1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true"
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=4 reassociate-fp-reductions=true enable-index-optimizations=true enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
// Reduction in this file _are_ supported by the AArch64 SVE backend
#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"]}>
#CSR = #sparse_tensor.encoding<{lvlTypes = ["dense", "compressed"]}>
#CSC = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed" ],
dimToLvl = affine_map<(i,j) -> (j,i)>
}>
//
// Traits for tensor operations.
//
#trait_matmul = {
indexing_maps = [
affine_map<(i,j,k) -> (i,k)>, // A
affine_map<(i,j,k) -> (k,j)>, // B
affine_map<(i,j,k) -> (i,j)> // C (out)
],
iterator_types = ["parallel", "parallel", "reduction"],
doc = "C(i,j) = SUM_k A(i,k) * B(k,j)"
}
module {
func.func @min_plus_csrcsr(%arga: tensor<?x?xf64, #CSR>,
%argb: tensor<?x?xf64, #CSR>) -> tensor<?x?xf64, #CSR> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%maxf = arith.constant 1.0e999 : f64
%d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #CSR>
%d1 = tensor.dim %argb, %c1 : tensor<?x?xf64, #CSR>
%xm = bufferization.alloc_tensor(%d0, %d1) : tensor<?x?xf64, #CSR>
%0 = linalg.generic #trait_matmul
ins(%arga, %argb: tensor<?x?xf64, #CSR>, tensor<?x?xf64, #CSR>)
outs(%xm: tensor<?x?xf64, #CSR>) {
^bb(%a: f64, %b: f64, %output: f64):
%1 = sparse_tensor.binary %a, %b : f64, f64 to f64
overlap = {
^bb0(%x: f64, %y: f64):
%3 = arith.addf %x, %y : f64
sparse_tensor.yield %3 : f64
}
left={}
right={}
%2 = sparse_tensor.reduce %1, %output, %maxf : f64 {
^bb0(%x: f64, %y: f64):
%cmp = arith.cmpf "olt", %x, %y : f64
%3 = arith.select %cmp, %x, %y : f64
sparse_tensor.yield %3 : f64
}
linalg.yield %2 : f64
} -> tensor<?x?xf64, #CSR>
return %0 : tensor<?x?xf64, #CSR>
}
func.func @min_plus_csrcsc(%arga: tensor<?x?xf64, #CSR>,
%argb: tensor<?x?xf64, #CSC>) -> tensor<?x?xf64, #CSR> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%maxf = arith.constant 1.0e999 : f64
%d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #CSR>
%d1 = tensor.dim %argb, %c1 : tensor<?x?xf64, #CSC>
%xm = bufferization.alloc_tensor(%d0, %d1) : tensor<?x?xf64, #CSR>
%0 = linalg.generic #trait_matmul
ins(%arga, %argb: tensor<?x?xf64, #CSR>, tensor<?x?xf64, #CSC>)
outs(%xm: tensor<?x?xf64, #CSR>) {
^bb(%a: f64, %b: f64, %output: f64):
%1 = sparse_tensor.binary %a, %b : f64, f64 to f64
overlap = {
^bb0(%x: f64, %y: f64):
%3 = arith.addf %x, %y : f64
sparse_tensor.yield %3 : f64
}
left={}
right={}
%2 = sparse_tensor.reduce %1, %output, %maxf : f64 {
^bb0(%x: f64, %y: f64):
%cmp = arith.cmpf "olt", %x, %y : f64
%3 = arith.select %cmp, %x, %y : f64
sparse_tensor.yield %3 : f64
}
linalg.yield %2 : f64
} -> tensor<?x?xf64, #CSR>
return %0 : tensor<?x?xf64, #CSR>
}
// Dumps a sparse vector of type f64.
func.func @dump_vec(%arg0: tensor<?xf64, #SparseVector>) {
// Dump the values array to verify only sparse contents are stored.
%c0 = arith.constant 0 : index
%d0 = arith.constant 0.0 : f64
%0 = sparse_tensor.values %arg0 : tensor<?xf64, #SparseVector> to memref<?xf64>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<8xf64>
vector.print %1 : vector<8xf64>
// Dump the dense vector to verify structure is correct.
%dv = sparse_tensor.convert %arg0 : tensor<?xf64, #SparseVector> to tensor<?xf64>
%2 = vector.transfer_read %dv[%c0], %d0: tensor<?xf64>, vector<16xf64>
vector.print %2 : vector<16xf64>
return
}
// Dump a sparse matrix.
func.func @dump_mat(%arg0: tensor<?x?xf64, #CSR>) {
// Dump the values array to verify only sparse contents are stored.
%c0 = arith.constant 0 : index
%d0 = arith.constant 0.0 : f64
%0 = sparse_tensor.values %arg0 : tensor<?x?xf64, #CSR> to memref<?xf64>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<16xf64>
vector.print %1 : vector<16xf64>
%dm = sparse_tensor.convert %arg0 : tensor<?x?xf64, #CSR> to tensor<?x?xf64>
%2 = vector.transfer_read %dm[%c0, %c0], %d0: tensor<?x?xf64>, vector<5x5xf64>
vector.print %2 : vector<5x5xf64>
return
}
// Driver method to call and verify vector kernels.
func.func @entry() {
%c0 = arith.constant 0 : index
// Setup sparse matrices.
%m1 = arith.constant sparse<
[ [0,0], [0,1], [1,0], [2,2], [2,3], [2,4], [3,0], [3,2], [3,3] ],
[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ]
> : tensor<4x5xf64>
%m2 = arith.constant sparse<
[ [0,0], [1,3], [2,0], [2,3], [3,1], [4,1] ],
[6.0, 5.0, 4.0, 3.0, 2.0, 11.0 ]
> : tensor<5x4xf64>
%sm1 = sparse_tensor.convert %m1 : tensor<4x5xf64> to tensor<?x?xf64, #CSR>
%sm2r = sparse_tensor.convert %m2 : tensor<5x4xf64> to tensor<?x?xf64, #CSR>
%sm2c = sparse_tensor.convert %m2 : tensor<5x4xf64> to tensor<?x?xf64, #CSC>
// Call sparse matrix kernels.
%5 = call @min_plus_csrcsr(%sm1, %sm2r)
: (tensor<?x?xf64, #CSR>, tensor<?x?xf64, #CSR>) -> tensor<?x?xf64, #CSR>
%6 = call @min_plus_csrcsc(%sm1, %sm2c)
: (tensor<?x?xf64, #CSR>, tensor<?x?xf64, #CSC>) -> tensor<?x?xf64, #CSR>
//
// Verify the results.
//
// CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 1, 2, 0, 0, 0 ), ( 3, 0, 0, 0, 0 ), ( 0, 0, 4, 5, 6 ), ( 7, 0, 8, 9, 0 ), ( 0, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( 6, 5, 4, 3, 2, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 6, 0, 0, 0, 0 ), ( 0, 0, 0, 5, 0 ), ( 4, 0, 0, 3, 0 ), ( 0, 2, 0, 0, 0 ), ( 0, 11, 0, 0, 0 ) )
// CHECK-NEXT: ( 7, 7, 9, 8, 7, 7, 12, 11, 11, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 7, 0, 0, 7, 0 ), ( 9, 0, 0, 0, 0 ), ( 8, 7, 0, 7, 0 ), ( 12, 11, 0, 11, 0 ), ( 0, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( 7, 7, 9, 8, 7, 7, 12, 11, 11, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 7, 0, 0, 7, 0 ), ( 9, 0, 0, 0, 0 ), ( 8, 7, 0, 7, 0 ), ( 12, 11, 0, 11, 0 ), ( 0, 0, 0, 0, 0 ) )
//
call @dump_mat(%sm1) : (tensor<?x?xf64, #CSR>) -> ()
call @dump_mat(%sm2r) : (tensor<?x?xf64, #CSR>) -> ()
call @dump_mat(%5) : (tensor<?x?xf64, #CSR>) -> ()
call @dump_mat(%6) : (tensor<?x?xf64, #CSR>) -> ()
// Release the resources.
bufferization.dealloc_tensor %sm1 : tensor<?x?xf64, #CSR>
bufferization.dealloc_tensor %sm2r : tensor<?x?xf64, #CSR>
bufferization.dealloc_tensor %sm2c : tensor<?x?xf64, #CSC>
bufferization.dealloc_tensor %5 : tensor<?x?xf64, #CSR>
bufferization.dealloc_tensor %6 : tensor<?x?xf64, #CSR>
return
}
}
|