1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  
     | 
    
      // RUN: mlir-opt %s -sparsification | FileCheck %s --check-prefix=CHECK-HIR
//
// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion --cse | \
// RUN: FileCheck %s --check-prefix=CHECK-MIR
//
// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion --cse \
// RUN: --func-bufferize --arith-bufferize           \
// RUN: --tensor-bufferize --finalizing-bufferize |  \
// RUN: FileCheck %s --check-prefix=CHECK-LIR
#CSC = #sparse_tensor.encoding<{
  lvlTypes = [ "dense", "compressed" ],
  dimToLvl = affine_map<(i,j) -> (j,i)>
}>
#trait_matvec = {
  indexing_maps = [
    affine_map<(i,j) -> (i,j)>,  // A
    affine_map<(i,j) -> (j)>,    // b
    affine_map<(i,j) -> (i)>     // x (out)
  ],
  iterator_types = ["parallel","reduction"],
  doc = "x(i) += A(i,j) * b(j)"
}
// CHECK-HIR-LABEL:   func @matvec(
// CHECK-HIR-SAME:                 %[[VAL_0:.*]]: tensor<32x64xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimToLvl = affine_map<(d0, d1) -> (d1, d0)> }>>,
// CHECK-HIR-SAME:                 %[[VAL_1:.*]]: tensor<64xf64>,
// CHECK-HIR-SAME:                 %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> {
// CHECK-HIR-DAG:       %[[VAL_3:.*]] = arith.constant 64 : index
// CHECK-HIR-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-HIR-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-HIR-DAG:       %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<32x64xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimToLvl = affine_map<(d0, d1) -> (d1, d0)> }>> to memref<?xindex>
// CHECK-HIR-DAG:       %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<32x64xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimToLvl = affine_map<(d0, d1) -> (d1, d0)> }>> to memref<?xindex>
// CHECK-HIR-DAG:       %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x64xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimToLvl = affine_map<(d0, d1) -> (d1, d0)> }>> to memref<?xf64>
// CHECK-HIR-DAG:       %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64>
// CHECK-HIR-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64>
// CHECK-HIR:           scf.for %[[VAL_12:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
// CHECK-HIR-DAG:         %[[VAL_13:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_12]]] : memref<64xf64>
// CHECK-HIR-DAG:         %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref<?xindex>
// CHECK-HIR-DAG:         %[[VAL_15:.*]] = arith.addi %[[VAL_12]], %[[VAL_5]] : index
// CHECK-HIR-DAG:         %[[VAL_16:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_15]]] : memref<?xindex>
// CHECK-HIR:             scf.for %[[VAL_17:.*]] = %[[VAL_14]] to %[[VAL_16]] step %[[VAL_5]] {
// CHECK-HIR-DAG:           %[[VAL_18:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_17]]] : memref<?xindex>
// CHECK-HIR-DAG:           %[[VAL_19:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_18]]] : memref<32xf64>
// CHECK-HIR-DAG:           %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_17]]] : memref<?xf64>
// CHECK-HIR:               %[[VAL_21:.*]] = arith.mulf %[[VAL_20]], %[[VAL_13]] : f64
// CHECK-HIR:               %[[VAL_22:.*]] = arith.addf %[[VAL_19]], %[[VAL_21]] : f64
// CHECK-HIR:               memref.store %[[VAL_22]], %[[VAL_11]]{{\[}}%[[VAL_18]]] : memref<32xf64>
// CHECK-HIR:             }
// CHECK-HIR:           }
// CHECK-HIR:           %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64>
// CHECK-HIR:           return %[[VAL_23]] : tensor<32xf64>
// CHECK-HIR:         }
// CHECK-MIR-LABEL:   func @matvec(
// CHECK-MIR-SAME:                 %[[VAL_0:.*]]: !llvm.ptr<i8>,
// CHECK-MIR-SAME:                 %[[VAL_1:.*]]: tensor<64xf64>,
// CHECK-MIR-SAME:                 %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> {
// CHECK-MIR-DAG:       %[[VAL_3:.*]] = arith.constant 64 : index
// CHECK-MIR-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-MIR-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK-MIR-DAG:       %[[VAL_7:.*]] = call @sparsePositions0(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr<i8>, index) -> memref<?xindex>
// CHECK-MIR-DAG:       %[[VAL_8:.*]] = call @sparseCoordinates0(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr<i8>, index) -> memref<?xindex>
// CHECK-MIR-DAG:       %[[VAL_9:.*]] = call @sparseValuesF64(%[[VAL_0]]) : (!llvm.ptr<i8>) -> memref<?xf64>
// CHECK-MIR-DAG:       %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64>
// CHECK-MIR-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64>
// CHECK-MIR:           scf.for %[[VAL_15:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
// CHECK-MIR:             %[[VAL_16:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_15]]] : memref<64xf64>
// CHECK-MIR:             %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_15]]] : memref<?xindex>
// CHECK-MIR:             %[[VAL_18:.*]] = arith.addi %[[VAL_15]], %[[VAL_6]] : index
// CHECK-MIR:             %[[VAL_19:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_18]]] : memref<?xindex>
// CHECK-MIR:             scf.for %[[VAL_20:.*]] = %[[VAL_17]] to %[[VAL_19]] step %[[VAL_6]] {
// CHECK-MIR:               %[[VAL_21:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_20]]] : memref<?xindex>
// CHECK-MIR:               %[[VAL_22:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_21]]] : memref<32xf64>
// CHECK-MIR:               %[[VAL_23:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_20]]] : memref<?xf64>
// CHECK-MIR:               %[[VAL_24:.*]] = arith.mulf %[[VAL_23]], %[[VAL_16]] : f64
// CHECK-MIR:               %[[VAL_25:.*]] = arith.addf %[[VAL_22]], %[[VAL_24]] : f64
// CHECK-MIR:               memref.store %[[VAL_25]], %[[VAL_12]]{{\[}}%[[VAL_21]]] : memref<32xf64>
// CHECK-MIR:             }
// CHECK-MIR:           }
// CHECK-MIR:           %[[VAL_26:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf64>
// CHECK-MIR:           return %[[VAL_26]] : tensor<32xf64>
// CHECK-MIR:         }
// CHECK-LIR-LABEL:   func @matvec(
// CHECK-LIR-SAME:                 %[[VAL_0:.*]]: !llvm.ptr<i8>,
// CHECK-LIR-SAME:                 %[[VAL_1:.*]]: memref<64xf64>,
// CHECK-LIR-SAME:                 %[[VAL_2:.*]]: memref<32xf64>) -> memref<32xf64> {
// CHECK-LIR-DAG:       %[[VAL_3:.*]] = arith.constant 64 : index
// CHECK-LIR-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-LIR-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK-LIR-DAG:       %[[VAL_7:.*]] = call @sparsePositions0(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr<i8>, index) -> memref<?xindex>
// CHECK-LIR-DAG:       %[[VAL_8:.*]] = call @sparseCoordinates0(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr<i8>, index) -> memref<?xindex>
// CHECK-LIR-DAG:       %[[VAL_9:.*]] = call @sparseValuesF64(%[[VAL_0]]) : (!llvm.ptr<i8>) -> memref<?xf64>
// CHECK-LIR:           scf.for %[[VAL_13:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
// CHECK-LIR:             %[[VAL_14:.*]] = memref.load %[[VAL_1]]{{\[}}%[[VAL_13]]] : memref<64xf64>
// CHECK-LIR:             %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_13]]] : memref<?xindex>
// CHECK-LIR:             %[[VAL_16:.*]] = arith.addi %[[VAL_13]], %[[VAL_6]] : index
// CHECK-LIR:             %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xindex>
// CHECK-LIR:             scf.for %[[VAL_18:.*]] = %[[VAL_15]] to %[[VAL_17]] step %[[VAL_6]] {
// CHECK-LIR:               %[[VAL_19:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex>
// CHECK-LIR:               %[[VAL_20:.*]] = memref.load %[[VAL_2]]{{\[}}%[[VAL_19]]] : memref<32xf64>
// CHECK-LIR:               %[[VAL_21:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xf64>
// CHECK-LIR:               %[[VAL_22:.*]] = arith.mulf %[[VAL_21]], %[[VAL_14]] : f64
// CHECK-LIR:               %[[VAL_23:.*]] = arith.addf %[[VAL_20]], %[[VAL_22]] : f64
// CHECK-LIR:               memref.store %[[VAL_23]], %[[VAL_2]]{{\[}}%[[VAL_19]]] : memref<32xf64>
// CHECK-LIR:             }
// CHECK-LIR:           }
// CHECK-LIR:           return %[[VAL_2]] : memref<32xf64>
// CHECK-LIR:         }
func.func @matvec(%arga: tensor<32x64xf64, #CSC>,
             %argb: tensor<64xf64>,
             %argx: tensor<32xf64>) -> tensor<32xf64> {
  %0 = linalg.generic #trait_matvec
      ins(%arga, %argb : tensor<32x64xf64, #CSC>, tensor<64xf64>)
      outs(%argx: tensor<32xf64>) {
    ^bb(%A: f64, %b: f64, %x: f64):
      %0 = arith.mulf %A, %b : f64
      %1 = arith.addf %x, %0 : f64
      linalg.yield %1 : f64
  } -> tensor<32xf64>
  return %0 : tensor<32xf64>
}
 
     |