File: mlir_pytaco.py

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (2279 lines) | stat: -rw-r--r-- 82,093 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
#  Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
#  See https://llvm.org/LICENSE.txt for license information.
#  SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

"""Experimental MLIR-PyTACO with sparse tensor support.

See http://tensor-compiler.org/ for TACO tensor compiler.

This module implements the Python classes for PyTACO index notation. These
include classes for data types, tensor dimension formats (aka mode formats),
tensor dimension orderings (aka mode ordering), tensor storage formats, and
tensors.

The PyTACO API doesn't follow the naming conversion required by the style guide
for this module. As such, we first implement the supporting classes and routines
following the style guide, and then define the type aliases and constants to
support the PyTACO API in the pytaco_api module.
"""

from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union

import abc
import ctypes
import dataclasses
import enum
import numpy as np
import functools
import operator
import os
import threading

# Import MLIR related modules.
from mlir import execution_engine
from mlir import ir
from mlir import runtime
from mlir.dialects import arith
from mlir.dialects import bufferization
from mlir.dialects import builtin
from mlir.dialects import func
from mlir.dialects import linalg
from mlir.dialects import sparse_tensor
from mlir.dialects import tensor
from mlir.dialects.linalg.opdsl import lang

from . import mlir_pytaco_utils as utils

# TACO naming prefixes.
_TACO_INDEX_PREFIX = "i"
_TACO_TENSOR_PREFIX = "A"

# Bitwidths for positions and coordinates.
_POS_WIDTH = 0
_CRD_WIDTH = 0
# The entry point to the JIT compiled program.
_ENTRY_NAME = "main"

# Type aliases for type annotation.
_UnaryOp = Callable[[Any], Any]
_BinaryOp = Callable[[Any, Any], Any]
_ExprVisitor = Callable[..., None]
_ExprInfoDict = Dict["IndexExpr", "_ExprInfo"]
_LogicalOp = Callable[[bool, bool], bool]
_ModeFormatOp = Callable[["ModeFormat", "ModeFormat"], "ModeFormat"]
_SubtreeLeafChecker = Optional[Callable[..., bool]]


class Type(enum.Enum):
    """The data types supported by TACO.

    We use numpy data types to implement the enum data types.
    """

    INT8 = np.int8
    INT16 = np.int16
    INT32 = np.int32
    INT64 = np.int64
    FLOAT16 = np.float16
    FLOAT32 = np.float32
    FLOAT64 = np.float64
    COMPLEX64 = np.complex64
    COMPLEX128 = np.complex128


# All floating point type enums.
_FLOAT_TYPES = (Type.FLOAT16, Type.FLOAT32, Type.FLOAT64)
# All integral type enums.
_INT_TYPES = (Type.INT8, Type.INT16, Type.INT32, Type.INT64)
# All complex type enums.
_COMPLEX_TYPES = (Type.COMPLEX64, Type.COMPLEX128)
# Type alias for any numpy type used to implement the runtime support for the
# enum data types.
_AnyRuntimeType = Union[
    np.int8,
    np.int16,
    np.int32,
    np.int64,
    np.float16,
    np.float32,
    np.float64,
    np.complex64,
    np.complex128,
]


@dataclasses.dataclass(frozen=True)
class DType:
    """The data type class.

    We support the TACO API dtype class with an alias of this class.

    The following methods are defined by the TACO API:
      is_float: Returns whether the data type represents a floating point value.
      is_int:   Returns whether the data type represents an integral value.

    Attributes:
      kind: A Type enum representing the data type.
      value: The numpy data type for the TACO data type.
    """

    kind: Type = Type.FLOAT32

    def is_float(self) -> bool:
        """Returns whether the data type represents a floating point value."""
        return self.kind in _FLOAT_TYPES

    def is_int(self) -> bool:
        """Returns whether the data type represents an integral value."""
        return self.kind in _INT_TYPES

    def is_complex(self) -> bool:
        """Returns whether the data type represents a complex value."""
        return self.kind in _COMPLEX_TYPES

    @property
    def value(self) -> _AnyRuntimeType:
        """Returns the numpy dtype for the data type."""
        return self.kind.value


def _dtype_to_mlir_str(dtype: DType) -> str:
    """Returns the MLIR string for the given dtype."""
    dtype_to_str = {
        Type.INT16: "i8",
        Type.INT16: "i16",
        Type.INT32: "i32",
        Type.INT64: "i64",
        Type.FLOAT16: "f16",
        Type.FLOAT32: "f32",
        Type.FLOAT64: "f64",
        Type.COMPLEX64: "complex<f32>",
        Type.COMPLEX128: "complex<f64>",
    }
    return dtype_to_str[dtype.kind]


def _nptype_to_taco_type(ty: np.dtype) -> DType:
    """Returns the TACO type for the given numpy type."""
    nptype_to_dtype = {
        np.int8: Type.INT8,
        np.int16: Type.INT16,
        np.int32: Type.INT32,
        np.int64: Type.INT64,
        np.float16: Type.FLOAT16,
        np.float32: Type.FLOAT32,
        np.float64: Type.FLOAT64,
        np.complex64: Type.COMPLEX64,
        np.complex128: Type.COMPLEX128,
    }
    return DType(nptype_to_dtype[ty])


def _mlir_type_from_taco_type(dtype: DType) -> ir.Type:
    """Returns the MLIR type corresponding to the given TACO type."""
    dtype_to_irtype = {
        Type.INT8: ir.IntegerType.get_signless(8),
        Type.INT16: ir.IntegerType.get_signless(16),
        Type.INT32: ir.IntegerType.get_signless(32),
        Type.INT64: ir.IntegerType.get_signless(64),
        Type.FLOAT16: ir.F16Type.get(),
        Type.FLOAT32: ir.F32Type.get(),
        Type.FLOAT64: ir.F64Type.get(),
        Type.COMPLEX64: ir.ComplexType.get(ir.F32Type.get()),
        Type.COMPLEX128: ir.ComplexType.get(ir.F64Type.get()),
    }
    return dtype_to_irtype[dtype.kind]


def _ctype_pointer_from_array(array: np.ndarray) -> ctypes.pointer:
    """Returns the ctype pointer for the given numpy array."""
    return ctypes.pointer(ctypes.pointer(runtime.get_ranked_memref_descriptor(array)))


class ModeFormat(enum.Enum):
    """The tensor dimension storage format class.

    We support the TACO API mode_format class with an alias of this class.

    In TACO, a tensor dimension is called a mode and the storage format for a
    tensor dimension is called a mode format.
    """

    DENSE = sparse_tensor.DimLevelType.dense
    COMPRESSED = sparse_tensor.DimLevelType.compressed


def _mode_format_operation(a: ModeFormat, b: ModeFormat, op: _LogicalOp) -> ModeFormat:
    """Implements the given operator on ModeFormat."""
    return (
        ModeFormat.COMPRESSED
        if op(a == ModeFormat.COMPRESSED, b == ModeFormat.COMPRESSED)
        else ModeFormat.DENSE
    )


def _mode_format_estimator(op: _BinaryOp) -> _ModeFormatOp:
    """Produces a ModeFormat operator for the given binary operator.

    The ModeFormat operator is used as a heuristic to derive the destination
    dimension sparsity from the source dimension sparsity. In particular, if the
    binary operator produces a disjunction of the zero values from its source
    operands, such as the MUL operator, we return a ModeFormat operator that
    uses operator.or_. That is, we estimate that a dimension for the MUL
    operation result to be sparse if either of its source operands is sparse.

    On the other hand, if the binary operator produces a conjunction of the
    zero values from its source operands, such as the ADD operator, we return
    a ModeFormat operator that uses operator.and_. In this case, we estimate
    that a dimension for the ADD operation result to be sparse if both of its
    source operands are sparse.

    Args:
      op: A _BinaryOp object representing a supporting operator on tensors.

    Returns:
      A ModeFormatOp for estimating the destination dimension sparsity from
      the source dimension sparsity.
    """
    conjunction = functools.partial(_mode_format_operation, op=operator.and_)
    disjunction = functools.partial(_mode_format_operation, op=operator.or_)
    return conjunction if op(0, 1) != 0 else disjunction


def _all_instance_of(collection: Iterable, cls: Any) -> bool:
    """Returns true if all elements of the iterable is an instance of cls."""
    return all(isinstance(e, cls) for e in collection)


def _identity_ordering(rank: int) -> List[int]:
    """Returns the identity ordering for tensor of given rank."""
    return list(range(rank))


@dataclasses.dataclass(frozen=True)
class ModeOrdering:
    """The tensor dimension ordering class.

    We support the TACO API mode_ordering class with an alias of this class.

    Attributes:
      ordering: A list of integers representing the ordering of the tensor
        dimensions.
    """

    ordering: List[int]

    def __post_init__(self) -> None:
        """Verifies the value in ordering.

        Raises:
           ValueError: If ordering is not a list of integers.
        """
        if not isinstance(self.ordering, list) or not _all_instance_of(
            self.ordering, int
        ):
            raise ValueError("Ordering must be a list of integers: " f"{self.ordering}")
        # Check that ordering is a permutation of the dimension numbers.
        if sorted(self.ordering) != _identity_ordering(self.rank()):
            raise ValueError(
                f"Invalid ordering: {self.ordering} != "
                f"permutation{_identity_ordering(self.rank())}."
            )

    def rank(self) -> int:
        """Returns the number of dimensions represented by the ordering."""
        return len(self.ordering)


@dataclasses.dataclass(frozen=True)
class ModeFormatPack:
    """The tensor dimension format class.

    We support the TACO API mode_format_pack class with an alias of this class.

    The storage format of a tensor contains one mode_format for each tensor
    dimension.

    Attributes:
      formats: A list of ModeFormat representing the storage format for each of
        the tensor dimension.
    """

    formats: List[ModeFormat]

    def __post_init__(self) -> None:
        """Verifies the value in formats.

        Raises:
           ValueError: If formats is not a list of ModeFormats.
        """
        if not isinstance(self.formats, list) or not _all_instance_of(
            self.formats, ModeFormat
        ):
            raise ValueError("Formats must be a list of ModeFormat: " f"{self.formats}")

    def rank(self) -> int:
        """Returns the number of dimensions represented by the format pack."""
        return len(self.formats)


@dataclasses.dataclass
class Format:
    """The tensor format class defined by the TACO API.

    Attributes:
      format_pack: A ModeFormatPack representing the storage format for the tensor
        dimensions.
      ordering: A ModeOrdering representing the tensor dimension ordering in the
        storage.
    """

    format_pack: ModeFormatPack
    ordering: Optional[ModeOrdering] = None

    def __post_init__(self) -> None:
        """Verifies and fixes up the values in format_pack and ordering.

        Verifies and fixes up the values in format_pack and ordering to supports the
        initializer syntax defined by the TACO API. If format_pack is a list of
        ModeFormat, replaces it with ModeFormatPack constructed from the list. If
        ordering is not provided, set ordering to the natural ordering for the rank
        corresponding to format_pack.

        Raises:
           ValueError: If format_pack is not an instance of ModeFormatPack or if
             ordering is not an instance of ModeOrdering.
        """
        if isinstance(self.format_pack, list):
            if not _all_instance_of(self.format_pack, ModeFormat):
                raise ValueError(f"Expected a list of ModeFormat: {self.format_pack}")
            self.format_pack = ModeFormatPack(self.format_pack)
        if not isinstance(self.format_pack, ModeFormatPack):
            raise ValueError(f"Expected ModeFormatpack: {self.format_pack}")

        if self.ordering is None:
            self.ordering = ModeOrdering(list(range(self.rank())))
        if isinstance(self.ordering, list):
            if not _all_instance_of(self.ordering, int):
                raise ValueError(f"Expected a list of integer: {self.ordering}")
            self.ordering = ModeOrdering(self.ordering)
        if not isinstance(self.ordering, ModeOrdering):
            raise ValueError(f"Expected ModeOrdering: {self.ordering}")

        if self.format_pack.rank() != self.ordering.rank():
            raise ValueError(
                "Inconsistent ModeFormatPack and ModeOrdering: "
                f"len({self.format_pack}) != "
                f"len({self.ordering})"
            )

    def rank(self) -> int:
        """Returns the number of dimensions represented by the format."""
        return self.format_pack.rank()

    def get_permutation_and_sparsity(self) -> Tuple[np.ndarray, np.ndarray]:
        """Constructs the numpy arrays for the permutation and sparsity."""
        perm = np.array(self.ordering.ordering, dtype=np.ulonglong)
        a = [f.value for f in self.format_pack.formats]
        sparse = np.array(a, dtype=np.uint8)
        return (perm, sparse)

    def mlir_tensor_attr(self) -> Optional[sparse_tensor.EncodingAttr]:
        """Constructs the MLIR attributes for the tensor format."""
        order = (
            range(self.rank()) if (self.ordering is None) else self.ordering.ordering
        )
        mlir_storage_format = [f.value for f in self.format_pack.formats]
        return sparse_tensor.EncodingAttr.get(
            mlir_storage_format,
            ir.AffineMap.get_permutation(order),
            _POS_WIDTH,
            _CRD_WIDTH,
        )


def _make_format(
    formats: List[ModeFormat], ordering: Optional[List[int]] = None
) -> Format:
    """Constructs a format from a list of ModeFormat and an optional ordering.

    Args:
      formats: A list of ModeFormat, one for each dimension of a tensor.
      ordering: An optional list of integer, for the ordering of the tensor
        dimensions. When an ordering is not given, the identity ordering is used.

    Returns:
      A tensor format object.

    Raises:
      ValueError: If formats is not a list of ModeFormat or the length of formats
        is not consistent with the len of ordering.
    """
    ordering = ordering or _identity_ordering(len(formats))
    return Format(ModeFormatPack(formats), ModeOrdering(ordering))


class IndexExpr(abc.ABC):
    """The index notation base class.

    We support the TACO API index_expression class with an alias of this class.
    """

    def _verify_operand_and_build_expr(self, rhs, op: _BinaryOp) -> "_BinaryExpr":
        """Verifies the RHS operand and returns a binary expression.

        Args:
          rhs: The RHS of the binary operation, which could be any Python object
            from user inputs.
          op: A _BinaryOp object representing the binary operator.

        Raises:
          ValueError: If rhs is not an IndexExpr.
        """
        if not isinstance(rhs, IndexExpr):
            raise ValueError(f"Expected IndexExpr: {rhs}")
        return _BinaryExpr(op, self, rhs)

    def _build_unary_expr(self, op: _UnaryOp) -> "_UnaryExpr":
        """Build a unary expression.

        Args:
          op: A _UnaryOp object representing the unary operation.
        """
        return _UnaryExpr(op, self)

    def __add__(self, rhs) -> "_BinaryExpr":
        """Defines the operator +.

        Args:
          rhs: The value being added, which could be any Python object from user
            inputs.

        Returns:
          A _BinaryExpr object representing the operation.

        Raises:
          ValueError: If rhs is not an IndexExpr.
        """
        return self._verify_operand_and_build_expr(rhs, operator.add)

    def __mul__(self, rhs) -> "_BinaryExpr":
        """Defines the operator *.

        Args:
          rhs: The value being multiplied, which could be any Python object from
            user inputs.

        Returns:
          A _BinaryExpr object representing the operation.

        Raises:
          ValueError: If rhs is not an IndexExpr.
        """
        return self._verify_operand_and_build_expr(rhs, operator.mul)

    def __abs__(self) -> "_UnaryExpr":
        """Defines the operator abs.

        Returns:
          A _UnaryExpr object representing the operation.
        """
        return self._build_unary_expr(operator.abs)

    def __neg__(self) -> "_UnaryExpr":
        """Defines the operator neg.

        Returns:
          A _UnaryExpr object representing the operation.
        """
        return self._build_unary_expr(operator.neg)

    def __sub__(self, rhs) -> "_BinaryExpr":
        """Defines the operator -.

        Args:
          rhs: The value being subtracted, which could be any Python object from
            user inputs.

        Returns:
          A _BinaryExpr object representing the operation.

        Raises:
          ValueError: If rhs is not an IndexExpr.
        """
        return self._verify_operand_and_build_expr(rhs, operator.sub)

    @abc.abstractmethod
    def _visit(
        self, func: _ExprVisitor, args, *, leaf_checker: _SubtreeLeafChecker = None
    ) -> None:
        """A post-order visitor.

        Args:
          func: A callable applied to each node in the expression tree.
          args: The variable-length arguments passed to the callable. These
            arguments are grouped as an iterable and will be unpacked before passing
            to the callable. This is to enable the keyword argument only syntax
            after this argument.
          leaf_checker: A callable object to identify nodes that should be treated
            as leaf nodes to support partial tree visiting.
        """
        pass

    @abc.abstractmethod
    def _emit_expression(
        self,
        expr_to_opnd: Dict["IndexExpr", lang.OperandDef],
        expr_to_info: _ExprInfoDict,
    ) -> lang.ScalarExpression:
        """Emits MLIR for the expression tree.

        Args:
          expr_to_opnd: A dictionary for looking up structured op input operands for
            the input nodes of the structured op.
          expr_to_info: A dictionary for looking up code generation information for
            expressions.

        Returns:
          A linalg dialect ScalarExpression for the expression.
        """
        pass

    @abc.abstractmethod
    def dtype(self) -> DType:
        """Returns the data type for the result of the expression."""
        pass

    def _emit_structured_op(self, expr_to_info: _ExprInfoDict) -> None:
        """Emits a structured op in the linalg dialect for the expression tree.

        We define a DefineOpcallable in the domain specific language for the linalg
        dialect and execute the callable to generate the structured op. Self is the
        root of the expression tree for the structured op.

        Args:
          expr_to_info: A dictionary for looking up code generation information for
            expressions.
        """
        op_info = expr_to_info[self].structop_info
        op_name = op_info.dst_name
        op_def = lang.LinalgOpDef(name=op_name)
        op_callable = lang.DefinedOpCallable(op_name, op_def)

        # Collect the input expression nodes for the structured op.
        expr_inputs = []
        self._visit(
            _gather_structured_op_input,
            (self, expr_to_info, expr_inputs),
            leaf_checker=_is_structured_op_leaf,
        )

        # Create a linalg structured op operand for each input expression node and
        # build a dictionary for looking up the information.
        expr_to_input_opnd = {
            e: _emit_structured_op_input(e, expr_to_info, op_def) for e in expr_inputs
        }

        # Emit the expression tree, which produces the value assigned to the
        # destination tensor.
        value = self._emit_expression(expr_to_input_opnd, expr_to_info)
        # Emit the structured op representation for the destination tensor.
        dst_opnd = _emit_operand(
            op_def,
            op_info.dst_indices,
            op_info.dst_name,
            lang.OperandKind.OUTPUT_TENSOR,
        )
        dst_dim_syms = _mlir_dimensions_from_index_vars(op_info.dst_indices)
        dst_use = lang.TensorUse(dst_opnd, dst_dim_syms)

        expr_info = expr_to_info[self]
        # If the structured op reduces some indices, explicitly represent the
        # reduction. This is done by generating a ReduceFn for the dimensions being
        # reduced in the linalg dialect and calling the function with the value
        # being reduced. We only support add reduction currently.
        if expr_info.reduce_indices:
            reduce_dims = _mlir_dimensions_from_index_vars(expr_info.reduce_indices)
            value = lang.ReduceFn.add[reduce_dims](value)

        # Emit the assignment as a comprehension in the linalg dialect.
        comp = lang.Comprehension((dst_use, value))
        op_def.comprehensions.append(comp)

        # The structured op in the linalg dialect requires an explicit
        # initialization for the destination tensor. Emit MLIR to initialize the
        # destination tensor.
        init = op_info.emit_tensor_init()

        # Collect MLIR values for the linalg input operands, with the assumption
        # that dictionary preserves the insertion order.
        args = [
            expr_to_info[expr].mlir_value for expr, opnd in expr_to_input_opnd.items()
        ]
        # Execute the DefineOpcallable object for the linalg dialect operation to
        # emit MLIR for the linalg structured op.
        expr_info.mlir_value = op_callable(*args, outs=[init])

    def _identify_structured_ops(
        self,
        expr_to_info: _ExprInfoDict,
        dst: "Tensor",
        dst_indices: Tuple["IndexVar", ...],
    ) -> List["IndexExpr"]:
        """Returns expression nodes for the roots of the identified structured ops.

        A structured op in the linalg dialect only supports reduction performed on
        the whole expression. If the expression tree contains reduction that are
        performed on part of the expression tree, the expression tree needs to be
        implemented with multiple structured ops. This routine identifies all the
        expression nodes that contain reduction as the root of structured ops in the
        linalg dialect.

        Args:
          expr_to_info: A dictionary for looking up code generation information for
            expressions.
          dst: A destination Tensor that accepts the value of the expression tree.
          dst_indices: The indices used by the destination index expression.

        Returns:
          An ordered list of IndexExpr for the root expressions of the structured
          ops, where child expressions go before parent expressions that use their
          results.
        """
        reduce_indices = tuple(set(expr_to_info[self].src_indices) - set(dst_indices))
        for reduce_index in reduce_indices:
            _mark_structured_op_root(self, reduce_index, expr_to_info)

        self._visit(_accumulate_reduce_indices, (expr_to_info,))
        structop_roots = []
        self._visit(_gather_structured_op, (expr_to_info, structop_roots))

        # Handle the root of the top level expression.
        if not structop_roots or structop_roots[-1] != self:
            # The top level expression is not a reduction. Add the top level
            # expression as a structured op root.
            structop_roots.append(self)

        # Use user specified information for the destination tensor to build an
        # _StructOpInfo for the top level expression.
        expr_to_info[self].structop_info = _StructOpInfo(
            dst_indices, tuple(dst.shape), dst.dtype, dst.name, dst.format
        )

        return structop_roots

    def _validate_and_collect_expr_info(
        self,
        dst: "Tensor",
        dst_indices: Tuple["IndexVar", ...],
    ) -> _ExprInfoDict:
        """Propagates expression information for validation.

        Propagates the indices used by child expression nodes to parent expression
        nodes. Also collects and validates the sizes for the dimensions
        corresponding to the indices.

        Args:
          dst: A destination Tensor that accepts the value of the expression tree.
          dst_indices: The indices used by the destination index expression.

        Raises:
          ValueError if there is any inconsistency in indices or dimensional
          values.

        Returns:
          A dictionary of (IndexExpr, _ExprInfo).
        """
        expr_to_info = {}
        # Validate the expression tree and construct expression information.
        self._visit(_validate_and_collect_expr_info, (expr_to_info,))

        # Validate the destination dimension information.
        info = expr_to_info[self]
        index_to_dim_info = {i: d for i, d in zip(info.src_indices, info.dim_infos)}
        for (
            i,
            d,
        ) in zip(dst_indices, dst.shape):
            if i not in index_to_dim_info:
                raise ValueError(
                    "Destination IndexVar not used in the " f"source expression: {i}"
                )
            else:
                if d != index_to_dim_info[i].dim and index_to_dim_info[i].dim != -1:
                    raise ValueError(
                        f"Inconsistent destination dimension for {i}: "
                        f"{d} vs {index_to_dim_info[i].dim}"
                    )

        return expr_to_info

    def _emit_assignment(
        self,
        module: ir.Module,
        dst: "Tensor",
        dst_indices: Tuple["IndexVar", ...],
        expr_to_info: _ExprInfoDict,
        input_accesses: List["Access"],
    ) -> None:
        """Emits an MLIR function for assigning the expression to a tensor."""
        input_types = [a.tensor.mlir_tensor_type() for a in input_accesses]

        # Build the kernel for the operations.
        with ir.InsertionPoint(module.body):

            @func.FuncOp.from_py_func(*input_types, name=_ENTRY_NAME)
            def linalg_funcop(*args):
                # Set up the mapping from the Access nodes to their MLIR values.
                for e, mlir in zip(input_accesses, args):
                    expr_to_info[e].mlir_value = mlir

                # Emit structured ops in the linalg dialect to implement the assignment.
                for structop_root in self._identify_structured_ops(
                    expr_to_info, dst, dst_indices
                ):
                    structop_root._emit_structured_op(expr_to_info)
                    dst._record_stats(expr_to_info[structop_root].structop_info)

                # The function returns the MLIR value of the root expression.
                return expr_to_info[self].mlir_value

            linalg_funcop.func_op.attributes[
                "llvm.emit_c_interface"
            ] = ir.UnitAttr.get()

    def get_input_accesses(self) -> List["Access"]:
        """Compute the list of input accesses for the expression."""
        input_accesses = []
        self._visit(_gather_input_accesses_index_vars, (input_accesses,))
        return input_accesses

    def compile(
        self,
        dst: "Tensor",
        dst_indices: Tuple["IndexVar", ...],
    ) -> execution_engine.ExecutionEngine:
        """Compiles the tensor assignment dst[dst_indices] = expression.

        Args:
          dst: The destination tensor.
          dst_indices: The tuple of IndexVar used to access the destination tensor.

        Returns:
          The execution engine for the tensor assignment.

        Raises:
          ValueError: If the expression is not proper or not supported.
        """
        expr_to_info = self._validate_and_collect_expr_info(dst, dst_indices)
        input_accesses = self.get_input_accesses()

        # Build and compile the module to produce the execution engine.
        with ir.Context(), ir.Location.unknown():
            module = ir.Module.create()
            self._emit_assignment(
                module, dst, dst_indices, expr_to_info, input_accesses
            )
            engine = utils.compile_and_build_engine(module)

        return engine


class _AtomicCounter:
    """An atomic counter."""

    def __init__(self):
        self._counter = 0
        self._counter_lock = threading.Lock()

    def increment(self) -> int:
        """Increments the counter by one and returns the old value."""
        old_value = self._counter
        with self._counter_lock:
            self._counter = self._counter + 1
        return old_value


class IndexVar(IndexExpr):
    """The tensor index class.

    We support the TACO API index_var class with an alias of this class.

    An IndexVar object represents an index variable in tensor index notation.

    Attributes:
      name: A unique string name of the IndexVar.
    """

    _counter = _AtomicCounter()

    def __init__(self):
        id = self._counter.increment()
        self._name = f"{_TACO_INDEX_PREFIX}{id}"

    def __repr__(self) -> str:
        return f"IndexVar(name={repr(self._name)})"

    @property
    def name(self) -> str:
        """Returns the name of the IndexVar."""
        return self._name

    def _visit(
        self, func: _ExprVisitor, args, *, leaf_checker: _SubtreeLeafChecker = None
    ) -> None:
        """A post-order visitor."""
        if leaf_checker:
            assert leaf_checker(self, *args)
        func(self, *args)

    def _emit_expression(
        self,
        expr_to_opnd: Dict[IndexExpr, lang.OperandDef],
        expr_to_info: _ExprInfoDict,
    ) -> lang.ScalarExpression:
        """Emits a index value casted to the data type of the tensor expression."""
        dim = getattr(lang.D, self.name)
        index = lang.index(dim)
        int_value = lang.TypeFn.cast_unsigned(lang.TV.I64, index)
        return lang.TypeFn.cast_unsigned(lang.T, int_value)

    def dtype(self) -> DType:
        """Returns the data type for the index value.

        This is unreachable for IndexVar.
        """
        assert 0


def get_index_vars(n: int) -> List[IndexVar]:
    """Returns a list of n IndexVar.

    This routine is defined by the TACO API.

    Args:
      n: An integer representing the number of IndexVar to get.

    Returns:
      A list of IndexVar.

    Raises:
      ValueError: if n is not a positive integer.
    """
    if not isinstance(n, int) or n <= 0:
        raise ValueError(f"Expected an integer: {n}.")
    # If lock contention ever becomes an issue, we could implement a bulk getter
    # that returns a range by only claiming the lock once.
    return [IndexVar() for i in range(n)]


def _mlir_symbols_from_index_vars(
    index_vars: Tuple[IndexVar, ...]
) -> Tuple[lang.SymbolDef, ...]:
    """Returns a tuple of MLIR symbols for the given tuple of index_var."""
    return tuple(getattr(lang.S, i.name) for i in index_vars)


def _mlir_dimensions_from_index_vars(
    index_vars: Tuple[IndexVar, ...]
) -> Tuple[lang.DimDef, ...]:
    """Returns a tuple of MLIR dimensions for the given tuple of index_var."""
    return tuple(getattr(lang.D, i.name) for i in index_vars)


def _mlir_tensor_type(
    dtype: DType, shape: Tuple[int, ...], attr: Optional[sparse_tensor.EncodingAttr]
) -> ir.RankedTensorType:
    """Returns an MLIR tensor type.

    Args:
      dtype: An DType object for the element data type of the tensor.
      shape: A tuple of integer for the shape of the tensor.
      attr: An optional MLIR sparse tensor attribute, only provided if the tensor
        is a sparse tensor.

    Returns:
      An MLIR ranked tensor type.
    """
    ir_type = _mlir_type_from_taco_type(dtype)
    return ir.RankedTensorType.get(shape, ir_type, attr)


@dataclasses.dataclass(frozen=True)
class _StructOpInfo:
    """Information for generating a structured op in the linalg dialect.

    This information is associated with an expression node that serves as the
    root for an expression subtree implemented with a structured op.

    Attributes:
      dst_indices: A tuple of IndexVar, representing the result dimensions of the
        structured op. This is used to construct the temporary variable for the
        tensor to hold the structured op result.
      dst_dims: A tuple of int, representing the result shape of the structured
        op.
      dst_dtype: A DType representing the data type of the structured op result.
      dst_name: A string representing the name of the structured op result.
      dst_format: An optional Format object representing the destination tensor
        format. None represents a true dense tensor.
    """

    dst_indices: Tuple[IndexVar, ...]
    dst_dims: Tuple[int, ...]
    dst_dtype: DType
    dst_name: str
    dst_format: Optional[Format]

    def __post_init__(self) -> None:
        """Verifies the integrity of the attribute values."""
        assert len(self.dst_indices) == len(self.dst_dims)

    def emit_tensor_init(self) -> ir.RankedTensorType:
        """Returns an initialization for the destination tensor."""
        if self.dst_format is None or self.dst_format.rank() == 0:
            # Initialize the dense tensor.
            ir_type = _mlir_type_from_taco_type(self.dst_dtype)
            empty = tensor.EmptyOp(self.dst_dims, ir_type).result
            zero = arith.ConstantOp(ir_type, 0.0)
            return linalg.fill(zero, outs=[empty])

        # Initialize the sparse tensor.
        mlir_type = _mlir_tensor_type(
            self.dst_dtype, self.dst_dims, self.dst_format.mlir_tensor_attr()
        )
        index_type = ir.IndexType.get()
        return bufferization.AllocTensorOp(mlir_type, [], None, None, None)


class _Stats:
    """Information to describe how a tensor expression is implemented.

    Currently, we only record the temporary tensors introduced for splitting the
    original expression.
    """

    def __init__(self):
        self._temps = []

    def __repr__(self) -> str:
        return f"_Stats({repr(self._temps)})"

    def add_element(self, structop: _StructOpInfo):
        """Adds a temporary tensor."""
        self._temps.append(structop)

    def get_total(self) -> int:
        """Gets the total number of temporary tensors."""
        return len(self._temps)

    def _get_element(self, idx: int) -> _StructOpInfo:
        """Gets the ith temporary tensor."""
        assert idx < self.get_total()
        return self._temps[idx]

    def get_dimensions(self, idx: int) -> Tuple[int]:
        """Gets the dimensions for the ith temporary tensor."""
        return self._get_element(idx).dst_dims

    def get_formats(self, idx: int) -> Tuple[ModeFormat]:
        """Gets the ModeFormats for the ith temporary tensor."""
        return tuple(self._get_element(idx).dst_format.format_pack.formats)


class _SparseValueInfo(enum.Enum):
    """Describes how a sparse tensor value is stored.
    _UNPACKED: The sparse tensor value is stored as (coordnates, values) in
      Python.
    _PACKED: The sparse tensor value is stored as a C pointer to a packed MLIR
      sparse tensor.
    """

    _UNPACKED = 0
    _PACKED = 1


@dataclasses.dataclass(frozen=True)
class _Assignment:
    """Records an assignment to a tensor T as T[indices] = expression."""

    indices: Tuple["IndexVar", ...]
    expression: "IndexExpr"


class Tensor:
    """The tensor class.

    We support the TACO API tensor class with an alias of this class.

    This class is part of the TACO API with the following methods:
      insert: Inserts a value to the given coordinate in the tensor.
      to_array: Returns a numpy ndarray for the tensor.

    TACO API also defines the following arrtibutes for the class:
      dtype: A dtype object representing the data type of the tensor.
      format: A format object representing the storage format of the tensor.
      name: A string object representing the name of the tensor.
      order: An integral rank of the tensor.
      shape: A list of integers representing the shape of the tensor.

    We currently ignore the tensor dimension ordering for dense tensor.
    """

    _counter = _AtomicCounter()

    def _get_unique_name(self) -> str:
        """Returns a unique name for creating a new Tensor."""
        return f"{_TACO_TENSOR_PREFIX}{self._counter.increment()}"

    def _init_format(self, fmt: Union[ModeFormat, List[ModeFormat], Format]) -> None:
        """Process the fmt argument for the Tensor constructor.

        Args:
          fmt: This argument can be a ModeFormat, List[ModeFormat], or format. If
            this argument is a ModeFormat, uses this ModeFormat for all the tensor
            dimensions. If this argument is a list of ModeFormat, the len of the
            list should equal to the rank of the tensor. If this argument is a
            format, uses it for the format of the tensor.

        Raises:
          ValueError: If fmt is not one of the expected type or is inconsistent
            with the rank of the tensor. This is because fmt could be an users
            input.
        """
        if isinstance(fmt, ModeFormat):
            self._format = _make_format([fmt] * self.order)
        elif isinstance(fmt, list):
            if len(fmt) == self.order and isinstance(fmt[0], ModeFormat):
                self._format = _make_format(fmt)
            else:
                raise ValueError(
                    "Inconsistent shape and format: " f"{self._shape}, {fmt}."
                )
        elif isinstance(fmt, Format):
            if fmt.rank() != self.order:
                raise ValueError(
                    "Inconsistent shape and format: " f"{self._shape}, {fmt}."
                )
            else:
                self._format = fmt
        else:
            raise ValueError(f"Invalid format argument: {fmt}.")

    def __init__(
        self,
        value_or_shape: Optional[
            Union[List[int], Tuple[int, ...], complex, float, int]
        ] = None,
        fmt: Optional[Union[ModeFormat, List[ModeFormat], Format]] = None,
        dtype: Optional[DType] = None,
        name: Optional[str] = None,
        is_dense: bool = False,
    ):
        """The tensor constructor interface defined by TACO API.

        Args:
          value_or_shape: This argument is optional and can be int, float,
            List[int], or Tuple[int, ...]. If this argument is an int or float,
            creates a scalar tensor and initializes it with the value. If this
            argument is a list or tuple of int, uses it as the shape to create a
            tensor.
          fmt: This argument can be a ModeFormat, List[ModeFormat], or format. If
            this argument is a ModeFormat, uses this ModeFormat for all the tensor
            dimensions. If this argument is a list of ModeFormat, the len of the
            list should equal to the rank of the tensor. If this argument is a
            format, uses it for the format of the tensor.
          dtype: An object of dtype, representing the data type of the tensor.
          name: A string name of the tensor. If a name is not given, creates a
            unique name for the tensor.
          is_dense: A boolean variable to indicate whether the tensor is a dense
            tensor without any sparsity annotation.

        Raises:
          ValueError: If there is any inconsistency among the input arguments.
        """
        # Take care of the argument default values common to both sparse tensors
        # and dense tensors.
        dtype = dtype or DType(Type.FLOAT32)
        self._name = name or self._get_unique_name()
        self._assignment = None
        self._engine = None
        self._sparse_value_location = _SparseValueInfo._UNPACKED
        self._dense_storage = None
        self._dtype = dtype

        if is_dense:
            assert fmt is None
            assert (
                isinstance(value_or_shape, tuple) or isinstance(value_or_shape, list)
            ) and _all_instance_of(value_or_shape, int)
            self._shape = value_or_shape
            self._format = None
            return

        fmt = fmt or ModeFormat.COMPRESSED
        # We currently use _coords and _values to host the sparse tensor value with
        # COO format, and _dense_storage to host the dense tensor value. We don't
        # support the conversion between the two storages.
        self._coords = []
        self._values = []
        self._stats = _Stats()
        if (
            value_or_shape is None
            or isinstance(value_or_shape, int)
            or isinstance(value_or_shape, float)
            or isinstance(value_or_shape, complex)
        ):
            # Create a scalar tensor and ignore the fmt parameter.
            self._shape = []
            self._format = _make_format([], [])
            if value_or_shape is not None:
                self._dense_storage = np.array(value_or_shape, dtype=self._dtype.value)
        elif (
            isinstance(value_or_shape, tuple) or isinstance(value_or_shape, list)
        ) and _all_instance_of(value_or_shape, int):
            # Create a tensor with the specified shape and format.
            self._shape = list(value_or_shape)
            self._init_format(fmt)
        else:
            raise ValueError(
                "Invalid first argument. "
                "Must be a tuple or list for a shape or a single value"
                f"if initializing a scalar tensor: {value_or_shape}."
            )

    def _set_packed_sparse_tensor(self, pointer: ctypes.c_void_p) -> None:
        """Records the MLIR sparse tensor pointer."""
        self._sparse_value_location = _SparseValueInfo._PACKED
        self._packed_sparse_value = pointer

    def is_unpacked(self) -> bool:
        """Returns true if the tensor value is not packed as MLIR sparse tensor."""
        return self._sparse_value_location == _SparseValueInfo._UNPACKED

    def unpack(self) -> None:
        """Unpacks the MLIR sparse tensor representation."""
        if self.is_dense() or self.is_unpacked():
            return

        # Use the output MLIR sparse tensor pointer to retrieve the COO-flavored
        # values and verify the values.
        rank, nse, shape, values, indices = utils.sparse_tensor_to_coo_tensor(
            self._packed_sparse_value, self._dtype.value
        )
        assert rank == self.order
        assert np.array_equal(self.shape, shape)
        assert nse == len(values)
        self._coords = indices
        self._values = values
        self._sparse_value_location = _SparseValueInfo._UNPACKED

    def __repr__(self) -> str:
        self._sync_value()
        self.unpack()
        value_str = (
            f"{repr(self._dense_storage)})"
            if self.is_dense()
            else f"{repr(self._coords)} {repr(self._values)})"
        )
        return (
            f"Tensor(_name={repr(self._name)} " f"_dtype={repr(self._dtype)} : "
        ) + value_str

    def insert(self, coords: List[int], val: Union[complex, float, int]) -> None:
        """Inserts a value to the given coordinate.

        Args:
          coords: A list of integer coordinates. The length of the list must be the
            same as the rank of the tensor.
          val: A value being inserted. It is either an integral or a floating point
            value. This value will be converted to the data type of the tensor.

        Raises:
          ValueError: When there is any problem in the parameters.
        """
        if self.is_dense():
            raise ValueError("Insert method is not supported for dense tensors.")
        if self._assignment != None or not self.is_unpacked():
            raise ValueError(
                "Can't use Insert method for a tensor constructed from a file."
            )
        if not isinstance(coords, list):
            raise ValueError(f"Non list coordinate detected: {coords}.")
        if not _all_instance_of(coords, int):
            raise ValueError(f"Non integer coordinate detected: {coords}.")
        if len(coords) != self.order or any(
            [c < 0 or c >= self._shape[i] for i, c in enumerate(coords)]
        ):
            raise ValueError("Invalid coordinate for rank: " f"{self.order}, {coords}.")

        if (
            not isinstance(val, int)
            and not isinstance(val, float)
            and not isinstance(val, complex)
        ):
            raise ValueError(f"Value is neither int nor float: {val}.")

        self._coords.append(tuple(coords))
        self._values.append(self._dtype.value(val))

    def is_dense(self) -> bool:
        """Returns true if the tensor doesn't have sparsity annotation."""
        return self.order == 0 or self._format is None

    def to_array(self) -> np.ndarray:
        """Returns the numpy array for the Tensor.

        This is currenly only implemented for dense Tensor.
        """
        if not self.is_dense():
            raise ValueError(
                "Conversion from non-dense Tensor " "to numpy array not supported yet."
            )

        self._sync_value()

        return self._dense_storage

    @staticmethod
    def from_array(array: np.ndarray) -> "Tensor":
        """Returns a dense tensor with the value copied from the input array.

        We currently only support the conversion of float32 and float64 numpy arrays
        to Tensor.

        Args:
          array: The numpy array that provides the data type, shape and value for
            the tensor.

        Returns:
          A Tensor object.

        Raises:
          ValueError if the data type of the numpy array is not supported.
        """
        if array.dtype != np.float32 and array.dtype != np.float64:
            raise ValueError(f"Expected floating point value type: {array.dtype}.")
        t = Tensor(
            array.shape, dtype=_nptype_to_taco_type(array.dtype.type), is_dense=True
        )
        t._dense_storage = np.copy(array)
        return t

    @staticmethod
    def from_coo(
        coordinates: List[Tuple[int, ...]],
        values: List[_AnyRuntimeType],
        fmt: Format,
        dtype: DType,
    ) -> "Tensor":
        """Converts coordinates and values to a sparse tensor representation.

        Args:
          coordinates: A list of coordinates with non-zero values.
          values: The non-zero values.
          fmt: The tensor storage format.
          dtype: The tensor element data type.

        Returns:
          A tensor with the given non-zero values and storage format. The shape of
          the tensor has the minimum size for each dimension to make the given
          coordinates valid.
        """
        assert isinstance(coordinates, List) and _all_instance_of(coordinates, Tuple)
        assert isinstance(values, List) and _all_instance_of(values, dtype.value)
        assert isinstance(fmt, Format)

        rank = fmt.rank()
        assert all(len(c) == rank and _all_instance_of(c, int) for c in coordinates)

        # Find the maximum coordinate value for each dimension.
        max_coordinate = list(map(max, zip(*coordinates)))
        # The size of each dimension is one more that such a maximum coordinate
        # value.
        shape = [c + 1 for c in max_coordinate]
        t = Tensor(shape, fmt, dtype=dtype)
        t._coords = coordinates
        t._values = values

        return tensor

    @staticmethod
    def from_file(
        filename: str,
        fmt: Format,
        dtype: DType,
    ) -> "Tensor":
        """Constructs a sparse tensor using the COO-flavored values from a file.

        Args:
          filename: A string for the name of the file that contains the sparse
            tensor data.
          fmt: The tensor storage format.
          dtype: The tensor element data type.

        Returns:
          A tensor with the given non-zero values and storage format. The tensor
          value is stored as an MLIR sparse tensor.
        """
        sparse_tensor, shape = utils.create_sparse_tensor(
            filename, fmt.format_pack.formats, _dtype_to_mlir_str(dtype)
        )
        t = Tensor(shape.tolist(), fmt, dtype=dtype)
        t._set_packed_sparse_tensor(sparse_tensor)

        return t

    def to_file(self, filename: str) -> None:
        """Output the tensor value to a file.

        This method evaluates any pending assignment to the tensor and outputs the
        tensor value.

        Args:
          filename: A string file name.

        Raises:
           ValueError: If the tensor is dense, or an unpacked sparse tensor.
        """
        self._sync_value()

        if self.is_dense():
            raise ValueError(
                "Writing dense tensors without sparsity annotation to "
                "file is not supported."
            )

        if self.is_unpacked():
            raise ValueError(
                "Writing unpacked sparse tensors to file is not " "supported."
            )

        utils.output_sparse_tensor(
            self._packed_sparse_value,
            filename,
            self._format.format_pack.formats,
            _dtype_to_mlir_str(self._dtype),
        )

    @property
    def dtype(self) -> DType:
        """Returns the data type for the Tensor."""
        return self._dtype

    @property
    def format(self) -> Format:
        """Returns the storage format for the Tensor."""
        return self._format

    @property
    def name(self) -> str:
        """Returns the name for the Tensor."""
        return self._name

    @property
    def order(self) -> int:
        """Returns the rank of the Tensor."""
        return len(self._shape)

    @property
    def shape(self) -> List[int]:
        """Returns the shape of the Tensor."""
        return self._shape

    def _verify_and_normalize_indices(self, indices) -> Tuple[IndexVar, ...]:
        """Verifies and normalizes the indices to access the tensor.

        Args:
          indices: The index expression used to access a tensor, which could be any
            Python object from user inputs.

        Returns:
          A tuple of IndexVar.

        Raises:
          ValueError: If indices is not 0 for scalar tensors, or not an IndexVar or
            a tuple of IndexVar for other tensors.
        """
        if self.order == 0:
            if not isinstance(indices, int) or indices != 0:
                raise ValueError(f"Expected 0 to index scalar tensors: {indices}")
            return ()

        if isinstance(indices, IndexVar):
            return (indices,)
        elif isinstance(indices, tuple) and _all_instance_of(indices, IndexVar):
            return indices

        raise ValueError(f"Expected IndexVars: {indices}")

    def __getitem__(self, key) -> "Access":
        """Verifies and processes a tensor access.

        In the tensor index notation, a tensor access T[i, j] is represented as
        retrieving a value with key (i, j) from the tensor object T in Python. This
        routine verifies the key for the tensor access and returns a tensor access
        object.

        Args:
          key: The key used to access the tensor, which could be any Python object
            from user inputs.

        Returns:
          The corresponding tensor access object.

        Raises:
          ValueError: If key is not an IndexVar or a tuple of IndexVar.
        """
        indices = self._verify_and_normalize_indices(key)
        return Access(self, indices)

    def __setitem__(self, key, value) -> None:
        """Verifies and processes a tensor assignment.

        In the tensor index notation, a tensor assignment "T[i, j] = ..." is
        represented as setting a value for a tensor object T via key (i, j) in
        Python. This routine verifies the key, evaluates the value, and assigns the
        value to the tensor.

        We only support assignment of dense tensor currently.

        Args:
          key: The key used to access the tensor, which could be any Python object
            from user inputs.
          value: The value assigned to the tensor, which could be any Python object
            from user inputs.

        Raises:
          ValueError: If tensor is not a dense tensor, or the key is not an IndexVar
            or a tuple of IndexVar, or the length of the indices is not the same as
            the rank of the tensor.
        """
        indices = self._verify_and_normalize_indices(key)
        if len(indices) != self.order:
            raise ValueError(
                "Mismatch between indices and tensor rank: "
                f"len({indices}) != {self.order}."
            )

        self._assignment = _Assignment(indices, value)
        self._engine = None

    def compile(self, force_recompile: bool = False) -> None:
        """Compiles the tensor assignment to an execution engine.

        Calling compile the second time does not do anything unless
        force_recompile is True.

        Args:
          force_recompile: A boolean value to enable recompilation, such as for the
            purpose of timing.

        Raises:
          ValueError: If the assignment is not proper or not supported.
        """
        if self._assignment is None or (
            self._engine is not None and not force_recompile
        ):
            return

        self._engine = self._assignment.expression.compile(
            self, self._assignment.indices
        )

    def compute(self) -> None:
        """Executes the engine for the tensor assignment.

        Raises:
          ValueError: If the assignment hasn't been compiled yet.
        """
        if self._assignment is None:
            return

        if self._engine is None:
            raise ValueError("Need to invoke compile() before invoking compute().")

        input_accesses = self._assignment.expression.get_input_accesses()
        # Gather the pointers for the input buffers.
        input_pointers = [a.tensor.ctype_pointer() for a in input_accesses]
        if self.is_dense():
            # The pointer to receive dense output is the first argument to the
            # execution engine.
            arg_pointers = [self.dense_dst_ctype_pointer()] + input_pointers
        else:
            # The pointer to receive the sparse tensor output is the last argument
            # to the execution engine and is a pointer to pointer of char.
            arg_pointers = input_pointers + [
                ctypes.pointer(ctypes.pointer(ctypes.c_char(0)))
            ]

        # Invoke the execution engine to run the module.
        self._engine.invoke(_ENTRY_NAME, *arg_pointers)

        # Retrieve the result.
        if self.is_dense():
            result = runtime.ranked_memref_to_numpy(arg_pointers[0][0])
            assert isinstance(result, np.ndarray)
            self._dense_storage = result
        else:
            self._set_packed_sparse_tensor(arg_pointers[-1][0])

        self._assignment = None
        self._engine = None

    def evaluate(self) -> None:
        """Evaluates the tensor assignment."""
        self.compile()
        self.compute()

    def _sync_value(self) -> None:
        """Updates the tensor value by evaluating the pending assignment."""
        if self._assignment is not None:
            self.evaluate()

    def mlir_tensor_type(self) -> ir.RankedTensorType:
        """Returns the MLIR type for the tensor."""
        mlir_attr = (
            None
            if (self._format is None or self.order == 0)
            else self._format.mlir_tensor_attr()
        )
        return _mlir_tensor_type(self._dtype, tuple(self._shape), mlir_attr)

    def dense_dst_ctype_pointer(self) -> ctypes.pointer:
        """Returns the ctypes pointer for the pointer to an MemRefDescriptor.

        For a dense tensor output, the MLIR compiler allocates the storage for
        the tensor. This routine returns the pointer to an MLIR MemRefDescriptor for
        receiving the tensor.
        """
        assert self.is_dense()
        mem_ref_desc = runtime.make_nd_memref_descriptor(
            self.order, np.ctypeslib.as_ctypes_type(self.dtype.value)
        )()
        return ctypes.pointer(ctypes.pointer(mem_ref_desc))

    def ctype_pointer(self) -> ctypes.pointer:
        """Returns the ctypes pointer for the pointer to the input tensor."""
        if self.is_dense():
            if self._dense_storage is None:
                self._dense_storage = np.zeros(self._shape, self._dtype.value)
            return _ctype_pointer_from_array(self._dense_storage)

        if self.is_unpacked():
            shape = np.array(self._shape, np.int64)
            indices = np.array(self._coords, np.int64)
            values = np.array(self._values, self._dtype.value)
            perm, sparse = self.format.get_permutation_and_sparsity()
            ptr = utils.coo_tensor_to_sparse_tensor(
                shape, values, indices, perm, sparse
            )
        else:
            ptr = self._packed_sparse_value

        return ctypes.pointer(ctypes.cast(ptr, ctypes.c_void_p))

    def get_scalar_value(self) -> _AnyRuntimeType:
        """Returns the value for the scalar tensor.

        This method also evaluates the assignment to the tensor.

        Raises:
          ValueError: If the tensor is not a scalar.
        """
        if self.order != 0:
            raise ValueError(f"Expected a scalar tensor, got: rank={self.order}")

        self._sync_value()
        return self._dense_storage

    def get_coordinates_and_values(
        self,
    ) -> Tuple[List[Tuple[int, ...]], List[_AnyRuntimeType]]:
        """Returns the coordinates and values for the non-zero elements.

        This method also evaluates the assignment to the tensor and unpack the
        sparse tensor.
        """
        self._sync_value()

        if not self.is_dense():
            self.unpack()
            return (self._coords, self._values)

        if self.order == 0:
            return ([], self._dense_storage)

        # Coordinates for non-zero elements, grouped by dimensions.
        coords_by_dims = self._dense_storage.nonzero()
        # Coordinates for non-zero elements, grouped by elements.
        coords = np.transpose(coords_by_dims)
        values = self._dense_storage[coords_by_dims]
        return (coords, values)

    def _record_stats(self, structop: "_StructOpInfo"):
        """Collects information for temporary tensors."""
        # Exclude user specified destination tensors.
        if structop.dst_name == self.name:
            return

        self._stats.add_element(structop)


def _emit_operand(
    op_def: lang.LinalgOpDef,
    indices: Tuple[IndexVar, ...],
    name: str,
    kind: lang.OperandKind,
) -> lang.OperandDef:
    """Emits an operand for a tensor access in the current linalg operation.

    Args:
      op_def: A LinalgOpDef representing the current linalg dialect operation.
      indices: A tuple of IndexVar used to access the tensor.
      name: A unique string name of the tensor.
      kind: An OperandKind for the operand.

    Returns:
      An OperandDef representing the operand.
    """
    dim_sym = _mlir_symbols_from_index_vars(indices)
    opnd = lang.OperandDef(kind, lang.T, dim_sym)
    op_def.add_operand(name, opnd)
    return opnd


@dataclasses.dataclass(frozen=True)
class _DimInfo:
    """Information for an operand dimension.

    Attributes:
      dim: An integer for the size of the dimension.
      mode_format: A ModeFormat for the dimension sparsity.
    """

    dim: int
    mode_format: ModeFormat


def _get_dummy_dim_info() -> _DimInfo:
    """Constructs the _DimInfo for an index used in tensor expressions."""
    return _DimInfo(-1, ModeFormat.DENSE)


@dataclasses.dataclass()
class _ExprInfo:
    """Expression information for validation and code generation.

    Attributes:
      src_indices: A tuple of IndexVar for the indices used by the tensors in the
        expression tree.
      dim_infos: A tuple of _DimInfo, representing the dimension information
        corresponding to the src_indices.
      reduce_indices: A set of IndexVar for the indices reduced by the expression.
      acc_reduce_indices: An accumulated set of IndexVar for the indices reduced
        by the expression and its children.
      structop_info: Information to support the code generation for a structured
        op in the linalg dialect, if the corresponding expression node is the root
        of a subtree for a structured op.
      mlir_value: The MLIR value generated for the structured op.
    """

    src_indices: Tuple[IndexVar, ...]
    dim_infos: Tuple[_DimInfo, ...]
    reduce_indices: Optional[Set[IndexVar]] = None
    acc_reduce_indices: Optional[Set[IndexVar]] = None
    structop_info: Optional[_StructOpInfo] = None
    mlir_value: Optional[ir.Value] = None

    def __post_init__(self) -> None:
        """Verifies and fix up attribute values.

        Verifies the consistency of the attributes and modifies the default values
        to support convenient initializer syntax.
        """
        assert len(self.src_indices) == len(self.dim_infos)
        self.reduce_indices = self.reduce_indices or set()
        self.acc_reduce_indices = self.acc_reduce_indices or set()


@dataclasses.dataclass(frozen=True)
class Access(IndexExpr):
    """The tensor access class.

    We support the TACO API access class with an alias of this class.

    Attributes:
      tensor: A Tensor being accessed.
      indices: A tuple of IndexVar, representing the indices used to access the
        Tensor.
    """

    tensor: Tensor
    indices: Tuple[IndexVar, ...]

    def __post_init__(self) -> None:
        """Verifies the tensor and indices for a tensor access.

        Raises:
           ValueError: If indices is not a list of IndexVar or the len of indices
           doesn't equal to the rank of the tensor.
        """
        if not isinstance(self.indices, tuple) or not _all_instance_of(
            self.indices, IndexVar
        ):
            raise ValueError(f"Indices contain non IndexVar: {str(self.indices)}.")
        if self.tensor.order != len(self.indices):
            raise ValueError(
                "Invalid indices for rank: "
                f"str{self.tensor.order} != len({str(self.indices)})."
            )

    def __repr__(self) -> str:
        # The Tensor __repr__ method evaluates the pending assignment to the tensor.
        # We want to define the __repr__ method here to avoid such evaluation of the
        # tensor assignment.
        indices_str = ", ".join(map(lambda i: i.name, self.indices))
        return f"Tensor({self.tensor.name}) " f"Indices({indices_str})"

    def _emit_expression(
        self,
        expr_to_opnd: Dict[IndexExpr, lang.OperandDef],
        expr_to_info: _ExprInfoDict,
    ) -> lang.ScalarExpression:
        """Emits a linalg dialect TensorUse expression for the tensor access."""
        assert self in expr_to_opnd
        dims = _mlir_dimensions_from_index_vars(self.indices)
        return lang.TensorUse(expr_to_opnd[self], dims)

    def _visit(
        self, func: _ExprVisitor, args, *, leaf_checker: _SubtreeLeafChecker = None
    ) -> None:
        if leaf_checker:
            assert leaf_checker(self, *args)
        func(self, *args)

    def dtype(self) -> DType:
        return self.tensor.dtype


def _gather_input_accesses_index_vars(
    expr: IndexExpr,
    input_accesses: List[Access],
) -> None:
    """Collects Access nodes."""
    if isinstance(expr, Access) and expr not in input_accesses:
        input_accesses.append(expr)


def _op_ceil(__a: Any) -> Any:
    """A _UnaryOp object for operation ceil."""
    pass


def _op_floor(__a: Any) -> Any:
    """A _UnaryOp object for operation floor."""
    pass


def _op_unary_to_callable(op: _UnaryOp) -> lang.UnaryFnType:
    """Returns the linalg dialect function object for the given operation."""
    op_to_callable = {
        operator.abs: lang.UnaryFn.abs,
        operator.neg: lang.UnaryFn.negf,
        _op_ceil: lang.UnaryFn.ceil,
        _op_floor: lang.UnaryFn.floor,
    }
    return op_to_callable[op]


@dataclasses.dataclass(frozen=True)
class _UnaryExpr(IndexExpr):
    """The representation for a Unary operation.

    Attributes:
    op: A _UnaryOp representing the operation.
    a: An IndexExpr representing the operand for the operation.
    """

    op: _BinaryOp
    a: IndexExpr

    def __post_init__(self) -> None:
        """Verifies that the operand being added is an IndexExpr."""
        assert isinstance(self.a, IndexExpr)

    def _emit_expression(
        self,
        expr_to_opnd: Dict[IndexExpr, lang.OperandDef],
        expr_to_info: _ExprInfoDict,
    ) -> lang.ScalarExpression:
        """Emits the expression tree and returns the expression."""
        # The current expression node is an internal node of the structured op.
        if self not in expr_to_opnd:
            a = self.a._emit_expression(expr_to_opnd, expr_to_info)
            return _op_unary_to_callable(self.op)(a)

        # The current expression is a leaf node of the structured op. That is, it is
        # a temporary tensor generated by its child structured op.
        op_info = expr_to_info[self].structop_info
        assert op_info is not None
        dims = _mlir_dimensions_from_index_vars(op_info.dst_indices)
        return lang.TensorUse(expr_to_opnd[self], dims)

    def _visit(
        self, func: _ExprVisitor, args, *, leaf_checker: _SubtreeLeafChecker = None
    ) -> None:
        """A post-order visitor."""
        if leaf_checker is None or not leaf_checker(self, *args):
            self.a._visit(func, args, leaf_checker=leaf_checker)
        func(self, *args)

    def dtype(self) -> DType:
        """Returns the data type of the operation."""
        return self.a.dtype()


def _op_to_callable(op: _BinaryOp) -> lang.BinaryFnType:
    """Returns the linalg dialect function object for the given operation."""
    op_to_callable = {
        operator.add: lang.BinaryFn.add,
        operator.sub: lang.BinaryFn.sub,
        operator.mul: lang.BinaryFn.mul,
    }
    return op_to_callable[op]


@dataclasses.dataclass(frozen=True)
class _BinaryExpr(IndexExpr):
    """The representation for a binary operation.

    Attributes:
    op: A _BinaryOp representing the binary operation.
    a: An IndexExpr representing the first operand of the operation.
    b: An IndexExpr representing the second operand of the operation.
    """

    op: _BinaryOp
    a: IndexExpr
    b: IndexExpr

    def __post_init__(self) -> None:
        """Verifies that the operands being added are IndexExpr."""
        assert isinstance(self.a, IndexExpr) and isinstance(self.b, IndexExpr)

    def _emit_expression(
        self,
        expr_to_opnd: Dict[IndexExpr, lang.OperandDef],
        expr_to_info: _ExprInfoDict,
    ) -> lang.ScalarExpression:
        """Emits the expression tree and returns the expression."""
        # The current expression node is an internal node of the structured op.
        if self not in expr_to_opnd:
            a = self.a._emit_expression(expr_to_opnd, expr_to_info)
            b = self.b._emit_expression(expr_to_opnd, expr_to_info)
            return _op_to_callable(self.op)(a, b)

        # The current expression is a leaf node of the structured op. That is, it is
        # a temporary tensor generated by its child structured op.
        op_info = expr_to_info[self].structop_info
        assert op_info is not None
        dims = _mlir_dimensions_from_index_vars(op_info.dst_indices)
        return lang.TensorUse(expr_to_opnd[self], dims)

    def _visit(
        self, func: _ExprVisitor, args, *, leaf_checker: _SubtreeLeafChecker = None
    ) -> None:
        """A post-order visitor."""
        if leaf_checker is None or not leaf_checker(self, *args):
            self.a._visit(func, args, leaf_checker=leaf_checker)
            self.b._visit(func, args, leaf_checker=leaf_checker)
        func(self, *args)

    def dtype(self) -> DType:
        """Returns the data type of the binary operation."""
        return self.a.dtype()


def _validate_and_collect_dim_info(
    index_to_dim_info: Dict[IndexVar, _DimInfo],
    indices: Tuple[IndexVar, ...],
    dim_infos: Tuple[_DimInfo, ...],
    expr: _BinaryExpr,
) -> None:
    """Validates and collects the dimension information for an index notation.

    Validates (indices, dim_infos) against the information collected from other
    source operands and is represented by index_to_dim_info. In particular, we
    ensure that each IndexVar corresponds to only one dimension size. We also
    aggregate the new information represented in (indices, dim_infos) to
    index_to_dim_info.

    Args:
      index_to_dim: A dictionary of (IndexVar, _DimInfo) collected from the
        previous operands.
      indices: The IndexVars to be validated.
      dim_infos: The dimension information for the IndexVars to be validated.
      expr: The binary expression where (indices, dim_infos) is used.

    Raises:
      ValueError if there is any problem in the IndexVars or dimensional values.
    """
    assert len(indices) == len(dim_infos)
    for i, d in zip(indices, dim_infos):
        if i not in index_to_dim_info:
            index_to_dim_info[i] = d
        else:
            dim = index_to_dim_info[i].dim
            if dim == -1 or d.dim == -1:
                dim = dim if dim != -1 else d.dim
            elif dim != d.dim:
                raise ValueError(
                    f"Inconsistent source dimension for {i}: " f"{d.dim} vs {dim}"
                )
            mode_format = _mode_format_estimator(expr.op)(
                index_to_dim_info[i].mode_format, d.mode_format
            )
            index_to_dim_info[i] = _DimInfo(d.dim, mode_format)


def _validate_and_collect_expr_info(
    expr: IndexExpr,
    expr_to_info: _ExprInfoDict,
) -> None:
    """Validates dimension information and constructs _ExprInfo.

    Validates that dimensional values for the same IndexVar are the same. Collects
    a list of IndexVar used by the expression and their corresponding dimensional
    values. Constructs an _ExprInfo object to record the information for the
    IndexExpr.

    This routine is passed to the post-order visitor as an _ExprVisitor object.

    Args:
      expr: The IndexExpr being validated.
      expr_to_info: The dictionary of (IndexExpr, _ExprInfo) for recording the
        expression information.

    Raises:
      ValueError if there is any problem in the IndexVars or dimensional values.
    """
    # Objects of class Access can be shared by different expressions. Avoid
    # processing Access objects multiple times by skipping the processing if expr
    # is already in the dictionary.
    if expr in expr_to_info:
        return

    if isinstance(expr, IndexVar):
        src_indices = (expr,)  # A tuple with one element.
        dim_infos = (_get_dummy_dim_info(),)  # A tuple with one element.
    elif isinstance(expr, Access):
        src_indices = expr.indices
        src_dims = tuple(expr.tensor.shape)
        if expr.tensor.format is None:
            # Treat each dimension of a dense tensor as DENSE for the purpose of
            # calculating temporary tensor storage format.
            mode_formats = tuple([ModeFormat.DENSE] * len(src_dims))
        else:
            mode_formats = tuple(expr.tensor.format.format_pack.formats)
        assert len(src_dims) == len(mode_formats)
        dim_infos = tuple([_DimInfo(d, m) for d, m in zip(src_dims, mode_formats)])
    elif isinstance(expr, _UnaryExpr):
        a_info = expr_to_info[expr.a]
        index_to_dim_info = {i: d for i, d in zip(a_info.src_indices, a_info.dim_infos)}
        # Here we rely on the fact that dictionaries keep the insertion order for
        # keys and values.
        src_indices = tuple(index_to_dim_info.keys())
        dim_infos = tuple(index_to_dim_info.values())
    else:
        assert isinstance(expr, _BinaryExpr)
        a_info = expr_to_info[expr.a]
        index_to_dim_info = {i: d for i, d in zip(a_info.src_indices, a_info.dim_infos)}
        b_info = expr_to_info[expr.b]
        _validate_and_collect_dim_info(
            index_to_dim_info, b_info.src_indices, b_info.dim_infos, expr
        )
        # Here we rely on the fact that dictionaries keep the insertion order for
        # keys and values.
        src_indices = tuple(index_to_dim_info.keys())
        dim_infos = tuple(index_to_dim_info.values())

    expr_to_info[expr] = _ExprInfo(src_indices, dim_infos)


def _mark_structured_op_root(
    expr: IndexExpr,
    reduce_index: IndexVar,
    expr_to_info: _ExprInfoDict,
) -> None:
    """Identifies the root expression for a structured op in the linalg dialect.

    An linalg structured op can only perform reduction on the whole expression.
    For a TACO tensor algebra expression, the reduction on an IndexVar is done at
    the smallest expression that contains all the uses of the IndexVar. If such an
    expression is only part of the whole expression, we need to split this
    sub-expression tree out from its parent and implement the sub-expression as a
    structured op.

    This routine identifies the root expression node for performing a reduction on
    the given IndexVar. If the reduction of the given IndexVar should be performed
    on expression X, then the IndexVar is added to expr_to_info[X].reduce_indices

    Args:
      expr: The root IndexExpr for the tensor algebra expression.
      reduce_index: The IndexVar which we want to find out the proper expression
        to perform a reduction.
      expr_to_info: The dictionary to look up _ExprInfo for IndexExpr.

    Raises:
        ValueError: If the expression is not proper or not supported.
    """
    expr_info = expr_to_info[expr]
    if isinstance(expr, Access):
        # Handle simple reduction expression in the format of A[i] = B[i, j].
        if reduce_index in expr_info.src_indices:
            expr_info.reduce_indices.add(reduce_index)
        return
    elif isinstance(expr, IndexVar):
        # A[i] = B[i] + j is not allowed.
        raise ValueError(f"IndexVar is not part of the iteration domain: {expr}.")

    assert isinstance(expr, _BinaryExpr)
    a_info = expr_to_info[expr.a]
    b_info = expr_to_info[expr.b]

    if reduce_index in a_info.src_indices and reduce_index in b_info.src_indices:
        expr_info.reduce_indices.add(reduce_index)
        return

    if reduce_index in a_info.src_indices:
        _mark_structured_op_root(expr.a, reduce_index, expr_to_info)
    elif reduce_index in b_info.src_indices:
        _mark_structured_op_root(expr.b, reduce_index, expr_to_info)
    else:
        assert False, "Unreachable path"


def _accumulate_reduce_indices(
    expr: IndexExpr,
    expr_to_info: _ExprInfoDict,
) -> None:
    """Propagates reduction indices from child expressions to parent expressions.

    This routine is passed to the post-order visitor as an _ExprVisitor object.

    Args:
      expr: The IndexExpr being visited.
      expr_to_info: The dictionary of (IndexExpr, _ExprInfo) for recording the
        expression information.
    """
    assert expr in expr_to_info
    expr_info = expr_to_info[expr]

    if isinstance(expr, _BinaryExpr):
        a_info = expr_to_info[expr.a]
        b_info = expr_to_info[expr.b]
        expr_info.acc_reduce_indices = (
            a_info.acc_reduce_indices
            | b_info.acc_reduce_indices
            | expr_info.reduce_indices
        )
    elif isinstance(expr, _UnaryExpr):
        a_info = expr_to_info[expr.a]
        expr_info.acc_reduce_indices = (
            a_info.acc_reduce_indices | expr_info.reduce_indices
        )
    elif isinstance(expr, IndexVar):
        # If an IndexVar is reducing itself, it means the IndexVar is outside the
        # iteration domain. This usage is now allowed and we should emit an error
        # before reaching here.
        assert not expr_info.reduce_indices
    else:
        assert isinstance(expr, Access)
        # Handle simple reduction expression in the format of A[i] = B[i, j].
        expr_info.acc_reduce_indices = expr_info.reduce_indices


def _gather_structured_op(
    expr: IndexExpr,
    expr_to_info: _ExprInfoDict,
    structop_roots: List[IndexExpr],
) -> None:
    """Adds structured op root expression information to structop_roots.

    This routine is passed to the post-order visitor as an _ExprVisitor object.

    Args:
      expr: The IndexExpr being visited.
      expr_to_info: The dictionary to look up _ExprInfo for IndexExpr.
      structop_roots: The resulting list of IndexExpr that are the roots for
        linalg structured ops.
    """
    if not expr_to_info[expr].reduce_indices:
        return

    # If the expression is the root for reducing some indices, collect the indices
    # and dimensions for the reduction result.
    dst_indices = []
    dst_dims = []
    mode_fmts = []
    for i, d in zip(expr_to_info[expr].src_indices, expr_to_info[expr].dim_infos):
        if i not in expr_to_info[expr].acc_reduce_indices:
            dst_indices.append(i)
            dst_dims.append(d.dim)
            mode_fmts.append(d.mode_format)

    # Add the information to the dictionary.
    op_info = _StructOpInfo(
        tuple(dst_indices),
        tuple(dst_dims),
        expr.dtype(),
        f"temp{len(structop_roots)}",
        _make_format(mode_fmts),
    )
    expr_to_info[expr].structop_info = op_info

    # Add the expression to the list of structured op roots.
    structop_roots.append(expr)


def _is_structured_op_leaf(
    expr: IndexExpr,
    root: IndexExpr,
    expr_to_info: _ExprInfoDict,
    *unused_args,
) -> bool:
    """Returns true iff the expression is a leaf node for a structured op.

    The root of a structured op is a leaf of its parent structured op that uses
    its result. An expression node is a leaf node for the current structured op if
    it is an Access node or the root for a structured op that is not the current
    structured op.

    This routine is passed to the post-order visitor as a _SubtreeLeafChecker
    object. Because the post-order visitor pass the same parameters to both
    _SubtreeLeafChecker and _ExprVisitor, this routine may received unused
    parameters.

    Args:
      expr: The IndexExpr being visited.
      root: The root of the current structured op.
      expr_to_info: The dictionary to look up _ExprInfo for IndexExpr.

    Returns:
      True if the current IndexExpr is a leaf for the current structured op.
    """
    return (
        (expr != root and expr_to_info[expr].structop_info is not None)
        or isinstance(expr, Access)
        or isinstance(expr, IndexVar)
    )


def _gather_structured_op_input(
    expr: IndexExpr,
    root: IndexExpr,
    expr_to_info: _ExprInfoDict,
    structop_inputs: List[IndexExpr],
) -> None:
    """Adds the IndexExpr to structop_inputs if it is an input.

    If the current IndexExpr is an input for the current structured op, adds it to
    structop_inputs. The current IndexExpr is an input if it is an Access node or
    if it is the root for a structured op that is not the current structured op.

    This routine is passed to the post-order visitor as an _ExprVisitor object.

    Args:
      expr: The IndexExpr being visited.
      root: The root of the current structured op.
      expr_to_info: The dictionary to look up _ExprInfo for IndexExpr.
      structop_inputs: The resulting list of IndexExpr that provide input to the
        current structured op.
    """
    if (
        (expr != root or isinstance(expr, Access)) and expr not in structop_inputs
    ) and (
        isinstance(expr, Access)
        or (expr in expr_to_info and expr_to_info[expr].structop_info)
    ):
        structop_inputs.append(expr)


def _emit_structured_op_input(
    expr: IndexExpr,
    expr_to_info: _ExprInfoDict,
    op_def: lang.LinalgOpDef,
) -> lang.OperandDef:
    """Emits OperandDef in the linalg dialect for the input IndexExpr.

    Args:
      expr: The input IndexExpr for the current structured op.
      expr_to_info: The dictionary to look up _ExprInfo for IndexExpr.
      op_def: The linalg operation for the current structured op.

    Returns:
      An OperandDef in the linalg dialect for the input IndexExpr.
    """
    op_info = expr_to_info[expr].structop_info
    if op_info and not isinstance(expr, Access):
        # The input is a temporary tensor produced by another structured op.
        indices = op_info.dst_indices
        name = op_info.dst_name
    else:
        # The input is a user provided tensor.
        assert isinstance(expr, Access)
        indices = expr.indices
        name = expr.tensor.name

    dim_sym = _mlir_symbols_from_index_vars(indices)
    opnd = lang.OperandDef(lang.OperandKind.INPUT_TENSOR, lang.T, dim_sym)
    op_def.add_operand(name, opnd)
    return opnd


def _check_and_build_unary(a: Access, op: _UnaryOp) -> "_UnaryExpr":
    """Build a unary operation ceil.

    Args:
      a: The operand, which could be any Python object from user inputs.
      op: An _UnaryOp object representing the operation.

    Returns:
      A _UnaryExpr object representing the operation.

    Raises:
      ValueError: If a is not an IndexExpr.
    """
    if not isinstance(a, Access):
        raise ValueError(f"Expected an Access Operand: {a}")
    return a._build_unary_expr(op)


def ceil(a: Access) -> "_UnaryExpr":
    """Defines the operation ceil.

    Args:
      a: The operand, which could be any Python object from user inputs.

    Returns:
      A _UnaryExpr object representing the operation.

    Raises:
      ValueError: If a is not an IndexExpr.
    """
    return _check_and_build_unary(a, _op_ceil)


def floor(a: Access) -> "_UnaryExpr":
    """Defines the operation floor.

    Args:
      a: The operand, which could be any Python object from user inputs.

    Returns:
      A _UnaryExpr object representing the operation.

    Raises:
      ValueError: If a is not an IndexExpr.
    """
    return _check_and_build_unary(a, _op_floor)