1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = TENSOR0="%mlir_src_dir/test/Integration/data/test.mtx" \
// DEFINE: mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = TENSOR0="%mlir_src_dir/test/Integration/data/test.mtx" \
// REDEFINE: %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
!Filename = !llvm.ptr<i8>
#SparseMatrix = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed" ],
posWidth = 32,
crdWidth = 32
}>
#trait_sampled_dense_dense = {
indexing_maps = [
affine_map<(i,j,k) -> (i,j)>, // S
affine_map<(i,j,k) -> (i,k)>, // A
affine_map<(i,j,k) -> (k,j)>, // B
affine_map<(i,j,k) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel", "reduction"],
doc = "X(i,j) += S(i,j) SUM_k A(i,k) B(k,j)"
}
//
// Integration test that lowers a kernel annotated as sparse to
// actual sparse code, initializes a matching sparse storage scheme
// from file, and runs the resulting code with the JIT compiler.
//
module {
//
// A kernel that computes a sampled matrix matrix multiplication.
//
func.func @sampled_dense_dense(%args: tensor<?x?xf32, #SparseMatrix>,
%arga: tensor<?x?xf32>,
%argb: tensor<?x?xf32>,
%argx: tensor<?x?xf32>) -> tensor<?x?xf32> {
%0 = linalg.generic #trait_sampled_dense_dense
ins(%args, %arga, %argb: tensor<?x?xf32, #SparseMatrix>, tensor<?x?xf32>, tensor<?x?xf32>)
outs(%argx: tensor<?x?xf32>) {
^bb(%s: f32, %a: f32, %b: f32, %x: f32):
%0 = arith.mulf %a, %b : f32
%1 = arith.mulf %s, %0 : f32
%2 = arith.addf %x, %1 : f32
linalg.yield %2 : f32
} -> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
func.func private @getTensorFilename(index) -> (!Filename)
//
// Main driver that reads matrix from file and calls the sparse kernel.
//
func.func @entry() {
%d0 = arith.constant 0.0 : f32
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c5 = arith.constant 5 : index
%c10 = arith.constant 10 : index
// Initialize dense matrices.
%x = tensor.generate %c5, %c5 {
^bb0(%i : index, %j : index):
tensor.yield %d0 : f32
} : tensor<?x?xf32>
%a = tensor.generate %c5, %c10 {
^bb0(%i: index, %j: index):
%p = arith.addi %i, %c1 : index
%q = arith.index_cast %p : index to i32
%d = arith.sitofp %q : i32 to f32
tensor.yield %d : f32
} : tensor<?x?xf32>
%b = tensor.generate %c10, %c5 {
^bb0(%i: index, %j: index):
%p = arith.addi %j, %c1 : index
%q = arith.index_cast %p : index to i32
%d = arith.sitofp %q : i32 to f32
tensor.yield %d : f32
} : tensor<?x?xf32>
// Read the sparse matrix from file, construct sparse storage.
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
%s = sparse_tensor.new %fileName : !Filename to tensor<?x?xf32, #SparseMatrix>
// Call the kernel.
%0 = call @sampled_dense_dense(%s, %a, %b, %x)
: (tensor<?x?xf32, #SparseMatrix>,
tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
// Print the result for verification.
//
// CHECK: ( 10, 0, 0, 56, 0 )
// CHECK: ( 0, 80, 0, 0, 250 )
// CHECK: ( 0, 0, 270, 0, 0 )
// CHECK: ( 164, 0, 0, 640, 0 )
// CHECK: ( 0, 520, 0, 0, 1250 )
//
scf.for %i = %c0 to %c5 step %c1 {
%v = vector.transfer_read %0[%i, %c0], %d0: tensor<?x?xf32>, vector<5xf32>
vector.print %v : vector<5xf32>
}
// Release the resources.
bufferization.dealloc_tensor %s : tensor<?x?xf32, #SparseMatrix>
return
}
}
|