File: sparse_expand.mlir

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (102 lines) | stat: -rw-r--r-- 3,751 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE:  -e entry -entry-point-result=void  \
// DEFINE:  -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}

// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE:   --entry-function=entry_lli \
// REDEFINE:   --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE:   %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE:   --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext --dlopen=%mlir_runner_utils | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}

#CSC = #sparse_tensor.encoding<{
  lvlTypes = [ "dense", "compressed" ],
  dimToLvl = affine_map<(i,j) -> (j,i)>
}>

module {
  func.func private @printMemrefF64(%ptr : tensor<*xf64>)

  //
  // Column-wise storage forces the ijk loop to permute into jki
  // so that access pattern expansion (workspace) needs to be
  // done along dimension with size 8.
  //
  func.func @matmul(%A: tensor<8x2xf64, #CSC>,
                    %B: tensor<2x4xf64, #CSC>) -> tensor<8x4xf64, #CSC> {
    %C = bufferization.alloc_tensor() : tensor<8x4xf64, #CSC>
    %D = linalg.matmul
      ins(%A, %B: tensor<8x2xf64, #CSC>, tensor<2x4xf64, #CSC>)
         outs(%C: tensor<8x4xf64, #CSC>) -> tensor<8x4xf64, #CSC>
    return %D: tensor<8x4xf64, #CSC>
  }

  //
  // Main driver.
  //
  func.func @entry() {
    %c0 = arith.constant 0 : index
    %d1 = arith.constant -1.0 : f64

    // Initialize various dense matrices for stress testing.
    %da = arith.constant dense<[
        [ 1.1, 2.1 ],
        [ 1.2, 2.2 ],
        [ 1.3, 2.3 ],
        [ 1.4, 2.4 ],
        [ 1.5, 2.5 ],
        [ 1.6, 2.6 ],
        [ 1.7, 2.7 ],
        [ 1.8, 2.8 ]
    ]> : tensor<8x2xf64>
    %db = arith.constant dense<[
        [ 10.1, 11.1, 12.1, 13.1 ],
        [ 10.2, 11.2, 12.2, 13.2 ]
    ]> : tensor<2x4xf64>

    // Convert all these matrices to sparse format.
    %x1 = sparse_tensor.convert %da : tensor<8x2xf64> to tensor<8x2xf64, #CSC>
    %x2 = sparse_tensor.convert %db : tensor<2x4xf64> to tensor<2x4xf64, #CSC>

    // Call kernels with dense.
    %x3 = call @matmul(%x1, %x2)
       : (tensor<8x2xf64, #CSC>,
          tensor<2x4xf64, #CSC>) -> tensor<8x4xf64, #CSC>

    // CHECK:      {{\[}}[32.53,   35.73,   38.93,   42.13],
    // CHECK-NEXT: [34.56,   37.96,   41.36,   44.76],
    // CHECK-NEXT: [36.59,   40.19,   43.79,   47.39],
    // CHECK-NEXT: [38.62,   42.42,   46.22,   50.02],
    // CHECK-NEXT: [40.65,   44.65,   48.65,   52.65],
    // CHECK-NEXT: [42.68,   46.88,   51.08,   55.28],
    // CHECK-NEXT: [44.71,   49.11,   53.51,   57.91],
    // CHECK-NEXT: [46.74,   51.34,   55.94,   60.54]]
    //
    %xc = sparse_tensor.convert %x3 : tensor<8x4xf64, #CSC> to tensor<8x4xf64>
    %xu = tensor.cast %xc : tensor<8x4xf64> to tensor<*xf64>
    call @printMemrefF64(%xu) : (tensor<*xf64>) -> ()

    // Release the resources.
    bufferization.dealloc_tensor %x1 : tensor<8x2xf64, #CSC>
    bufferization.dealloc_tensor %x2 : tensor<2x4xf64, #CSC>
    bufferization.dealloc_tensor %x3 : tensor<8x4xf64, #CSC>

    return
  }
}