File: fold-reassociative-reshapes.mlir

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (54 lines) | stat: -rw-r--r-- 2,710 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// RUN: mlir-opt -split-input-file -test-tensor-transform-patterns=test-reassociative-reshape-folding %s | FileCheck %s

// CHECK-LABEL: func @expand_shape_of_rank_reducing_extract(
//  CHECK-SAME:     %[[t:.*]]: tensor<?x?x?x?xf32>
//   CHECK-DAG:   %[[extract1:.*]] = tensor.extract_slice %{{.*}}[0, 0, 0, 0] [%{{.*}}, 1, 1, 5] [1, 1, 1, 1] : tensor<?x?x?x?xf32> to tensor<?x1x1x5xf32>
//   CHECK-DAG:   %[[extract2:.*]] = tensor.extract_slice %{{.*}}[0, 0, 0, 0] [%{{.*}}, 1, 1, 5] [1, 1, 1, 1] : tensor<?x?x?x?xf32> to tensor<?x1x1x5xf32>
//       CHECK:   return %[[extract1]], %[[extract2]]
func.func @expand_shape_of_rank_reducing_extract(
    %t: tensor<?x?x?x?xf32>, %idx: index)
  -> (tensor<?x1x1x5xf32>, tensor<?x1x1x5xf32>)
{
  %0 = tensor.extract_slice %t[0, 0, 0, 0][%idx, 1, 1, 5][1, 1, 1, 1]
      : tensor<?x?x?x?xf32> to tensor<?x1x5xf32>
  %1 = tensor.expand_shape %0 [[0], [1, 2], [3]]
      : tensor<?x1x5xf32> into tensor<?x1x1x5xf32>
  %2 = tensor.expand_shape %0 [[0, 1], [2], [3]]
      : tensor<?x1x5xf32> into tensor<?x1x1x5xf32>
  return %1, %2 : tensor<?x1x1x5xf32>, tensor<?x1x1x5xf32>
}

// -----

// CHECK-LABEL: func @rank_reducing_insert_of_collapse_shape(
//  CHECK-SAME:     %[[t:.*]]: tensor<?x1x1x5xf32>
//       CHECK:   %[[insert:.*]] = tensor.insert_slice %[[t]] into %{{.*}}[0, 0, 0, 0] [%{{.*}}, 1, 1, 5] [1, 1, 1, 1] : tensor<?x1x1x5xf32> into tensor<?x?x?x?xf32>
//       CHECK:   return %[[insert]]
func.func @rank_reducing_insert_of_collapse_shape(
    %t: tensor<?x1x1x5xf32>, %d: tensor<?x?x?x?xf32>, %sz: index)
  -> tensor<?x?x?x?xf32> {
  %0 = tensor.collapse_shape %t [[0, 1], [2], [3]]
      : tensor<?x1x1x5xf32> into tensor<?x1x5xf32>
  %1 = tensor.insert_slice %0 into %d[0, 0, 0, 0][%sz, 1, 1, 5][1, 1, 1, 1]
      : tensor<?x1x5xf32> into tensor<?x?x?x?xf32>
  return %1 : tensor<?x?x?x?xf32>
}

// -----

// CHECK-LABEL: func @rank_reducing_parallel_insert_of_collapse_shape(
//  CHECK-SAME:     %[[t:.*]]: tensor<?x1x1x5xf32>
//       CHECK:   tensor.parallel_insert_slice %[[t]] into %{{.*}}[0, 0, 0, 0] [%{{.*}}, 1, 1, 5] [1, 1, 1, 1] : tensor<?x1x1x5xf32> into tensor<?x?x?x?xf32>
func.func @rank_reducing_parallel_insert_of_collapse_shape(
    %t: tensor<?x1x1x5xf32>, %d: tensor<?x?x?x?xf32>, %sz: index, %thr: index)
  -> tensor<?x?x?x?xf32> {
  %0 = tensor.collapse_shape %t [[0, 1], [2], [3]]
      : tensor<?x1x1x5xf32> into tensor<?x1x5xf32>
  %1 = scf.forall (%iv) in (%thr) shared_outs(%o = %d) -> (tensor<?x?x?x?xf32>) {
    scf.forall.in_parallel {
      tensor.parallel_insert_slice %0 into %o[0, 0, 0, 0][%sz, 1, 1, 5][1, 1, 1, 1]
          : tensor<?x1x5xf32> into tensor<?x?x?x?xf32>
    }
  }
  return %1 : tensor<?x?x?x?xf32>
}