File: sparse_select.mlir

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (166 lines) | stat: -rw-r--r-- 6,728 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE:  -e entry -entry-point-result=void  \
// DEFINE:  -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true"
// RUN: %{compile} | %{run}

// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE:   --entry-function=entry_lli \
// REDEFINE:   --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE:   %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE:   --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}

#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"]}>
#CSR = #sparse_tensor.encoding<{lvlTypes = ["dense", "compressed"]}>
#CSC = #sparse_tensor.encoding<{
  lvlTypes = [ "dense", "compressed" ],
  dimToLvl = affine_map<(i,j) -> (j,i)>
}>

//
// Traits for tensor operations.
//
#trait_vec_select = {
  indexing_maps = [
    affine_map<(i) -> (i)>, // A
    affine_map<(i) -> (i)>  // C (out)
  ],
  iterator_types = ["parallel"]
}

#trait_mat_select = {
  indexing_maps = [
    affine_map<(i,j) -> (i,j)>,  // A (in)
    affine_map<(i,j) -> (i,j)>   // X (out)
  ],
  iterator_types = ["parallel", "parallel"]
}

module {
  func.func @vecSelect(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector> {
    %c0 = arith.constant 0 : index
    %cf1 = arith.constant 1.0 : f64
    %d0 = tensor.dim %arga, %c0 : tensor<?xf64, #SparseVector>
    %xv = bufferization.alloc_tensor(%d0): tensor<?xf64, #SparseVector>
    %0 = linalg.generic #trait_vec_select
      ins(%arga: tensor<?xf64, #SparseVector>)
      outs(%xv: tensor<?xf64, #SparseVector>) {
        ^bb(%a: f64, %b: f64):
          %1 = sparse_tensor.select %a : f64 {
              ^bb0(%x: f64):
                %keep = arith.cmpf "oge", %x, %cf1 : f64
                sparse_tensor.yield %keep : i1
            }
          linalg.yield %1 : f64
    } -> tensor<?xf64, #SparseVector>
    return %0 : tensor<?xf64, #SparseVector>
  }

  func.func @matUpperTriangle(%arga: tensor<?x?xf64, #CSR>) -> tensor<?x?xf64, #CSR> {
    %c0 = arith.constant 0 : index
    %c1 = arith.constant 1 : index
    %d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #CSR>
    %d1 = tensor.dim %arga, %c1 : tensor<?x?xf64, #CSR>
    %xv = bufferization.alloc_tensor(%d0, %d1): tensor<?x?xf64, #CSR>
    %0 = linalg.generic #trait_mat_select
      ins(%arga: tensor<?x?xf64, #CSR>)
      outs(%xv: tensor<?x?xf64, #CSR>) {
        ^bb(%a: f64, %b: f64):
          %row = linalg.index 0 : index
          %col = linalg.index 1 : index
          %1 = sparse_tensor.select %a : f64 {
              ^bb0(%x: f64):
                %keep = arith.cmpi "ugt", %col, %row : index
                sparse_tensor.yield %keep : i1
            }
          linalg.yield %1 : f64
    } -> tensor<?x?xf64, #CSR>
    return %0 : tensor<?x?xf64, #CSR>
  }

  // Dumps a sparse vector of type f64.
  func.func @dump_vec(%arg0: tensor<?xf64, #SparseVector>) {
    // Dump the values array to verify only sparse contents are stored.
    %c0 = arith.constant 0 : index
    %d0 = arith.constant 0.0 : f64
    %0 = sparse_tensor.values %arg0 : tensor<?xf64, #SparseVector> to memref<?xf64>
    %1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<8xf64>
    vector.print %1 : vector<8xf64>
    // Dump the dense vector to verify structure is correct.
    %dv = sparse_tensor.convert %arg0 : tensor<?xf64, #SparseVector> to tensor<?xf64>
    %2 = vector.transfer_read %dv[%c0], %d0: tensor<?xf64>, vector<16xf64>
    vector.print %2 : vector<16xf64>
    return
  }

  // Dump a sparse matrix.
  func.func @dump_mat(%arg0: tensor<?x?xf64, #CSR>) {
    // Dump the values array to verify only sparse contents are stored.
    %c0 = arith.constant 0 : index
    %d0 = arith.constant 0.0 : f64
    %0 = sparse_tensor.values %arg0 : tensor<?x?xf64, #CSR> to memref<?xf64>
    %1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<16xf64>
    vector.print %1 : vector<16xf64>
    %dm = sparse_tensor.convert %arg0 : tensor<?x?xf64, #CSR> to tensor<?x?xf64>
    %2 = vector.transfer_read %dm[%c0, %c0], %d0: tensor<?x?xf64>, vector<5x5xf64>
    vector.print %2 : vector<5x5xf64>
    return
  }

  // Driver method to call and verify vector kernels.
  func.func @entry() {
    %c0 = arith.constant 0 : index

    // Setup sparse matrices.
    %v1 = arith.constant sparse<
        [ [1], [3], [5], [7], [9] ],
        [ 1.0, 2.0, -4.0, 0.0, 5.0 ]
    > : tensor<10xf64>
    %m1 = arith.constant sparse<
        [ [0, 3], [1, 4], [2, 1], [2, 3], [3, 3], [3, 4], [4, 2] ],
        [ 1., 2., 3., 4., 5., 6., 7.]
    > : tensor<5x5xf64>
    %sv1 = sparse_tensor.convert %v1 : tensor<10xf64> to tensor<?xf64, #SparseVector>
    %sm1 = sparse_tensor.convert %m1 : tensor<5x5xf64> to tensor<?x?xf64, #CSR>

    // Call sparse matrix kernels.
    %1 = call @vecSelect(%sv1) : (tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector>
    %2 = call @matUpperTriangle(%sm1) : (tensor<?x?xf64, #CSR>) -> tensor<?x?xf64, #CSR>

    //
    // Verify the results.
    //
    // CHECK:      ( 1, 2, -4, 0, 5, 0, 0, 0 )
    // CHECK-NEXT: ( 0, 1, 0, 2, 0, -4, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0 )
    // CHECK-NEXT: ( 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
    // CHECK-NEXT: ( ( 0, 0, 0, 1, 0 ), ( 0, 0, 0, 0, 2 ), ( 0, 3, 0, 4, 0 ), ( 0, 0, 0, 5, 6 ), ( 0, 0, 7, 0, 0 ) )
    // CHECK-NEXT: ( 1, 2, 5, 0, 0, 0, 0, 0 )
    // CHECK-NEXT: ( 0, 1, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0 )
    // CHECK-NEXT: ( 1, 2, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
    // CHECK-NEXT: ( ( 0, 0, 0, 1, 0 ), ( 0, 0, 0, 0, 2 ), ( 0, 0, 0, 4, 0 ), ( 0, 0, 0, 0, 6 ), ( 0, 0, 0, 0, 0 ) )
    //
    call @dump_vec(%sv1) : (tensor<?xf64, #SparseVector>) -> ()
    call @dump_mat(%sm1) : (tensor<?x?xf64, #CSR>) -> ()
    call @dump_vec(%1) : (tensor<?xf64, #SparseVector>) -> ()
    call @dump_mat(%2) : (tensor<?x?xf64, #CSR>) -> ()

    // Release the resources.
    bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
    bufferization.dealloc_tensor %sm1 : tensor<?x?xf64, #CSR>
    bufferization.dealloc_tensor %1 : tensor<?xf64, #SparseVector>
    bufferization.dealloc_tensor %2 : tensor<?x?xf64, #CSR>
    return
  }
}