| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 
 | // DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = TENSOR0="%mlir_src_dir/test/Integration/data/mttkrp_b.tns"  \
// DEFINE: mlir-cpu-runner \
// DEFINE:  -e entry -entry-point-result=void  \
// DEFINE:  -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4  enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = TENSOR0="%mlir_src_dir/test/Integration/data/mttkrp_b.tns" \
// REDEFINE: %lli_host_or_aarch64_cmd \
// REDEFINE:   --entry-function=entry_lli \
// REDEFINE:   --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE:   %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE:   --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext -dlopen=%mlir_runner_utils| \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
!Filename = !llvm.ptr<i8>
#SparseTensor = #sparse_tensor.encoding<{
  lvlTypes = [ "compressed", "compressed", "compressed" ]
}>
#mttkrp = {
  indexing_maps = [
    affine_map<(i,j,k,l) -> (i,k,l)>, // B
    affine_map<(i,j,k,l) -> (k,j)>,   // C
    affine_map<(i,j,k,l) -> (l,j)>,   // D
    affine_map<(i,j,k,l) -> (i,j)>    // A (out)
  ],
  iterator_types = ["parallel", "parallel", "reduction", "reduction"],
  doc = "A(i,j) += B(i,k,l) * D(l,j) * C(k,j)"
}
//
// Integration test that lowers a kernel annotated as sparse to
// actual sparse code, initializes a matching sparse storage scheme
// from file, and runs the resulting code with the JIT compiler.
//
module {
  func.func private @printMemrefF64(%ptr : tensor<*xf64>)
  //
  // Computes Matricized Tensor Times Khatri-Rao Product (MTTKRP) kernel. See
  // http://tensor-compiler.org/docs/data_analytics/index.html.
  //
  func.func @kernel_mttkrp(%argb: tensor<?x?x?xf64, #SparseTensor>,
                           %argc: tensor<?x?xf64>,
                           %argd: tensor<?x?xf64>,
                           %arga: tensor<?x?xf64>)
                               -> tensor<?x?xf64> {
    %0 = linalg.generic #mttkrp
      ins(%argb, %argc, %argd:
            tensor<?x?x?xf64, #SparseTensor>, tensor<?x?xf64>, tensor<?x?xf64>)
      outs(%arga: tensor<?x?xf64>) {
      ^bb(%b: f64, %c: f64, %d: f64, %a: f64):
        %0 = arith.mulf %b, %c : f64
        %1 = arith.mulf %d, %0 : f64
        %2 = arith.addf %a, %1 : f64
        linalg.yield %2 : f64
    } -> tensor<?x?xf64>
    return %0 : tensor<?x?xf64>
  }
  func.func private @getTensorFilename(index) -> (!Filename)
  //
  // Main driver that reads matrix from file and calls the sparse kernel.
  //
  func.func @entry() {
    %f0 = arith.constant 0.0 : f64
    %cst0 = arith.constant 0 : index
    %cst1 = arith.constant 1 : index
    %cst2 = arith.constant 2 : index
    // Read the sparse input tensor B from a file.
    %fileName = call @getTensorFilename(%cst0) : (index) -> (!Filename)
    %b = sparse_tensor.new %fileName
          : !Filename to tensor<?x?x?xf64, #SparseTensor>
    // Get sizes from B, pick a fixed size for dim-2 of A.
    %isz = tensor.dim %b, %cst0 : tensor<?x?x?xf64, #SparseTensor>
    %jsz = arith.constant 5 : index
    %ksz = tensor.dim %b, %cst1 : tensor<?x?x?xf64, #SparseTensor>
    %lsz = tensor.dim %b, %cst2 : tensor<?x?x?xf64, #SparseTensor>
    // Initialize dense input matrix C.
    %c = tensor.generate %ksz, %jsz {
    ^bb0(%k : index, %j : index):
      %k0 = arith.muli %k, %jsz : index
      %k1 = arith.addi %k0, %j : index
      %k2 = arith.index_cast %k1 : index to i32
      %kf = arith.sitofp %k2 : i32 to f64
      tensor.yield %kf : f64
    } : tensor<?x?xf64>
    // Initialize dense input matrix D.
    %d = tensor.generate %lsz, %jsz {
    ^bb0(%l : index, %j : index):
      %k0 = arith.muli %l, %jsz : index
      %k1 = arith.addi %k0, %j : index
      %k2 = arith.index_cast %k1 : index to i32
      %kf = arith.sitofp %k2 : i32 to f64
      tensor.yield %kf : f64
    } : tensor<?x?xf64>
    // Initialize dense output matrix A.
    %a = tensor.generate %isz, %jsz {
    ^bb0(%i : index, %j: index):
      tensor.yield %f0 : f64
    } : tensor<?x?xf64>
    // Call kernel.
    %0 = call @kernel_mttkrp(%b, %c, %d, %a)
      : (tensor<?x?x?xf64, #SparseTensor>,
        tensor<?x?xf64>, tensor<?x?xf64>, tensor<?x?xf64>) -> tensor<?x?xf64>
    // Print the result for verification.
    //
    // CHECK:      {{\[}}[16075,   21930,   28505,   35800,   43815],
    // CHECK-NEXT: [10000,   14225,   19180,   24865,   31280]]
    //
    %u = tensor.cast %0: tensor<?x?xf64> to tensor<*xf64>
    call @printMemrefF64(%u) : (tensor<*xf64>) -> ()
    // Release the resources.
    bufferization.dealloc_tensor %b : tensor<?x?x?xf64, #SparseTensor>
    return
  }
}
 |