1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \
// DEFINE: mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{command}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{command}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{command}
#SV = #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>
#trait_reduction = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> ()> // x (scalar out)
],
iterator_types = ["reduction"],
doc = "x += SUM_CUSTOM_i UNARY a(i)"
}
// Test of unary op feeding into custom sum reduction.
module {
// Contrived example for stress testing, where neither branch feeds
// a value into a subsequent custom sum reduction. The code should
// be folded into the initial value 1.
func.func @red0(%arga: tensor<8xi32, #SV>, %argx: tensor<i32>) -> tensor<i32> {
%c1 = arith.constant 1 : i32
%0 = linalg.generic #trait_reduction
ins(%arga: tensor<8xi32, #SV>)
outs(%argx: tensor<i32>) {
^bb(%a: i32, %b: i32):
%u = sparse_tensor.unary %a : i32 to i32
present={ }
absent={ }
%r = sparse_tensor.reduce %u, %b, %c1 : i32 {
^bb0(%x: i32, %y: i32):
%sum = arith.addi %x, %y : i32
sparse_tensor.yield %sum : i32
}
linalg.yield %r : i32
} -> tensor<i32>
return %0 : tensor<i32>
}
// Typical example where present branch contributes a value
// into a subsequent custom sum reduction.
func.func @red1(%arga: tensor<8xi32, #SV>, %argx: tensor<i32>) -> tensor<i32> {
%c1 = arith.constant 1 : i32
%c2 = arith.constant 2 : i32
%0 = linalg.generic #trait_reduction
ins(%arga: tensor<8xi32, #SV>)
outs(%argx: tensor<i32>) {
^bb(%a: i32, %b: i32):
%u = sparse_tensor.unary %a : i32 to i32
present={
^bb(%p: i32):
sparse_tensor.yield %c2 : i32
}
absent={ }
%r = sparse_tensor.reduce %u, %b, %c1 : i32 {
^bb0(%x: i32, %y: i32):
%sum = arith.addi %x, %y : i32
sparse_tensor.yield %sum : i32
}
linalg.yield %r : i32
} -> tensor<i32>
return %0 : tensor<i32>
}
// A complementing example where absent branch contributes a value
// into a subsequent custom sum reduction.
func.func @red2(%arga: tensor<8xi32, #SV>, %argx: tensor<i32>) -> tensor<i32> {
%c1 = arith.constant 1 : i32
%c3 = arith.constant 3 : i32
%0 = linalg.generic #trait_reduction
ins(%arga: tensor<8xi32, #SV>)
outs(%argx: tensor<i32>) {
^bb(%a: i32, %b: i32):
%u = sparse_tensor.unary %a : i32 to i32
present={ }
absent={
sparse_tensor.yield %c3 : i32
}
%r = sparse_tensor.reduce %u, %b, %c1 : i32 {
^bb0(%x: i32, %y: i32):
%sum = arith.addi %x, %y : i32
sparse_tensor.yield %sum : i32
}
linalg.yield %r : i32
} -> tensor<i32>
return %0 : tensor<i32>
}
// An example where both present and absent branch contribute values
// into a subsequent custom sum reduction.
func.func @red3(%arga: tensor<8xi32, #SV>, %argx: tensor<i32>) -> tensor<i32> {
%c1 = arith.constant 1 : i32
%c2 = arith.constant 2 : i32
%c3 = arith.constant 3 : i32
%0 = linalg.generic #trait_reduction
ins(%arga: tensor<8xi32, #SV>)
outs(%argx: tensor<i32>) {
^bb(%a: i32, %b: i32):
%u = sparse_tensor.unary %a : i32 to i32
present={
^bb(%p: i32):
sparse_tensor.yield %c2 : i32
} absent={
sparse_tensor.yield %c3 : i32
}
%r = sparse_tensor.reduce %u, %b, %c1 : i32 {
^bb0(%x: i32, %y: i32):
%sum = arith.addi %x, %y : i32
sparse_tensor.yield %sum : i32
}
linalg.yield %r : i32
} -> tensor<i32>
return %0 : tensor<i32>
}
func.func @dump_i32(%arg0 : tensor<i32>) {
%v = tensor.extract %arg0[] : tensor<i32>
vector.print %v : i32
return
}
func.func @entry() {
%ri = arith.constant dense<0> : tensor<i32>
// Sparse vector of length 8 with 2 stored elements (and thus 6 implicit zeros).
%v0 = arith.constant sparse< [ [4], [6] ], [ 99, 999 ] > : tensor<8xi32>
%s0 = sparse_tensor.convert %v0: tensor<8xi32> to tensor<8xi32, #SV>
// Call the kernels.
%0 = call @red0(%s0, %ri) : (tensor<8xi32, #SV>, tensor<i32>) -> tensor<i32>
%1 = call @red1(%s0, %ri) : (tensor<8xi32, #SV>, tensor<i32>) -> tensor<i32>
%2 = call @red2(%s0, %ri) : (tensor<8xi32, #SV>, tensor<i32>) -> tensor<i32>
%3 = call @red3(%s0, %ri) : (tensor<8xi32, #SV>, tensor<i32>) -> tensor<i32>
// Verify results.
// 1 + nothing
// 1 + 2 x present
// 1 + 3 x absent
// 1 + 2 x present + 3 x absent
//
// CHECK: 1
// CHECK: 5
// CHECK: 19
// CHECK: 23
//
call @dump_i32(%0) : (tensor<i32>) -> ()
call @dump_i32(%1) : (tensor<i32>) -> ()
call @dump_i32(%2) : (tensor<i32>) -> ()
call @dump_i32(%3) : (tensor<i32>) -> ()
// Release the resources.
bufferization.dealloc_tensor %s0 : tensor<8xi32, #SV>
return
}
}
|