHECK:                     %[[VAL_78:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_44]] : index
// CHECK:                     %[[VAL_79:.*]] = arith.andi %[[VAL_77]], %[[VAL_78]] : i1
// CHECK:                     %[[VAL_80:.*]] = scf.if %[[VAL_79]] -> (f64) {
// CHECK:                       %[[VAL_81:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_34]]] : memref<?xf64>
// CHECK:                       %[[VAL_82:.*]] = arith.addf %[[VAL_37]], %[[VAL_81]] : f64
// CHECK:                       %[[VAL_83:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_35]]] : memref<?xf64>
// CHECK:                       %[[VAL_84:.*]] = arith.addf %[[VAL_82]], %[[VAL_83]] : f64
// CHECK:                       scf.yield %[[VAL_84]] : f64
// CHECK:                     } else {
// CHECK:                       %[[VAL_85:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_44]] : index
// CHECK:                       %[[VAL_86:.*]] = scf.if %[[VAL_85]] -> (f64) {
// CHECK:                         %[[VAL_87:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_35]]] : memref<?xf64>
// CHECK:                         %[[VAL_88:.*]] = arith.addf %[[VAL_37]], %[[VAL_87]] : f64
// CHECK:                         scf.yield %[[VAL_88]] : f64
// CHECK:                       } else {
// CHECK:                         %[[VAL_89:.*]] = arith.cmpi eq, %[[VAL_38]], %[[VAL_44]] : index
// CHECK:                         %[[VAL_90:.*]] = scf.if %[[VAL_89]] -> (f64) {
// CHECK:                           %[[VAL_91:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_34]]] : memref<?xf64>
// CHECK:                           %[[VAL_92:.*]] = arith.addf %[[VAL_37]], %[[VAL_91]] : f64
// CHECK:                           scf.yield %[[VAL_92]] : f64
// CHECK:                         } else {
// CHECK:                           scf.yield %[[VAL_37]] : f64
// CHECK:                         }
// CHECK:                         scf.yield %[[VAL_93:.*]] : f64
// CHECK:                       }
// CHECK:                       scf.yield %[[VAL_94:.*]] : f64
// CHECK:                     }
// CHECK:                     scf.yield %[[VAL_95:.*]] : f64
// CHECK:                   }
// CHECK:                   scf.yield %[[VAL_96:.*]] : f64
// CHECK:                 }
// CHECK:                 scf.yield %[[VAL_97:.*]] : f64
// CHECK:               }
// CHECK:               scf.yield %[[VAL_98:.*]] : f64
// CHECK:             }
// CHECK:             %[[VAL_99:.*]] = arith.cmpi eq, %[[VAL_38]], %[[VAL_44]] : index
// CHECK:             %[[VAL_100:.*]] = arith.addi %[[VAL_34]], %[[VAL_5]] : index
// CHECK:             %[[VAL_101:.*]] = arith.select %[[VAL_99]], %[[VAL_100]], %[[VAL_34]] : index
// CHECK:             %[[VAL_102:.*]] = arith.cmpi eq, %[[VAL_39]], %[[VAL_44]] : index
// CHECK:             %[[VAL_103:.*]] = arith.addi %[[VAL_35]], %[[VAL_5]] : index
// CHECK:             %[[VAL_104:.*]] = arith.select %[[VAL_102]], %[[VAL_103]], %[[VAL_35]] : index
// CHECK:             %[[VAL_105:.*]] = arith.cmpi eq, %[[VAL_42]], %[[VAL_44]] : index
// CHECK:             %[[VAL_106:.*]] = arith.addi %[[VAL_36]], %[[VAL_5]] : index
// CHECK:             %[[VAL_107:.*]] = arith.select %[[VAL_105]], %[[VAL_106]], %[[VAL_36]] : index
// CHECK:             scf.yield %[[VAL_101]], %[[VAL_104]], %[[VAL_107]], %[[VAL_108:.*]] : index, index, index, f64
// CHECK:           }
// CHECK:           %[[VAL_109:.*]]:3 = scf.while (%[[VAL_110:.*]] = %[[VAL_111:.*]]#1, %[[VAL_112:.*]] = %[[VAL_111]]#2, %[[VAL_113:.*]] = %[[VAL_111]]#3) : (index, index, f64) -> (index, index, f64) {
// CHECK:             %[[VAL_114:.*]] = arith.cmpi ult, %[[VAL_110]], %[[VAL_21]] : index
// CHECK:             %[[VAL_115:.*]] = arith.cmpi ult, %[[VAL_112]], %[[VAL_23]] : index
// CHECK:             %[[VAL_116:.*]] = arith.andi %[[VAL_114]], %[[VAL_115]] : i1
// CHECK:             scf.condition(%[[VAL_116]]) %[[VAL_110]], %[[VAL_112]], %[[VAL_113]] : index, index, f64
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_117:.*]]: index, %[[VAL_118:.*]]: index, %[[VAL_119:.*]]: f64):
// CHECK:             %[[VAL_120:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_117]]] : memref<?xindex>
// CHECK:             %[[VAL_121:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_118]]] : memref<?xindex>
// CHECK:             %[[VAL_122:.*]] = arith.cmpi ult, %[[VAL_121]], %[[VAL_120]] : index
// CHECK:             %[[VAL_123:.*]] = arith.select %[[VAL_122]], %[[VAL_121]], %[[VAL_120]] : index
// CHECK:             %[[VAL_124:.*]] = arith.cmpi eq, %[[VAL_120]], %[[VAL_123]] : index
// CHECK:             %[[VAL_125:.*]] = arith.cmpi eq, %[[VAL_121]], %[[VAL_123]] : index
// CHECK:             %[[VAL_126:.*]] = arith.andi %[[VAL_124]], %[[VAL_125]] : i1
// CHECK:             %[[VAL_127:.*]] = scf.if %[[VAL_126]] -> (f64) {
// CHECK:               %[[VAL_128:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_117]]] : memref<?xf64>
// CHECK:               %[[VAL_129:.*]] = arith.addf %[[VAL_119]], %[[VAL_128]] : f64
// CHECK:               %[[VAL_130:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_118]]] : memref<?xf64>
// CHECK:               %[[VAL_131:.*]] = arith.addf %[[VAL_129]], %[[VAL_130]] : f64
// CHECK:               scf.yield %[[VAL_131]] : f64
// CHECK:             } else {
// CHECK:               %[[VAL_132:.*]] = arith.cmpi eq, %[[VAL_121]], %[[VAL_123]] : index
// CHECK:               %[[VAL_133:.*]] = scf.if %[[VAL_132]] -> (f64) {
// CHECK:                 %[[VAL_134:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_118]]] : memref<?xf64>
// CHECK:                 %[[VAL_135:.*]] = arith.addf %[[VAL_119]], %[[VAL_134]] : f64
// CHECK:                 scf.yield %[[VAL_135]] : f64
// CHECK:               } else {
// CHECK:                 %[[VAL_136:.*]] = arith.cmpi eq, %[[VAL_120]], %[[VAL_123]] : index
// CHECK:                 %[[VAL_137:.*]] = scf.if %[[VAL_136]] -> (f64) {
// CHECK:                   %[[VAL_138:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_117]]] : memref<?xf64>
// CHECK:                   %[[VAL_139:.*]] = arith.addf %[[VAL_119]], %[[VAL_138]] : f64
// CHECK:                   scf.yield %[[VAL_139]] : f64
// CHECK:                 } else {
// CHECK:                   scf.yield %[[VAL_119]] : f64
// CHECK:                 }
// CHECK:                 scf.yield %[[VAL_140:.*]] : f64
// CHECK:               }
// CHECK:               scf.yield %[[VAL_141:.*]] : f64
// CHECK:             }
// CHECK:             %[[VAL_142:.*]] = arith.cmpi eq, %[[VAL_120]], %[[VAL_123]] : index
// CHECK:             %[[VAL_143:.*]] = arith.addi %[[VAL_117]], %[[VAL_5]] : index
// CHECK:             %[[VAL_144:.*]] = arith.select %[[VAL_142]], %[[VAL_143]], %[[VAL_117]] : index
// CHECK:             %[[VAL_145:.*]] = arith.cmpi eq, %[[VAL_121]], %[[VAL_123]] : index
// CHECK:             %[[VAL_146:.*]] = arith.addi %[[VAL_118]], %[[VAL_5]] : index
// CHECK:             %[[VAL_147:.*]] = arith.select %[[VAL_145]], %[[VAL_146]], %[[VAL_118]] : index
// CHECK:             scf.yield %[[VAL_144]], %[[VAL_147]], %[[VAL_148:.*]] : index, index, f64
// CHECK:           }
// CHECK:           %[[VAL_149:.*]]:3 = scf.while (%[[VAL_150:.*]] = %[[VAL_151:.*]]#0, %[[VAL_152:.*]] = %[[VAL_153:.*]]#1, %[[VAL_154:.*]] = %[[VAL_153]]#2) : (index, index, f64) -> (index, index, f64) {
// CHECK:             %[[VAL_155:.*]] = arith.cmpi ult, %[[VAL_150]], %[[VAL_19]] : index
// CHECK:             %[[VAL_156:.*]] = arith.cmpi ult, %[[VAL_152]], %[[VAL_23]] : index
// CHECK:             %[[VAL_157:.*]] = arith.andi %[[VAL_155]], %[[VAL_156]] : i1
// CHECK:             scf.condition(%[[VAL_157]]) %[[VAL_150]], %[[VAL_152]], %[[VAL_154]] : index, index, f64
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_158:.*]]: index, %[[VAL_159:.*]]: index, %[[VAL_160:.*]]: f64):
// CHECK:             %[[VAL_161:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_158]]] : memref<?xindex>
// CHECK:             %[[VAL_162:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_159]]] : memref<?xindex>
// CHECK:             %[[VAL_163:.*]] = arith.cmpi ult, %[[VAL_162]], %[[VAL_161]] : index
// CHECK:             %[[VAL_164:.*]] = arith.select %[[VAL_163]], %[[VAL_162]], %[[VAL_161]] : index
// CHECK:             %[[VAL_165:.*]] = arith.cmpi eq, %[[VAL_161]], %[[VAL_164]] : index
// CHECK:             %[[VAL_166:.*]] = arith.cmpi eq, %[[VAL_162]], %[[VAL_164]] : index
// CHECK:             %[[VAL_167:.*]] = arith.andi %[[VAL_165]], %[[VAL_166]] : i1
// CHECK:             %[[VAL_168:.*]] = scf.if %[[VAL_167]] -> (f64) {
// CHECK:               %[[VAL_169:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_158]]] : memref<?xf64>
// CHECK:               %[[VAL_170:.*]] = arith.addf %[[VAL_160]], %[[VAL_169]] : f64
// CHECK:               %[[VAL_171:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_159]]] : memref<?xf64>
// CHECK:               %[[VAL_172:.*]] = arith.addf %[[VAL_170]], %[[VAL_171]] : f64
// CHECK:               scf.yield %[[VAL_172]] : f64
// CHECK:             } else {
// CHECK:               %[[VAL_173:.*]] = arith.cmpi eq, %[[VAL_162]], %[[VAL_164]] : index
// CHECK:               %[[VAL_174:.*]] = scf.if %[[VAL_173]] -> (f64) {
// CHECK:                 %[[VAL_175:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_159]]] : memref<?xf64>
// CHECK:                 %[[VAL_176:.*]] = arith.addf %[[VAL_160]], %[[VAL_175]] : f64
// CHECK:                 scf.yield %[[VAL_176]] : f64
// CHECK:               } else {
// CHECK:                 %[[VAL_177:.*]] = arith.cmpi eq, %[[VAL_161]], %[[VAL_164]] : index
// CHECK:                 %[[VAL_178:.*]] = scf.if %[[VAL_177]] -> (f64) {
// CHECK:                   %[[VAL_179:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_158]]] : memref<?xf64>
// CHECK:                   %[[VAL_180:.*]] = arith.addf %[[VAL_160]], %[[VAL_179]] : f64
// CHECK:                   scf.yield %[[VAL_180]] : f64
// CHECK:                 } else {
// CHECK:                   scf.yield %[[VAL_160]] : f64
// CHECK:                 }
// CHECK:                 scf.yield %[[VAL_181:.*]] : f64
// CHECK:               }
// CHECK:               scf.yield %[[VAL_182:.*]] : f64
// CHECK:             }
// CHECK:             %[[VAL_183:.*]] = arith.cmpi eq, %[[VAL_161]], %[[VAL_164]] : index
// CHECK:             %[[VAL_184:.*]] = arith.addi %[[VAL_158]], %[[VAL_5]] : index
// CHECK:             %[[VAL_185:.*]] = arith.select %[[VAL_183]], %[[VAL_184]], %[[VAL_158]] : index
// CHECK:             %[[VAL_186:.*]] = arith.cmpi eq, %[[VAL_162]], %[[VAL_164]] : index
// CHECK:             %[[VAL_187:.*]] = arith.addi %[[VAL_159]], %[[VAL_5]] : index
// CHECK:             %[[VAL_188:.*]] = arith.select %[[VAL_186]], %[[VAL_187]], %[[VAL_159]] : index
// CHECK:             scf.yield %[[VAL_185]], %[[VAL_188]], %[[VAL_189:.*]] : index, index, f64
// CHECK:           }
// CHECK:           %[[VAL_190:.*]] = scf.for %[[VAL_191:.*]] = %[[VAL_192:.*]]#1 to %[[VAL_23]] step %[[VAL_5]] iter_args(%[[VAL_193:.*]] = %[[VAL_192]]#2) -> (f64) {
// CHECK:             %[[VAL_194:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_191]]] : memref<?xf64>
// CHECK:             %[[VAL_195:.*]] = arith.addf %[[VAL_193]], %[[VAL_194]] : f64
// CHECK:             scf.yield %[[VAL_195]] : f64
// CHECK:           }
// CHECK:           %[[VAL_196:.*]]:3 = scf.while (%[[VAL_197:.*]] = %[[VAL_198:.*]]#0, %[[VAL_199:.*]] = %[[VAL_200:.*]]#0, %[[VAL_201:.*]] = %[[VAL_202:.*]]) : (index, index, f64) -> (index, index, f64) {
// CHECK:             %[[VAL_203:.*]] = arith.cmpi ult, %[[VAL_197]], %[[VAL_19]] : index
// CHECK:             %[[VAL_204:.*]] = arith.cmpi ult, %[[VAL_199]], %[[VAL_21]] : index
// CHECK:             %[[VAL_205:.*]] = arith.andi %[[VAL_203]], %[[VAL_204]] : i1
// CHECK:             scf.condition(%[[VAL_205]]) %[[VAL_197]], %[[VAL_199]], %[[VAL_201]] : index, index, f64
// CHECK:           } do {
// CHECK:           ^bb0(%[[VAL_206:.*]]: index, %[[VAL_207:.*]]: index, %[[VAL_208:.*]]: f64):
// CHECK:             %[[VAL_209:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_206]]] : memref<?xindex>
// CHECK:             %[[VAL_210:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_207]]] : memref<?xindex>
// CHECK:             %[[VAL_211:.*]] = arith.cmpi ult, %[[VAL_210]], %[[VAL_209]] : index
// CHECK:             %[[VAL_212:.*]] = arith.select %[[VAL_211]], %[[VAL_210]], %[[VAL_209]] : index
// CHECK:             %[[VAL_213:.*]] = arith.cmpi eq, %[[VAL_209]], %[[VAL_212]] : index
// CHECK:             %[[VAL_214:.*]] = arith.cmpi eq, %[[VAL_210]], %[[VAL_212]] : index
// CHECK:             %[[VAL_215:.*]] = arith.andi %[[VAL_213]], %[[VAL_214]] : i1
// CHECK:             %[[VAL_216:.*]] = scf.if %[[VAL_215]] -> (f64) {
// CHECK:               %[[VAL_217:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_206]]] : memref<?xf64>
// CHECK:               %[[VAL_218:.*]] = arith.addf %[[VAL_208]], %[[VAL_217]] : f64
// CHECK:               %[[VAL_219:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_207]]] : memref<?xf64>
// CHECK:               %[[VAL_220:.*]] = arith.addf %[[VAL_218]], %[[VAL_219]] : f64
// CHECK:               scf.yield %[[VAL_220]] : f64
// CHECK:             } else {
// CHECK:               %[[VAL_221:.*]] = arith.cmpi eq, %[[VAL_210]], %[[VAL_212]] : index
// CHECK:               %[[VAL_222:.*]] = scf.if %[[VAL_221]] -> (f64) {
// CHECK:                 %[[VAL_223:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_207]]] : memref<?xf64>
// CHECK:                 %[[VAL_224:.*]] = arith.addf %[[VAL_208]], %[[VAL_223]] : f64
// CHECK:                 scf.yield %[[VAL_224]] : f64
// CHECK:               } else {
// CHECK:                 %[[VAL_225:.*]] = arith.cmpi eq, %[[VAL_209]], %[[VAL_212]] : index
// CHECK:                 %[[VAL_226:.*]] = scf.if %[[VAL_225]] -> (f64) {
// CHECK:                   %[[VAL_227:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_206]]] : memref<?xf64>
// CHECK:                   %[[VAL_228:.*]] = arith.addf %[[VAL_208]], %[[VAL_227]] : f64
// CHECK:                   scf.yield %[[VAL_228]] : f64
// CHECK:                 } else {
// CHECK:                   scf.yield %[[VAL_208]] : f64
// CHECK:                 }
// CHECK:                 scf.yield %[[VAL_229:.*]] : f64
// CHECK:               }
// CHECK:               scf.yield %[[VAL_230:.*]] : f64
// CHECK:             }
// CHECK:             %[[VAL_231:.*]] = arith.cmpi eq, %[[VAL_209]], %[[VAL_212]] : index
// CHECK:             %[[VAL_232:.*]] = arith.addi %[[VAL_206]], %[[VAL_5]] : index
// CHECK:             %[[VAL_233:.*]] = arith.select %[[VAL_231]], %[[VAL_232]], %[[VAL_206]] : index
// CHECK:             %[[VAL_234:.*]] = arith.cmpi eq, %[[VAL_210]], %[[VAL_212]] : index
// CHECK:             %[[VAL_235:.*]] = arith.addi %[[VAL_207]], %[[VAL_5]] : index
// CHECK:             %[[VAL_236:.*]] = arith.select %[[VAL_234]], %[[VAL_235]], %[[VAL_207]] : index
// CHECK:             scf.yield %[[VAL_233]], %[[VAL_236]], %[[VAL_237:.*]] : index, index, f64
// CHECK:           }
// CHECK:           %[[VAL_238:.*]] = scf.for %[[VAL_239:.*]] = %[[VAL_240:.*]]#1 to %[[VAL_21]] step %[[VAL_5]] iter_args(%[[VAL_241:.*]] = %[[VAL_240]]#2) -> (f64) {
// CHECK:             %[[VAL_242:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_239]]] : memref<?xf64>
// CHECK:             %[[VAL_243:.*]] = arith.addf %[[VAL_241]], %[[VAL_242]] : f64
// CHECK:             scf.yield %[[VAL_243]] : f64
// CHECK:           }
// CHECK:           %[[VAL_244:.*]] = scf.for %[[VAL_245:.*]] = %[[VAL_246:.*]]#0 to %[[VAL_19]] step %[[VAL_5]] iter_args(%[[VAL_247:.*]] = %[[VAL_248:.*]]) -> (f64) {
// CHECK:             %[[VAL_249:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_245]]] : memref<?xf64>
// CHECK:             %[[VAL_250:.*]] = arith.addf %[[VAL_247]], %[[VAL_249]] : f64
// CHECK:             scf.yield %[[VAL_250]] : f64
// CHECK:           }
// CHECK:           memref.store %[[VAL_251:.*]], %[[VAL_15]][] : memref<f64>
// CHECK:           %[[VAL_252:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<f64>
// CHECK:           return %[[VAL_252]] : tensor<f64>
// CHECK:         }
func.func @red3s(%arga: tensor<?xf64, #SV>,
            %argb: tensor<?xf64, #SV>,
	    %argc: tensor<?xf64, #SV>, %argx: tensor<f64>) ->tensor<f64>{
 %0 = linalg.generic #trait_red3s
   ins(%arga, %argb, %argc: tensor<?xf64, #SV>, tensor<?xf64, #SV>, tensor<?xf64, #SV>)
   outs(%argx: tensor<f64>) {
     ^bb(%a: f64,%b: f64,%c: f64,%x: f64):
        %0 = arith.addf %x, %a : f64
        %1 = arith.addf %0, %b : f64
        %2 = arith.addf %1, %c : f64
      linalg.yield %2 : f64
    } -> tensor<f64>
  return %0 : tensor<f64>
}