File: sparse_reduce_custom.mlir

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (191 lines) | stat: -rw-r--r-- 8,329 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE:  -e entry -entry-point-result=void  \
// DEFINE:  -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true"
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false  enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}

// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=4 reassociate-fp-reductions=true enable-index-optimizations=true enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE:   --entry-function=entry_lli \
// REDEFINE:   --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE:   %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE:   --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}

// Reduction in this file _are_ supported by the AArch64 SVE backend

#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"]}>
#CSR = #sparse_tensor.encoding<{lvlTypes = ["dense", "compressed"]}>
#CSC = #sparse_tensor.encoding<{
  lvlTypes = [ "dense", "compressed" ],
  dimToLvl = affine_map<(i,j) -> (j,i)>
}>

//
// Traits for tensor operations.
//
#trait_matmul = {
  indexing_maps = [
    affine_map<(i,j,k) -> (i,k)>, // A
    affine_map<(i,j,k) -> (k,j)>, // B
    affine_map<(i,j,k) -> (i,j)>  // C (out)
  ],
  iterator_types = ["parallel", "parallel", "reduction"],
  doc = "C(i,j) = SUM_k A(i,k) * B(k,j)"
}

module {
  func.func @min_plus_csrcsr(%arga: tensor<?x?xf64, #CSR>,
                             %argb: tensor<?x?xf64, #CSR>) -> tensor<?x?xf64, #CSR> {
    %c0 = arith.constant 0 : index
    %c1 = arith.constant 1 : index
    %maxf = arith.constant 1.0e999 : f64
    %d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #CSR>
    %d1 = tensor.dim %argb, %c1 : tensor<?x?xf64, #CSR>
    %xm = bufferization.alloc_tensor(%d0, %d1) : tensor<?x?xf64, #CSR>
    %0 = linalg.generic #trait_matmul
       ins(%arga, %argb: tensor<?x?xf64, #CSR>, tensor<?x?xf64, #CSR>)
        outs(%xm: tensor<?x?xf64, #CSR>) {
        ^bb(%a: f64, %b: f64, %output: f64):
          %1 = sparse_tensor.binary %a, %b : f64, f64 to f64
            overlap = {
              ^bb0(%x: f64, %y: f64):
                %3 = arith.addf %x, %y : f64
                sparse_tensor.yield %3 : f64
            }
            left={}
            right={}
          %2 = sparse_tensor.reduce %1, %output, %maxf : f64 {
              ^bb0(%x: f64, %y: f64):
                %cmp = arith.cmpf "olt", %x, %y : f64
                %3 = arith.select %cmp, %x, %y : f64
                sparse_tensor.yield %3 : f64
            }
          linalg.yield %2 : f64
    } -> tensor<?x?xf64, #CSR>
    return %0 : tensor<?x?xf64, #CSR>
  }

  func.func @min_plus_csrcsc(%arga: tensor<?x?xf64, #CSR>,
                             %argb: tensor<?x?xf64, #CSC>) -> tensor<?x?xf64, #CSR> {
    %c0 = arith.constant 0 : index
    %c1 = arith.constant 1 : index
    %maxf = arith.constant 1.0e999 : f64
    %d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #CSR>
    %d1 = tensor.dim %argb, %c1 : tensor<?x?xf64, #CSC>
    %xm = bufferization.alloc_tensor(%d0, %d1) : tensor<?x?xf64, #CSR>
    %0 = linalg.generic #trait_matmul
       ins(%arga, %argb: tensor<?x?xf64, #CSR>, tensor<?x?xf64, #CSC>)
        outs(%xm: tensor<?x?xf64, #CSR>) {
        ^bb(%a: f64, %b: f64, %output: f64):
          %1 = sparse_tensor.binary %a, %b : f64, f64 to f64
            overlap = {
              ^bb0(%x: f64, %y: f64):
                %3 = arith.addf %x, %y : f64
                sparse_tensor.yield %3 : f64
            }
            left={}
            right={}
          %2 = sparse_tensor.reduce %1, %output, %maxf : f64 {
              ^bb0(%x: f64, %y: f64):
                %cmp = arith.cmpf "olt", %x, %y : f64
                %3 = arith.select %cmp, %x, %y : f64
                sparse_tensor.yield %3 : f64
            }
          linalg.yield %2 : f64
    } -> tensor<?x?xf64, #CSR>
    return %0 : tensor<?x?xf64, #CSR>
  }

  // Dumps a sparse vector of type f64.
  func.func @dump_vec(%arg0: tensor<?xf64, #SparseVector>) {
    // Dump the values array to verify only sparse contents are stored.
    %c0 = arith.constant 0 : index
    %d0 = arith.constant 0.0 : f64
    %0 = sparse_tensor.values %arg0 : tensor<?xf64, #SparseVector> to memref<?xf64>
    %1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<8xf64>
    vector.print %1 : vector<8xf64>
    // Dump the dense vector to verify structure is correct.
    %dv = sparse_tensor.convert %arg0 : tensor<?xf64, #SparseVector> to tensor<?xf64>
    %2 = vector.transfer_read %dv[%c0], %d0: tensor<?xf64>, vector<16xf64>
    vector.print %2 : vector<16xf64>
    return
  }

  // Dump a sparse matrix.
  func.func @dump_mat(%arg0: tensor<?x?xf64, #CSR>) {
    // Dump the values array to verify only sparse contents are stored.
    %c0 = arith.constant 0 : index
    %d0 = arith.constant 0.0 : f64
    %0 = sparse_tensor.values %arg0 : tensor<?x?xf64, #CSR> to memref<?xf64>
    %1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<16xf64>
    vector.print %1 : vector<16xf64>
    %dm = sparse_tensor.convert %arg0 : tensor<?x?xf64, #CSR> to tensor<?x?xf64>
    %2 = vector.transfer_read %dm[%c0, %c0], %d0: tensor<?x?xf64>, vector<5x5xf64>
    vector.print %2 : vector<5x5xf64>
    return
  }

  // Driver method to call and verify vector kernels.
  func.func @entry() {
    %c0 = arith.constant 0 : index

    // Setup sparse matrices.
    %m1 = arith.constant sparse<
       [ [0,0], [0,1], [1,0], [2,2], [2,3], [2,4], [3,0], [3,2], [3,3] ],
         [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ]
    > : tensor<4x5xf64>
    %m2 = arith.constant sparse<
       [ [0,0], [1,3], [2,0], [2,3], [3,1], [4,1] ],
         [6.0, 5.0, 4.0, 3.0, 2.0, 11.0 ]
    > : tensor<5x4xf64>
    %sm1 = sparse_tensor.convert %m1 : tensor<4x5xf64> to tensor<?x?xf64, #CSR>
    %sm2r = sparse_tensor.convert %m2 : tensor<5x4xf64> to tensor<?x?xf64, #CSR>
    %sm2c = sparse_tensor.convert %m2 : tensor<5x4xf64> to tensor<?x?xf64, #CSC>

    // Call sparse matrix kernels.
    %5 = call @min_plus_csrcsr(%sm1, %sm2r)
      : (tensor<?x?xf64, #CSR>, tensor<?x?xf64, #CSR>) -> tensor<?x?xf64, #CSR>
    %6 = call @min_plus_csrcsc(%sm1, %sm2c)
      : (tensor<?x?xf64, #CSR>, tensor<?x?xf64, #CSC>) -> tensor<?x?xf64, #CSR>

    //
    // Verify the results.
    //
    // CHECK:      ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0 )
    // CHECK-NEXT: ( ( 1, 2, 0, 0, 0 ), ( 3, 0, 0, 0, 0 ), ( 0, 0, 4, 5, 6 ), ( 7, 0, 8, 9, 0 ), ( 0, 0, 0, 0, 0 ) )
    // CHECK-NEXT: ( 6, 5, 4, 3, 2, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
    // CHECK-NEXT: ( ( 6, 0, 0, 0, 0 ), ( 0, 0, 0, 5, 0 ), ( 4, 0, 0, 3, 0 ), ( 0, 2, 0, 0, 0 ), ( 0, 11, 0, 0, 0 ) )
    // CHECK-NEXT: ( 7, 7, 9, 8, 7, 7, 12, 11, 11, 0, 0, 0, 0, 0, 0, 0 )
    // CHECK-NEXT: ( ( 7, 0, 0, 7, 0 ), ( 9, 0, 0, 0, 0 ), ( 8, 7, 0, 7, 0 ), ( 12, 11, 0, 11, 0 ), ( 0, 0, 0, 0, 0 ) )
    // CHECK-NEXT: ( 7, 7, 9, 8, 7, 7, 12, 11, 11, 0, 0, 0, 0, 0, 0, 0 )
    // CHECK-NEXT: ( ( 7, 0, 0, 7, 0 ), ( 9, 0, 0, 0, 0 ), ( 8, 7, 0, 7, 0 ), ( 12, 11, 0, 11, 0 ), ( 0, 0, 0, 0, 0 ) )
    //
    call @dump_mat(%sm1) : (tensor<?x?xf64, #CSR>) -> ()
    call @dump_mat(%sm2r) : (tensor<?x?xf64, #CSR>) -> ()
    call @dump_mat(%5) : (tensor<?x?xf64, #CSR>) -> ()
    call @dump_mat(%6) : (tensor<?x?xf64, #CSR>) -> ()

    // Release the resources.
    bufferization.dealloc_tensor %sm1 : tensor<?x?xf64, #CSR>
    bufferization.dealloc_tensor %sm2r : tensor<?x?xf64, #CSR>
    bufferization.dealloc_tensor %sm2c : tensor<?x?xf64, #CSC>
    bufferization.dealloc_tensor %5 : tensor<?x?xf64, #CSR>
    bufferization.dealloc_tensor %6 : tensor<?x?xf64, #CSR>
    return
  }
}