1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
|
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
"""Experimental MLIR-PyTACO with sparse tensor support.
See http://tensor-compiler.org/ for TACO tensor compiler.
This module implements the Python classes for PyTACO index notation. These
include classes for data types, tensor dimension formats (aka mode formats),
tensor dimension orderings (aka mode ordering), tensor storage formats, and
tensors.
The PyTACO API doesn't follow the naming conversion required by the style guide
for this module. As such, we first implement the supporting classes and routines
following the style guide, and then define the type aliases and constants to
support the PyTACO API in the pytaco_api module.
"""
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union
import abc
import ctypes
import dataclasses
import enum
import numpy as np
import functools
import operator
import os
import threading
# Import MLIR related modules.
from mlir import execution_engine
from mlir import ir
from mlir import runtime
from mlir.dialects import arith
from mlir.dialects import bufferization
from mlir.dialects import builtin
from mlir.dialects import func
from mlir.dialects import linalg
from mlir.dialects import sparse_tensor
from mlir.dialects import tensor
from mlir.dialects.linalg.opdsl import lang
from . import mlir_pytaco_utils as utils
# TACO naming prefixes.
_TACO_INDEX_PREFIX = "i"
_TACO_TENSOR_PREFIX = "A"
# Bitwidths for positions and coordinates.
_POS_WIDTH = 0
_CRD_WIDTH = 0
# The entry point to the JIT compiled program.
_ENTRY_NAME = "main"
# Type aliases for type annotation.
_UnaryOp = Callable[[Any], Any]
_BinaryOp = Callable[[Any, Any], Any]
_ExprVisitor = Callable[..., None]
_ExprInfoDict = Dict["IndexExpr", "_ExprInfo"]
_LogicalOp = Callable[[bool, bool], bool]
_ModeFormatOp = Callable[["ModeFormat", "ModeFormat"], "ModeFormat"]
_SubtreeLeafChecker = Optional[Callable[..., bool]]
class Type(enum.Enum):
"""The data types supported by TACO.
We use numpy data types to implement the enum data types.
"""
INT8 = np.int8
INT16 = np.int16
INT32 = np.int32
INT64 = np.int64
FLOAT16 = np.float16
FLOAT32 = np.float32
FLOAT64 = np.float64
COMPLEX64 = np.complex64
COMPLEX128 = np.complex128
# All floating point type enums.
_FLOAT_TYPES = (Type.FLOAT16, Type.FLOAT32, Type.FLOAT64)
# All integral type enums.
_INT_TYPES = (Type.INT8, Type.INT16, Type.INT32, Type.INT64)
# All complex type enums.
_COMPLEX_TYPES = (Type.COMPLEX64, Type.COMPLEX128)
# Type alias for any numpy type used to implement the runtime support for the
# enum data types.
_AnyRuntimeType = Union[
np.int8,
np.int16,
np.int32,
np.int64,
np.float16,
np.float32,
np.float64,
np.complex64,
np.complex128,
]
@dataclasses.dataclass(frozen=True)
class DType:
"""The data type class.
We support the TACO API dtype class with an alias of this class.
The following methods are defined by the TACO API:
is_float: Returns whether the data type represents a floating point value.
is_int: Returns whether the data type represents an integral value.
Attributes:
kind: A Type enum representing the data type.
value: The numpy data type for the TACO data type.
"""
kind: Type = Type.FLOAT32
def is_float(self) -> bool:
"""Returns whether the data type represents a floating point value."""
return self.kind in _FLOAT_TYPES
def is_int(self) -> bool:
"""Returns whether the data type represents an integral value."""
return self.kind in _INT_TYPES
def is_complex(self) -> bool:
"""Returns whether the data type represents a complex value."""
return self.kind in _COMPLEX_TYPES
@property
def value(self) -> _AnyRuntimeType:
"""Returns the numpy dtype for the data type."""
return self.kind.value
def _dtype_to_mlir_str(dtype: DType) -> str:
"""Returns the MLIR string for the given dtype."""
dtype_to_str = {
Type.INT16: "i8",
Type.INT16: "i16",
Type.INT32: "i32",
Type.INT64: "i64",
Type.FLOAT16: "f16",
Type.FLOAT32: "f32",
Type.FLOAT64: "f64",
Type.COMPLEX64: "complex<f32>",
Type.COMPLEX128: "complex<f64>",
}
return dtype_to_str[dtype.kind]
def _nptype_to_taco_type(ty: np.dtype) -> DType:
"""Returns the TACO type for the given numpy type."""
nptype_to_dtype = {
np.int8: Type.INT8,
np.int16: Type.INT16,
np.int32: Type.INT32,
np.int64: Type.INT64,
np.float16: Type.FLOAT16,
np.float32: Type.FLOAT32,
np.float64: Type.FLOAT64,
np.complex64: Type.COMPLEX64,
np.complex128: Type.COMPLEX128,
}
return DType(nptype_to_dtype[ty])
def _mlir_type_from_taco_type(dtype: DType) -> ir.Type:
"""Returns the MLIR type corresponding to the given TACO type."""
dtype_to_irtype = {
Type.INT8: ir.IntegerType.get_signless(8),
Type.INT16: ir.IntegerType.get_signless(16),
Type.INT32: ir.IntegerType.get_signless(32),
Type.INT64: ir.IntegerType.get_signless(64),
Type.FLOAT16: ir.F16Type.get(),
Type.FLOAT32: ir.F32Type.get(),
Type.FLOAT64: ir.F64Type.get(),
Type.COMPLEX64: ir.ComplexType.get(ir.F32Type.get()),
Type.COMPLEX128: ir.ComplexType.get(ir.F64Type.get()),
}
return dtype_to_irtype[dtype.kind]
def _ctype_pointer_from_array(array: np.ndarray) -> ctypes.pointer:
"""Returns the ctype pointer for the given numpy array."""
return ctypes.pointer(ctypes.pointer(runtime.get_ranked_memref_descriptor(array)))
class ModeFormat(enum.Enum):
"""The tensor dimension storage format class.
We support the TACO API mode_format class with an alias of this class.
In TACO, a tensor dimension is called a mode and the storage format for a
tensor dimension is called a mode format.
"""
DENSE = sparse_tensor.DimLevelType.dense
COMPRESSED = sparse_tensor.DimLevelType.compressed
def _mode_format_operation(a: ModeFormat, b: ModeFormat, op: _LogicalOp) -> ModeFormat:
"""Implements the given operator on ModeFormat."""
return (
ModeFormat.COMPRESSED
if op(a == ModeFormat.COMPRESSED, b == ModeFormat.COMPRESSED)
else ModeFormat.DENSE
)
def _mode_format_estimator(op: _BinaryOp) -> _ModeFormatOp:
"""Produces a ModeFormat operator for the given binary operator.
The ModeFormat operator is used as a heuristic to derive the destination
dimension sparsity from the source dimension sparsity. In particular, if the
binary operator produces a disjunction of the zero values from its source
operands, such as the MUL operator, we return a ModeFormat operator that
uses operator.or_. That is, we estimate that a dimension for the MUL
operation result to be sparse if either of its source operands is sparse.
On the other hand, if the binary operator produces a conjunction of the
zero values from its source operands, such as the ADD operator, we return
a ModeFormat operator that uses operator.and_. In this case, we estimate
that a dimension for the ADD operation result to be sparse if both of its
source operands are sparse.
Args:
op: A _BinaryOp object representing a supporting operator on tensors.
Returns:
A ModeFormatOp for estimating the destination dimension sparsity from
the source dimension sparsity.
"""
conjunction = functools.partial(_mode_format_operation, op=operator.and_)
disjunction = functools.partial(_mode_format_operation, op=operator.or_)
return conjunction if op(0, 1) != 0 else disjunction
def _all_instance_of(collection: Iterable, cls: Any) -> bool:
"""Returns true if all elements of the iterable is an instance of cls."""
return all(isinstance(e, cls) for e in collection)
def _identity_ordering(rank: int) -> List[int]:
"""Returns the identity ordering for tensor of given rank."""
return list(range(rank))
@dataclasses.dataclass(frozen=True)
class ModeOrdering:
"""The tensor dimension ordering class.
We support the TACO API mode_ordering class with an alias of this class.
Attributes:
ordering: A list of integers representing the ordering of the tensor
dimensions.
"""
ordering: List[int]
def __post_init__(self) -> None:
"""Verifies the value in ordering.
Raises:
ValueError: If ordering is not a list of integers.
"""
if not isinstance(self.ordering, list) or not _all_instance_of(
self.ordering, int
):
raise ValueError("Ordering must be a list of integers: " f"{self.ordering}")
# Check that ordering is a permutation of the dimension numbers.
if sorted(self.ordering) != _identity_ordering(self.rank()):
raise ValueError(
f"Invalid ordering: {self.ordering} != "
f"permutation{_identity_ordering(self.rank())}."
)
def rank(self) -> int:
"""Returns the number of dimensions represented by the ordering."""
return len(self.ordering)
@dataclasses.dataclass(frozen=True)
class ModeFormatPack:
"""The tensor dimension format class.
We support the TACO API mode_format_pack class with an alias of this class.
The storage format of a tensor contains one mode_format for each tensor
dimension.
Attributes:
formats: A list of ModeFormat representing the storage format for each of
the tensor dimension.
"""
formats: List[ModeFormat]
def __post_init__(self) -> None:
"""Verifies the value in formats.
Raises:
ValueError: If formats is not a list of ModeFormats.
"""
if not isinstance(self.formats, list) or not _all_instance_of(
self.formats, ModeFormat
):
raise ValueError("Formats must be a list of ModeFormat: " f"{self.formats}")
def rank(self) -> int:
"""Returns the number of dimensions represented by the format pack."""
return len(self.formats)
@dataclasses.dataclass
class Format:
"""The tensor format class defined by the TACO API.
Attributes:
format_pack: A ModeFormatPack representing the storage format for the tensor
dimensions.
ordering: A ModeOrdering representing the tensor dimension ordering in the
storage.
"""
format_pack: ModeFormatPack
ordering: Optional[ModeOrdering] = None
def __post_init__(self) -> None:
"""Verifies and fixes up the values in format_pack and ordering.
Verifies and fixes up the values in format_pack and ordering to supports the
initializer syntax defined by the TACO API. If format_pack is a list of
ModeFormat, replaces it with ModeFormatPack constructed from the list. If
ordering is not provided, set ordering to the natural ordering for the rank
corresponding to format_pack.
Raises:
ValueError: If format_pack is not an instance of ModeFormatPack or if
ordering is not an instance of ModeOrdering.
"""
if isinstance(self.format_pack, list):
if not _all_instance_of(self.format_pack, ModeFormat):
raise ValueError(f"Expected a list of ModeFormat: {self.format_pack}")
self.format_pack = ModeFormatPack(self.format_pack)
if not isinstance(self.format_pack, ModeFormatPack):
raise ValueError(f"Expected ModeFormatpack: {self.format_pack}")
if self.ordering is None:
self.ordering = ModeOrdering(list(range(self.rank())))
if isinstance(self.ordering, list):
if not _all_instance_of(self.ordering, int):
raise ValueError(f"Expected a list of integer: {self.ordering}")
self.ordering = ModeOrdering(self.ordering)
if not isinstance(self.ordering, ModeOrdering):
raise ValueError(f"Expected ModeOrdering: {self.ordering}")
if self.format_pack.rank() != self.ordering.rank():
raise ValueError(
"Inconsistent ModeFormatPack and ModeOrdering: "
f"len({self.format_pack}) != "
f"len({self.ordering})"
)
def rank(self) -> int:
"""Returns the number of dimensions represented by the format."""
return self.format_pack.rank()
def get_permutation_and_sparsity(self) -> Tuple[np.ndarray, np.ndarray]:
"""Constructs the numpy arrays for the permutation and sparsity."""
perm = np.array(self.ordering.ordering, dtype=np.ulonglong)
a = [f.value for f in self.format_pack.formats]
sparse = np.array(a, dtype=np.uint8)
return (perm, sparse)
def mlir_tensor_attr(self) -> Optional[sparse_tensor.EncodingAttr]:
"""Constructs the MLIR attributes for the tensor format."""
order = (
range(self.rank()) if (self.ordering is None) else self.ordering.ordering
)
mlir_storage_format = [f.value for f in self.format_pack.formats]
return sparse_tensor.EncodingAttr.get(
mlir_storage_format,
ir.AffineMap.get_permutation(order),
_POS_WIDTH,
_CRD_WIDTH,
)
def _make_format(
formats: List[ModeFormat], ordering: Optional[List[int]] = None
) -> Format:
"""Constructs a format from a list of ModeFormat and an optional ordering.
Args:
formats: A list of ModeFormat, one for each dimension of a tensor.
ordering: An optional list of integer, for the ordering of the tensor
dimensions. When an ordering is not given, the identity ordering is used.
Returns:
A tensor format object.
Raises:
ValueError: If formats is not a list of ModeFormat or the length of formats
is not consistent with the len of ordering.
"""
ordering = ordering or _identity_ordering(len(formats))
return Format(ModeFormatPack(formats), ModeOrdering(ordering))
class IndexExpr(abc.ABC):
"""The index notation base class.
We support the TACO API index_expression class with an alias of this class.
"""
def _verify_operand_and_build_expr(self, rhs, op: _BinaryOp) -> "_BinaryExpr":
"""Verifies the RHS operand and returns a binary expression.
Args:
rhs: The RHS of the binary operation, which could be any Python object
from user inputs.
op: A _BinaryOp object representing the binary operator.
Raises:
ValueError: If rhs is not an IndexExpr.
"""
if not isinstance(rhs, IndexExpr):
raise ValueError(f"Expected IndexExpr: {rhs}")
return _BinaryExpr(op, self, rhs)
def _build_unary_expr(self, op: _UnaryOp) -> "_UnaryExpr":
"""Build a unary expression.
Args:
op: A _UnaryOp object representing the unary operation.
"""
return _UnaryExpr(op, self)
def __add__(self, rhs) -> "_BinaryExpr":
"""Defines the operator +.
Args:
rhs: The value being added, which could be any Python object from user
inputs.
Returns:
A _BinaryExpr object representing the operation.
Raises:
ValueError: If rhs is not an IndexExpr.
"""
return self._verify_operand_and_build_expr(rhs, operator.add)
def __mul__(self, rhs) -> "_BinaryExpr":
"""Defines the operator *.
Args:
rhs: The value being multiplied, which could be any Python object from
user inputs.
Returns:
A _BinaryExpr object representing the operation.
Raises:
ValueError: If rhs is not an IndexExpr.
"""
return self._verify_operand_and_build_expr(rhs, operator.mul)
def __abs__(self) -> "_UnaryExpr":
"""Defines the operator abs.
Returns:
A _UnaryExpr object representing the operation.
"""
return self._build_unary_expr(operator.abs)
def __neg__(self) -> "_UnaryExpr":
"""Defines the operator neg.
Returns:
A _UnaryExpr object representing the operation.
"""
return self._build_unary_expr(operator.neg)
def __sub__(self, rhs) -> "_BinaryExpr":
"""Defines the operator -.
Args:
rhs: The value being subtracted, which could be any Python object from
user inputs.
Returns:
A _BinaryExpr object representing the operation.
Raises:
ValueError: If rhs is not an IndexExpr.
"""
return self._verify_operand_and_build_expr(rhs, operator.sub)
@abc.abstractmethod
def _visit(
self, func: _ExprVisitor, args, *, leaf_checker: _SubtreeLeafChecker = None
) -> None:
"""A post-order visitor.
Args:
func: A callable applied to each node in the expression tree.
args: The variable-length arguments passed to the callable. These
arguments are grouped as an iterable and will be unpacked before passing
to the callable. This is to enable the keyword argument only syntax
after this argument.
leaf_checker: A callable object to identify nodes that should be treated
as leaf nodes to support partial tree visiting.
"""
pass
@abc.abstractmethod
def _emit_expression(
self,
expr_to_opnd: Dict["IndexExpr", lang.OperandDef],
expr_to_info: _ExprInfoDict,
) -> lang.ScalarExpression:
"""Emits MLIR for the expression tree.
Args:
expr_to_opnd: A dictionary for looking up structured op input operands for
the input nodes of the structured op.
expr_to_info: A dictionary for looking up code generation information for
expressions.
Returns:
A linalg dialect ScalarExpression for the expression.
"""
pass
@abc.abstractmethod
def dtype(self) -> DType:
"""Returns the data type for the result of the expression."""
pass
def _emit_structured_op(self, expr_to_info: _ExprInfoDict) -> None:
"""Emits a structured op in the linalg dialect for the expression tree.
We define a DefineOpcallable in the domain specific language for the linalg
dialect and execute the callable to generate the structured op. Self is the
root of the expression tree for the structured op.
Args:
expr_to_info: A dictionary for looking up code generation information for
expressions.
"""
op_info = expr_to_info[self].structop_info
op_name = op_info.dst_name
op_def = lang.LinalgOpDef(name=op_name)
op_callable = lang.DefinedOpCallable(op_name, op_def)
# Collect the input expression nodes for the structured op.
expr_inputs = []
self._visit(
_gather_structured_op_input,
(self, expr_to_info, expr_inputs),
leaf_checker=_is_structured_op_leaf,
)
# Create a linalg structured op operand for each input expression node and
# build a dictionary for looking up the information.
expr_to_input_opnd = {
e: _emit_structured_op_input(e, expr_to_info, op_def) for e in expr_inputs
}
# Emit the expression tree, which produces the value assigned to the
# destination tensor.
value = self._emit_expression(expr_to_input_opnd, expr_to_info)
# Emit the structured op representation for the destination tensor.
dst_opnd = _emit_operand(
op_def,
op_info.dst_indices,
op_info.dst_name,
lang.OperandKind.OUTPUT_TENSOR,
)
dst_dim_syms = _mlir_dimensions_from_index_vars(op_info.dst_indices)
dst_use = lang.TensorUse(dst_opnd, dst_dim_syms)
expr_info = expr_to_info[self]
# If the structured op reduces some indices, explicitly represent the
# reduction. This is done by generating a ReduceFn for the dimensions being
# reduced in the linalg dialect and calling the function with the value
# being reduced. We only support add reduction currently.
if expr_info.reduce_indices:
reduce_dims = _mlir_dimensions_from_index_vars(expr_info.reduce_indices)
value = lang.ReduceFn.add[reduce_dims](value)
# Emit the assignment as a comprehension in the linalg dialect.
comp = lang.Comprehension((dst_use, value))
op_def.comprehensions.append(comp)
# The structured op in the linalg dialect requires an explicit
# initialization for the destination tensor. Emit MLIR to initialize the
# destination tensor.
init = op_info.emit_tensor_init()
# Collect MLIR values for the linalg input operands, with the assumption
# that dictionary preserves the insertion order.
args = [
expr_to_info[expr].mlir_value for expr, opnd in expr_to_input_opnd.items()
]
# Execute the DefineOpcallable object for the linalg dialect operation to
# emit MLIR for the linalg structured op.
expr_info.mlir_value = op_callable(*args, outs=[init])
def _identify_structured_ops(
self,
expr_to_info: _ExprInfoDict,
dst: "Tensor",
dst_indices: Tuple["IndexVar", ...],
) -> List["IndexExpr"]:
"""Returns expression nodes for the roots of the identified structured ops.
A structured op in the linalg dialect only supports reduction performed on
the whole expression. If the expression tree contains reduction that are
performed on part of the expression tree, the expression tree needs to be
implemented with multiple structured ops. This routine identifies all the
expression nodes that contain reduction as the root of structured ops in the
linalg dialect.
Args:
expr_to_info: A dictionary for looking up code generation information for
expressions.
dst: A destination Tensor that accepts the value of the expression tree.
dst_indices: The indices used by the destination index expression.
Returns:
An ordered list of IndexExpr for the root expressions of the structured
ops, where child expressions go before parent expressions that use their
results.
"""
reduce_indices = tuple(set(expr_to_info[self].src_indices) - set(dst_indices))
for reduce_index in reduce_indices:
_mark_structured_op_root(self, reduce_index, expr_to_info)
self._visit(_accumulate_reduce_indices, (expr_to_info,))
structop_roots = []
self._visit(_gather_structured_op, (expr_to_info, structop_roots))
# Handle the root of the top level expression.
if not structop_roots or structop_roots[-1] != self:
# The top level expression is not a reduction. Add the top level
# expression as a structured op root.
structop_roots.append(self)
# Use user specified information for the destination tensor to build an
# _StructOpInfo for the top level expression.
expr_to_info[self].structop_info = _StructOpInfo(
dst_indices, tuple(dst.shape), dst.dtype, dst.name, dst.format
)
return structop_roots
def _validate_and_collect_expr_info(
self,
dst: "Tensor",
dst_indices: Tuple["IndexVar", ...],
) -> _ExprInfoDict:
"""Propagates expression information for validation.
Propagates the indices used by child expression nodes to parent expression
nodes. Also collects and validates the sizes for the dimensions
corresponding to the indices.
Args:
dst: A destination Tensor that accepts the value of the expression tree.
dst_indices: The indices used by the destination index expression.
Raises:
ValueError if there is any inconsistency in indices or dimensional
values.
Returns:
A dictionary of (IndexExpr, _ExprInfo).
"""
expr_to_info = {}
# Validate the expression tree and construct expression information.
self._visit(_validate_and_collect_expr_info, (expr_to_info,))
# Validate the destination dimension information.
info = expr_to_info[self]
index_to_dim_info = {i: d for i, d in zip(info.src_indices, info.dim_infos)}
for (
i,
d,
) in zip(dst_indices, dst.shape):
if i not in index_to_dim_info:
raise ValueError(
"Destination IndexVar not used in the " f"source expression: {i}"
)
else:
if d != index_to_dim_info[i].dim and index_to_dim_info[i].dim != -1:
raise ValueError(
f"Inconsistent destination dimension for {i}: "
f"{d} vs {index_to_dim_info[i].dim}"
)
return expr_to_info
def _emit_assignment(
self,
module: ir.Module,
dst: "Tensor",
dst_indices: Tuple["IndexVar", ...],
expr_to_info: _ExprInfoDict,
input_accesses: List["Access"],
) -> None:
"""Emits an MLIR function for assigning the expression to a tensor."""
input_types = [a.tensor.mlir_tensor_type() for a in input_accesses]
# Build the kernel for the operations.
with ir.InsertionPoint(module.body):
@func.FuncOp.from_py_func(*input_types, name=_ENTRY_NAME)
def linalg_funcop(*args):
# Set up the mapping from the Access nodes to their MLIR values.
for e, mlir in zip(input_accesses, args):
expr_to_info[e].mlir_value = mlir
# Emit structured ops in the linalg dialect to implement the assignment.
for structop_root in self._identify_structured_ops(
expr_to_info, dst, dst_indices
):
structop_root._emit_structured_op(expr_to_info)
dst._record_stats(expr_to_info[structop_root].structop_info)
# The function returns the MLIR value of the root expression.
return expr_to_info[self].mlir_value
linalg_funcop.func_op.attributes[
"llvm.emit_c_interface"
] = ir.UnitAttr.get()
def get_input_accesses(self) -> List["Access"]:
"""Compute the list of input accesses for the expression."""
input_accesses = []
self._visit(_gather_input_accesses_index_vars, (input_accesses,))
return input_accesses
def compile(
self,
dst: "Tensor",
dst_indices: Tuple["IndexVar", ...],
) -> execution_engine.ExecutionEngine:
"""Compiles the tensor assignment dst[dst_indices] = expression.
Args:
dst: The destination tensor.
dst_indices: The tuple of IndexVar used to access the destination tensor.
Returns:
The execution engine for the tensor assignment.
Raises:
ValueError: If the expression is not proper or not supported.
"""
expr_to_info = self._validate_and_collect_expr_info(dst, dst_indices)
input_accesses = self.get_input_accesses()
# Build and compile the module to produce the execution engine.
with ir.Context(), ir.Location.unknown():
module = ir.Module.create()
self._emit_assignment(
module, dst, dst_indices, expr_to_info, input_accesses
)
engine = utils.compile_and_build_engine(module)
return engine
class _AtomicCounter:
"""An atomic counter."""
def __init__(self):
self._counter = 0
self._counter_lock = threading.Lock()
def increment(self) -> int:
"""Increments the counter by one and returns the old value."""
old_value = self._counter
with self._counter_lock:
self._counter = self._counter + 1
return old_value
class IndexVar(IndexExpr):
"""The tensor index class.
We support the TACO API index_var class with an alias of this class.
An IndexVar object represents an index variable in tensor index notation.
Attributes:
name: A unique string name of the IndexVar.
"""
_counter = _AtomicCounter()
def __init__(self):
id = self._counter.increment()
self._name = f"{_TACO_INDEX_PREFIX}{id}"
def __repr__(self) -> str:
return f"IndexVar(name={repr(self._name)})"
@property
def name(self) -> str:
"""Returns the name of the IndexVar."""
return self._name
def _visit(
self, func: _ExprVisitor, args, *, leaf_checker: _SubtreeLeafChecker = None
) -> None:
"""A post-order visitor."""
if leaf_checker:
assert leaf_checker(self, *args)
func(self, *args)
def _emit_expression(
self,
expr_to_opnd: Dict[IndexExpr, lang.OperandDef],
expr_to_info: _ExprInfoDict,
) -> lang.ScalarExpression:
"""Emits a index value casted to the data type of the tensor expression."""
dim = getattr(lang.D, self.name)
index = lang.index(dim)
int_value = lang.TypeFn.cast_unsigned(lang.TV.I64, index)
return lang.TypeFn.cast_unsigned(lang.T, int_value)
def dtype(self) -> DType:
"""Returns the data type for the index value.
This is unreachable for IndexVar.
"""
assert 0
def get_index_vars(n: int) -> List[IndexVar]:
"""Returns a list of n IndexVar.
This routine is defined by the TACO API.
Args:
n: An integer representing the number of IndexVar to get.
Returns:
A list of IndexVar.
Raises:
ValueError: if n is not a positive integer.
"""
if not isinstance(n, int) or n <= 0:
raise ValueError(f"Expected an integer: {n}.")
# If lock contention ever becomes an issue, we could implement a bulk getter
# that returns a range by only claiming the lock once.
return [IndexVar() for i in range(n)]
def _mlir_symbols_from_index_vars(
index_vars: Tuple[IndexVar, ...]
) -> Tuple[lang.SymbolDef, ...]:
"""Returns a tuple of MLIR symbols for the given tuple of index_var."""
return tuple(getattr(lang.S, i.name) for i in index_vars)
def _mlir_dimensions_from_index_vars(
index_vars: Tuple[IndexVar, ...]
) -> Tuple[lang.DimDef, ...]:
"""Returns a tuple of MLIR dimensions for the given tuple of index_var."""
return tuple(getattr(lang.D, i.name) for i in index_vars)
def _mlir_tensor_type(
dtype: DType, shape: Tuple[int, ...], attr: Optional[sparse_tensor.EncodingAttr]
) -> ir.RankedTensorType:
"""Returns an MLIR tensor type.
Args:
dtype: An DType object for the element data type of the tensor.
shape: A tuple of integer for the shape of the tensor.
attr: An optional MLIR sparse tensor attribute, only provided if the tensor
is a sparse tensor.
Returns:
An MLIR ranked tensor type.
"""
ir_type = _mlir_type_from_taco_type(dtype)
return ir.RankedTensorType.get(shape, ir_type, attr)
@dataclasses.dataclass(frozen=True)
class _StructOpInfo:
"""Information for generating a structured op in the linalg dialect.
This information is associated with an expression node that serves as the
root for an expression subtree implemented with a structured op.
Attributes:
dst_indices: A tuple of IndexVar, representing the result dimensions of the
structured op. This is used to construct the temporary variable for the
tensor to hold the structured op result.
dst_dims: A tuple of int, representing the result shape of the structured
op.
dst_dtype: A DType representing the data type of the structured op result.
dst_name: A string representing the name of the structured op result.
dst_format: An optional Format object representing the destination tensor
format. None represents a true dense tensor.
"""
dst_indices: Tuple[IndexVar, ...]
dst_dims: Tuple[int, ...]
dst_dtype: DType
dst_name: str
dst_format: Optional[Format]
def __post_init__(self) -> None:
"""Verifies the integrity of the attribute values."""
assert len(self.dst_indices) == len(self.dst_dims)
def emit_tensor_init(self) -> ir.RankedTensorType:
"""Returns an initialization for the destination tensor."""
if self.dst_format is None or self.dst_format.rank() == 0:
# Initialize the dense tensor.
ir_type = _mlir_type_from_taco_type(self.dst_dtype)
empty = tensor.EmptyOp(self.dst_dims, ir_type).result
zero = arith.ConstantOp(ir_type, 0.0)
return linalg.fill(zero, outs=[empty])
# Initialize the sparse tensor.
mlir_type = _mlir_tensor_type(
self.dst_dtype, self.dst_dims, self.dst_format.mlir_tensor_attr()
)
index_type = ir.IndexType.get()
return bufferization.AllocTensorOp(mlir_type, [], None, None, None)
class _Stats:
"""Information to describe how a tensor expression is implemented.
Currently, we only record the temporary tensors introduced for splitting the
original expression.
"""
def __init__(self):
self._temps = []
def __repr__(self) -> str:
return f"_Stats({repr(self._temps)})"
def add_element(self, structop: _StructOpInfo):
"""Adds a temporary tensor."""
self._temps.append(structop)
def get_total(self) -> int:
"""Gets the total number of temporary tensors."""
return len(self._temps)
def _get_element(self, idx: int) -> _StructOpInfo:
"""Gets the ith temporary tensor."""
assert idx < self.get_total()
return self._temps[idx]
def get_dimensions(self, idx: int) -> Tuple[int]:
"""Gets the dimensions for the ith temporary tensor."""
return self._get_element(idx).dst_dims
def get_formats(self, idx: int) -> Tuple[ModeFormat]:
"""Gets the ModeFormats for the ith temporary tensor."""
return tuple(self._get_element(idx).dst_format.format_pack.formats)
class _SparseValueInfo(enum.Enum):
"""Describes how a sparse tensor value is stored.
_UNPACKED: The sparse tensor value is stored as (coordnates, values) in
Python.
_PACKED: The sparse tensor value is stored as a C pointer to a packed MLIR
sparse tensor.
"""
_UNPACKED = 0
_PACKED = 1
@dataclasses.dataclass(frozen=True)
class _Assignment:
"""Records an assignment to a tensor T as T[indices] = expression."""
indices: Tuple["IndexVar", ...]
expression: "IndexExpr"
class Tensor:
"""The tensor class.
We support the TACO API tensor class with an alias of this class.
This class is part of the TACO API with the following methods:
insert: Inserts a value to the given coordinate in the tensor.
to_array: Returns a numpy ndarray for the tensor.
TACO API also defines the following arrtibutes for the class:
dtype: A dtype object representing the data type of the tensor.
format: A format object representing the storage format of the tensor.
name: A string object representing the name of the tensor.
order: An integral rank of the tensor.
shape: A list of integers representing the shape of the tensor.
We currently ignore the tensor dimension ordering for dense tensor.
"""
_counter = _AtomicCounter()
def _get_unique_name(self) -> str:
"""Returns a unique name for creating a new Tensor."""
return f"{_TACO_TENSOR_PREFIX}{self._counter.increment()}"
def _init_format(self, fmt: Union[ModeFormat, List[ModeFormat], Format]) -> None:
"""Process the fmt argument for the Tensor constructor.
Args:
fmt: This argument can be a ModeFormat, List[ModeFormat], or format. If
this argument is a ModeFormat, uses this ModeFormat for all the tensor
dimensions. If this argument is a list of ModeFormat, the len of the
list should equal to the rank of the tensor. If this argument is a
format, uses it for the format of the tensor.
Raises:
ValueError: If fmt is not one of the expected type or is inconsistent
with the rank of the tensor. This is because fmt could be an users
input.
"""
if isinstance(fmt, ModeFormat):
self._format = _make_format([fmt] * self.order)
elif isinstance(fmt, list):
if len(fmt) == self.order and isinstance(fmt[0], ModeFormat):
self._format = _make_format(fmt)
else:
raise ValueError(
"Inconsistent shape and format: " f"{self._shape}, {fmt}."
)
elif isinstance(fmt, Format):
if fmt.rank() != self.order:
raise ValueError(
"Inconsistent shape and format: " f"{self._shape}, {fmt}."
)
else:
self._format = fmt
else:
raise ValueError(f"Invalid format argument: {fmt}.")
def __init__(
self,
value_or_shape: Optional[
Union[List[int], Tuple[int, ...], complex, float, int]
] = None,
fmt: Optional[Union[ModeFormat, List[ModeFormat], Format]] = None,
dtype: Optional[DType] = None,
name: Optional[str] = None,
is_dense: bool = False,
):
"""The tensor constructor interface defined by TACO API.
Args:
value_or_shape: This argument is optional and can be int, float,
List[int], or Tuple[int, ...]. If this argument is an int or float,
creates a scalar tensor and initializes it with the value. If this
argument is a list or tuple of int, uses it as the shape to create a
tensor.
fmt: This argument can be a ModeFormat, List[ModeFormat], or format. If
this argument is a ModeFormat, uses this ModeFormat for all the tensor
dimensions. If this argument is a list of ModeFormat, the len of the
list should equal to the rank of the tensor. If this argument is a
format, uses it for the format of the tensor.
dtype: An object of dtype, representing the data type of the tensor.
name: A string name of the tensor. If a name is not given, creates a
unique name for the tensor.
is_dense: A boolean variable to indicate whether the tensor is a dense
tensor without any sparsity annotation.
Raises:
ValueError: If there is any inconsistency among the input arguments.
"""
# Take care of the argument default values common to both sparse tensors
# and dense tensors.
dtype = dtype or DType(Type.FLOAT32)
self._name = name or self._get_unique_name()
self._assignment = None
self._engine = None
self._sparse_value_location = _SparseValueInfo._UNPACKED
self._dense_storage = None
self._dtype = dtype
if is_dense:
assert fmt is None
assert (
isinstance(value_or_shape, tuple) or isinstance(value_or_shape, list)
) and _all_instance_of(value_or_shape, int)
self._shape = value_or_shape
self._format = None
return
fmt = fmt or ModeFormat.COMPRESSED
# We currently use _coords and _values to host the sparse tensor value with
# COO format, and _dense_storage to host the dense tensor value. We don't
# support the conversion between the two storages.
self._coords = []
self._values = []
self._stats = _Stats()
if (
value_or_shape is None
or isinstance(value_or_shape, int)
or isinstance(value_or_shape, float)
or isinstance(value_or_shape, complex)
):
# Create a scalar tensor and ignore the fmt parameter.
self._shape = []
self._format = _make_format([], [])
if value_or_shape is not None:
self._dense_storage = np.array(value_or_shape, dtype=self._dtype.value)
elif (
isinstance(value_or_shape, tuple) or isinstance(value_or_shape, list)
) and _all_instance_of(value_or_shape, int):
# Create a tensor with the specified shape and format.
self._shape = list(value_or_shape)
self._init_format(fmt)
else:
raise ValueError(
"Invalid first argument. "
"Must be a tuple or list for a shape or a single value"
f"if initializing a scalar tensor: {value_or_shape}."
)
def _set_packed_sparse_tensor(self, pointer: ctypes.c_void_p) -> None:
"""Records the MLIR sparse tensor pointer."""
self._sparse_value_location = _SparseValueInfo._PACKED
self._packed_sparse_value = pointer
def is_unpacked(self) -> bool:
"""Returns true if the tensor value is not packed as MLIR sparse tensor."""
return self._sparse_value_location == _SparseValueInfo._UNPACKED
def unpack(self) -> None:
"""Unpacks the MLIR sparse tensor representation."""
if self.is_dense() or self.is_unpacked():
return
# Use the output MLIR sparse tensor pointer to retrieve the COO-flavored
# values and verify the values.
rank, nse, shape, values, indices = utils.sparse_tensor_to_coo_tensor(
self._packed_sparse_value, self._dtype.value
)
assert rank == self.order
assert np.array_equal(self.shape, shape)
assert nse == len(values)
self._coords = indices
self._values = values
self._sparse_value_location = _SparseValueInfo._UNPACKED
def __repr__(self) -> str:
self._sync_value()
self.unpack()
value_str = (
f"{repr(self._dense_storage)})"
if self.is_dense()
else f"{repr(self._coords)} {repr(self._values)})"
)
return (
f"Tensor(_name={repr(self._name)} " f"_dtype={repr(self._dtype)} : "
) + value_str
def insert(self, coords: List[int], val: Union[complex, float, int]) -> None:
"""Inserts a value to the given coordinate.
Args:
coords: A list of integer coordinates. The length of the list must be the
same as the rank of the tensor.
val: A value being inserted. It is either an integral or a floating point
value. This value will be converted to the data type of the tensor.
Raises:
ValueError: When there is any problem in the parameters.
"""
if self.is_dense():
raise ValueError("Insert method is not supported for dense tensors.")
if self._assignment != None or not self.is_unpacked():
raise ValueError(
"Can't use Insert method for a tensor constructed from a file."
)
if not isinstance(coords, list):
raise ValueError(f"Non list coordinate detected: {coords}.")
if not _all_instance_of(coords, int):
raise ValueError(f"Non integer coordinate detected: {coords}.")
if len(coords) != self.order or any(
[c < 0 or c >= self._shape[i] for i, c in enumerate(coords)]
):
raise ValueError("Invalid coordinate for rank: " f"{self.order}, {coords}.")
if (
not isinstance(val, int)
and not isinstance(val, float)
and not isinstance(val, complex)
):
raise ValueError(f"Value is neither int nor float: {val}.")
self._coords.append(tuple(coords))
self._values.append(self._dtype.value(val))
def is_dense(self) -> bool:
"""Returns true if the tensor doesn't have sparsity annotation."""
return self.order == 0 or self._format is None
def to_array(self) -> np.ndarray:
"""Returns the numpy array for the Tensor.
This is currenly only implemented for dense Tensor.
"""
if not self.is_dense():
raise ValueError(
"Conversion from non-dense Tensor " "to numpy array not supported yet."
)
self._sync_value()
return self._dense_storage
@staticmethod
def from_array(array: np.ndarray) -> "Tensor":
"""Returns a dense tensor with the value copied from the input array.
We currently only support the conversion of float32 and float64 numpy arrays
to Tensor.
Args:
array: The numpy array that provides the data type, shape and value for
the tensor.
Returns:
A Tensor object.
Raises:
ValueError if the data type of the numpy array is not supported.
"""
if array.dtype != np.float32 and array.dtype != np.float64:
raise ValueError(f"Expected floating point value type: {array.dtype}.")
t = Tensor(
array.shape, dtype=_nptype_to_taco_type(array.dtype.type), is_dense=True
)
t._dense_storage = np.copy(array)
return t
@staticmethod
def from_coo(
coordinates: List[Tuple[int, ...]],
values: List[_AnyRuntimeType],
fmt: Format,
dtype: DType,
) -> "Tensor":
"""Converts coordinates and values to a sparse tensor representation.
Args:
coordinates: A list of coordinates with non-zero values.
values: The non-zero values.
fmt: The tensor storage format.
dtype: The tensor element data type.
Returns:
A tensor with the given non-zero values and storage format. The shape of
the tensor has the minimum size for each dimension to make the given
coordinates valid.
"""
assert isinstance(coordinates, List) and _all_instance_of(coordinates, Tuple)
assert isinstance(values, List) and _all_instance_of(values, dtype.value)
assert isinstance(fmt, Format)
rank = fmt.rank()
assert all(len(c) == rank and _all_instance_of(c, int) for c in coordinates)
# Find the maximum coordinate value for each dimension.
max_coordinate = list(map(max, zip(*coordinates)))
# The size of each dimension is one more that such a maximum coordinate
# value.
shape = [c + 1 for c in max_coordinate]
t = Tensor(shape, fmt, dtype=dtype)
t._coords = coordinates
t._values = values
return tensor
@staticmethod
def from_file(
filename: str,
fmt: Format,
dtype: DType,
) -> "Tensor":
"""Constructs a sparse tensor using the COO-flavored values from a file.
Args:
filename: A string for the name of the file that contains the sparse
tensor data.
fmt: The tensor storage format.
dtype: The tensor element data type.
Returns:
A tensor with the given non-zero values and storage format. The tensor
value is stored as an MLIR sparse tensor.
"""
sparse_tensor, shape = utils.create_sparse_tensor(
filename, fmt.format_pack.formats, _dtype_to_mlir_str(dtype)
)
t = Tensor(shape.tolist(), fmt, dtype=dtype)
t._set_packed_sparse_tensor(sparse_tensor)
return t
def to_file(self, filename: str) -> None:
"""Output the tensor value to a file.
This method evaluates any pending assignment to the tensor and outputs the
tensor value.
Args:
filename: A string file name.
Raises:
ValueError: If the tensor is dense, or an unpacked sparse tensor.
"""
self._sync_value()
if self.is_dense():
raise ValueError(
"Writing dense tensors without sparsity annotation to "
"file is not supported."
)
if self.is_unpacked():
raise ValueError(
"Writing unpacked sparse tensors to file is not " "supported."
)
utils.output_sparse_tensor(
self._packed_sparse_value,
filename,
self._format.format_pack.formats,
_dtype_to_mlir_str(self._dtype),
)
@property
def dtype(self) -> DType:
"""Returns the data type for the Tensor."""
return self._dtype
@property
def format(self) -> Format:
"""Returns the storage format for the Tensor."""
return self._format
@property
def name(self) -> str:
"""Returns the name for the Tensor."""
return self._name
@property
def order(self) -> int:
"""Returns the rank of the Tensor."""
return len(self._shape)
@property
def shape(self) -> List[int]:
"""Returns the shape of the Tensor."""
return self._shape
def _verify_and_normalize_indices(self, indices) -> Tuple[IndexVar, ...]:
"""Verifies and normalizes the indices to access the tensor.
Args:
indices: The index expression used to access a tensor, which could be any
Python object from user inputs.
Returns:
A tuple of IndexVar.
Raises:
ValueError: If indices is not 0 for scalar tensors, or not an IndexVar or
a tuple of IndexVar for other tensors.
"""
if self.order == 0:
if not isinstance(indices, int) or indices != 0:
raise ValueError(f"Expected 0 to index scalar tensors: {indices}")
return ()
if isinstance(indices, IndexVar):
return (indices,)
elif isinstance(indices, tuple) and _all_instance_of(indices, IndexVar):
return indices
raise ValueError(f"Expected IndexVars: {indices}")
def __getitem__(self, key) -> "Access":
"""Verifies and processes a tensor access.
In the tensor index notation, a tensor access T[i, j] is represented as
retrieving a value with key (i, j) from the tensor object T in Python. This
routine verifies the key for the tensor access and returns a tensor access
object.
Args:
key: The key used to access the tensor, which could be any Python object
from user inputs.
Returns:
The corresponding tensor access object.
Raises:
ValueError: If key is not an IndexVar or a tuple of IndexVar.
"""
indices = self._verify_and_normalize_indices(key)
return Access(self, indices)
def __setitem__(self, key, value) -> None:
"""Verifies and processes a tensor assignment.
In the tensor index notation, a tensor assignment "T[i, j] = ..." is
represented as setting a value for a tensor object T via key (i, j) in
Python. This routine verifies the key, evaluates the value, and assigns the
value to the tensor.
We only support assignment of dense tensor currently.
Args:
key: The key used to access the tensor, which could be any Python object
from user inputs.
value: The value assigned to the tensor, which could be any Python object
from user inputs.
Raises:
ValueError: If tensor is not a dense tensor, or the key is not an IndexVar
or a tuple of IndexVar, or the length of the indices is not the same as
the rank of the tensor.
"""
indices = self._verify_and_normalize_indices(key)
if len(indices) != self.order:
raise ValueError(
"Mismatch between indices and tensor rank: "
f"len({indices}) != {self.order}."
)
self._assignment = _Assignment(indices, value)
self._engine = None
def compile(self, force_recompile: bool = False) -> None:
"""Compiles the tensor assignment to an execution engine.
Calling compile the second time does not do anything unless
force_recompile is True.
Args:
force_recompile: A boolean value to enable recompilation, such as for the
purpose of timing.
Raises:
ValueError: If the assignment is not proper or not supported.
"""
if self._assignment is None or (
self._engine is not None and not force_recompile
):
return
self._engine = self._assignment.expression.compile(
self, self._assignment.indices
)
def compute(self) -> None:
"""Executes the engine for the tensor assignment.
Raises:
ValueError: If the assignment hasn't been compiled yet.
"""
if self._assignment is None:
return
if self._engine is None:
raise ValueError("Need to invoke compile() before invoking compute().")
input_accesses = self._assignment.expression.get_input_accesses()
# Gather the pointers for the input buffers.
input_pointers = [a.tensor.ctype_pointer() for a in input_accesses]
if self.is_dense():
# The pointer to receive dense output is the first argument to the
# execution engine.
arg_pointers = [self.dense_dst_ctype_pointer()] + input_pointers
else:
# The pointer to receive the sparse tensor output is the last argument
# to the execution engine and is a pointer to pointer of char.
arg_pointers = input_pointers + [
ctypes.pointer(ctypes.pointer(ctypes.c_char(0)))
]
# Invoke the execution engine to run the module.
self._engine.invoke(_ENTRY_NAME, *arg_pointers)
# Retrieve the result.
if self.is_dense():
result = runtime.ranked_memref_to_numpy(arg_pointers[0][0])
assert isinstance(result, np.ndarray)
self._dense_storage = result
else:
self._set_packed_sparse_tensor(arg_pointers[-1][0])
self._assignment = None
self._engine = None
def evaluate(self) -> None:
"""Evaluates the tensor assignment."""
self.compile()
self.compute()
def _sync_value(self) -> None:
"""Updates the tensor value by evaluating the pending assignment."""
if self._assignment is not None:
self.evaluate()
def mlir_tensor_type(self) -> ir.RankedTensorType:
"""Returns the MLIR type for the tensor."""
mlir_attr = (
None
if (self._format is None or self.order == 0)
else self._format.mlir_tensor_attr()
)
return _mlir_tensor_type(self._dtype, tuple(self._shape), mlir_attr)
def dense_dst_ctype_pointer(self) -> ctypes.pointer:
"""Returns the ctypes pointer for the pointer to an MemRefDescriptor.
For a dense tensor output, the MLIR compiler allocates the storage for
the tensor. This routine returns the pointer to an MLIR MemRefDescriptor for
receiving the tensor.
"""
assert self.is_dense()
mem_ref_desc = runtime.make_nd_memref_descriptor(
self.order, np.ctypeslib.as_ctypes_type(self.dtype.value)
)()
return ctypes.pointer(ctypes.pointer(mem_ref_desc))
def ctype_pointer(self) -> ctypes.pointer:
"""Returns the ctypes pointer for the pointer to the input tensor."""
if self.is_dense():
if self._dense_storage is None:
self._dense_storage = np.zeros(self._shape, self._dtype.value)
return _ctype_pointer_from_array(self._dense_storage)
if self.is_unpacked():
shape = np.array(self._shape, np.int64)
indices = np.array(self._coords, np.int64)
values = np.array(self._values, self._dtype.value)
perm, sparse = self.format.get_permutation_and_sparsity()
ptr = utils.coo_tensor_to_sparse_tensor(
shape, values, indices, perm, sparse
)
else:
ptr = self._packed_sparse_value
return ctypes.pointer(ctypes.cast(ptr, ctypes.c_void_p))
def get_scalar_value(self) -> _AnyRuntimeType:
"""Returns the value for the scalar tensor.
This method also evaluates the assignment to the tensor.
Raises:
ValueError: If the tensor is not a scalar.
"""
if self.order != 0:
raise ValueError(f"Expected a scalar tensor, got: rank={self.order}")
self._sync_value()
return self._dense_storage
def get_coordinates_and_values(
self,
) -> Tuple[List[Tuple[int, ...]], List[_AnyRuntimeType]]:
"""Returns the coordinates and values for the non-zero elements.
This method also evaluates the assignment to the tensor and unpack the
sparse tensor.
"""
self._sync_value()
if not self.is_dense():
self.unpack()
return (self._coords, self._values)
if self.order == 0:
return ([], self._dense_storage)
# Coordinates for non-zero elements, grouped by dimensions.
coords_by_dims = self._dense_storage.nonzero()
# Coordinates for non-zero elements, grouped by elements.
coords = np.transpose(coords_by_dims)
values = self._dense_storage[coords_by_dims]
return (coords, values)
def _record_stats(self, structop: "_StructOpInfo"):
"""Collects information for temporary tensors."""
# Exclude user specified destination tensors.
if structop.dst_name == self.name:
return
self._stats.add_element(structop)
def _emit_operand(
op_def: lang.LinalgOpDef,
indices: Tuple[IndexVar, ...],
name: str,
kind: lang.OperandKind,
) -> lang.OperandDef:
"""Emits an operand for a tensor access in the current linalg operation.
Args:
op_def: A LinalgOpDef representing the current linalg dialect operation.
indices: A tuple of IndexVar used to access the tensor.
name: A unique string name of the tensor.
kind: An OperandKind for the operand.
Returns:
An OperandDef representing the operand.
"""
dim_sym = _mlir_symbols_from_index_vars(indices)
opnd = lang.OperandDef(kind, lang.T, dim_sym)
op_def.add_operand(name, opnd)
return opnd
@dataclasses.dataclass(frozen=True)
class _DimInfo:
"""Information for an operand dimension.
Attributes:
dim: An integer for the size of the dimension.
mode_format: A ModeFormat for the dimension sparsity.
"""
dim: int
mode_format: ModeFormat
def _get_dummy_dim_info() -> _DimInfo:
"""Constructs the _DimInfo for an index used in tensor expressions."""
return _DimInfo(-1, ModeFormat.DENSE)
@dataclasses.dataclass()
class _ExprInfo:
"""Expression information for validation and code generation.
Attributes:
src_indices: A tuple of IndexVar for the indices used by the tensors in the
expression tree.
dim_infos: A tuple of _DimInfo, representing the dimension information
corresponding to the src_indices.
reduce_indices: A set of IndexVar for the indices reduced by the expression.
acc_reduce_indices: An accumulated set of IndexVar for the indices reduced
by the expression and its children.
structop_info: Information to support the code generation for a structured
op in the linalg dialect, if the corresponding expression node is the root
of a subtree for a structured op.
mlir_value: The MLIR value generated for the structured op.
"""
src_indices: Tuple[IndexVar, ...]
dim_infos: Tuple[_DimInfo, ...]
reduce_indices: Optional[Set[IndexVar]] = None
acc_reduce_indices: Optional[Set[IndexVar]] = None
structop_info: Optional[_StructOpInfo] = None
mlir_value: Optional[ir.Value] = None
def __post_init__(self) -> None:
"""Verifies and fix up attribute values.
Verifies the consistency of the attributes and modifies the default values
to support convenient initializer syntax.
"""
assert len(self.src_indices) == len(self.dim_infos)
self.reduce_indices = self.reduce_indices or set()
self.acc_reduce_indices = self.acc_reduce_indices or set()
@dataclasses.dataclass(frozen=True)
class Access(IndexExpr):
"""The tensor access class.
We support the TACO API access class with an alias of this class.
Attributes:
tensor: A Tensor being accessed.
indices: A tuple of IndexVar, representing the indices used to access the
Tensor.
"""
tensor: Tensor
indices: Tuple[IndexVar, ...]
def __post_init__(self) -> None:
"""Verifies the tensor and indices for a tensor access.
Raises:
ValueError: If indices is not a list of IndexVar or the len of indices
doesn't equal to the rank of the tensor.
"""
if not isinstance(self.indices, tuple) or not _all_instance_of(
self.indices, IndexVar
):
raise ValueError(f"Indices contain non IndexVar: {str(self.indices)}.")
if self.tensor.order != len(self.indices):
raise ValueError(
"Invalid indices for rank: "
f"str{self.tensor.order} != len({str(self.indices)})."
)
def __repr__(self) -> str:
# The Tensor __repr__ method evaluates the pending assignment to the tensor.
# We want to define the __repr__ method here to avoid such evaluation of the
# tensor assignment.
indices_str = ", ".join(map(lambda i: i.name, self.indices))
return f"Tensor({self.tensor.name}) " f"Indices({indices_str})"
def _emit_expression(
self,
expr_to_opnd: Dict[IndexExpr, lang.OperandDef],
expr_to_info: _ExprInfoDict,
) -> lang.ScalarExpression:
"""Emits a linalg dialect TensorUse expression for the tensor access."""
assert self in expr_to_opnd
dims = _mlir_dimensions_from_index_vars(self.indices)
return lang.TensorUse(expr_to_opnd[self], dims)
def _visit(
self, func: _ExprVisitor, args, *, leaf_checker: _SubtreeLeafChecker = None
) -> None:
if leaf_checker:
assert leaf_checker(self, *args)
func(self, *args)
def dtype(self) -> DType:
return self.tensor.dtype
def _gather_input_accesses_index_vars(
expr: IndexExpr,
input_accesses: List[Access],
) -> None:
"""Collects Access nodes."""
if isinstance(expr, Access) and expr not in input_accesses:
input_accesses.append(expr)
def _op_ceil(__a: Any) -> Any:
"""A _UnaryOp object for operation ceil."""
pass
def _op_floor(__a: Any) -> Any:
"""A _UnaryOp object for operation floor."""
pass
def _op_unary_to_callable(op: _UnaryOp) -> lang.UnaryFnType:
"""Returns the linalg dialect function object for the given operation."""
op_to_callable = {
operator.abs: lang.UnaryFn.abs,
operator.neg: lang.UnaryFn.negf,
_op_ceil: lang.UnaryFn.ceil,
_op_floor: lang.UnaryFn.floor,
}
return op_to_callable[op]
@dataclasses.dataclass(frozen=True)
class _UnaryExpr(IndexExpr):
"""The representation for a Unary operation.
Attributes:
op: A _UnaryOp representing the operation.
a: An IndexExpr representing the operand for the operation.
"""
op: _BinaryOp
a: IndexExpr
def __post_init__(self) -> None:
"""Verifies that the operand being added is an IndexExpr."""
assert isinstance(self.a, IndexExpr)
def _emit_expression(
self,
expr_to_opnd: Dict[IndexExpr, lang.OperandDef],
expr_to_info: _ExprInfoDict,
) -> lang.ScalarExpression:
"""Emits the expression tree and returns the expression."""
# The current expression node is an internal node of the structured op.
if self not in expr_to_opnd:
a = self.a._emit_expression(expr_to_opnd, expr_to_info)
return _op_unary_to_callable(self.op)(a)
# The current expression is a leaf node of the structured op. That is, it is
# a temporary tensor generated by its child structured op.
op_info = expr_to_info[self].structop_info
assert op_info is not None
dims = _mlir_dimensions_from_index_vars(op_info.dst_indices)
return lang.TensorUse(expr_to_opnd[self], dims)
def _visit(
self, func: _ExprVisitor, args, *, leaf_checker: _SubtreeLeafChecker = None
) -> None:
"""A post-order visitor."""
if leaf_checker is None or not leaf_checker(self, *args):
self.a._visit(func, args, leaf_checker=leaf_checker)
func(self, *args)
def dtype(self) -> DType:
"""Returns the data type of the operation."""
return self.a.dtype()
def _op_to_callable(op: _BinaryOp) -> lang.BinaryFnType:
"""Returns the linalg dialect function object for the given operation."""
op_to_callable = {
operator.add: lang.BinaryFn.add,
operator.sub: lang.BinaryFn.sub,
operator.mul: lang.BinaryFn.mul,
}
return op_to_callable[op]
@dataclasses.dataclass(frozen=True)
class _BinaryExpr(IndexExpr):
"""The representation for a binary operation.
Attributes:
op: A _BinaryOp representing the binary operation.
a: An IndexExpr representing the first operand of the operation.
b: An IndexExpr representing the second operand of the operation.
"""
op: _BinaryOp
a: IndexExpr
b: IndexExpr
def __post_init__(self) -> None:
"""Verifies that the operands being added are IndexExpr."""
assert isinstance(self.a, IndexExpr) and isinstance(self.b, IndexExpr)
def _emit_expression(
self,
expr_to_opnd: Dict[IndexExpr, lang.OperandDef],
expr_to_info: _ExprInfoDict,
) -> lang.ScalarExpression:
"""Emits the expression tree and returns the expression."""
# The current expression node is an internal node of the structured op.
if self not in expr_to_opnd:
a = self.a._emit_expression(expr_to_opnd, expr_to_info)
b = self.b._emit_expression(expr_to_opnd, expr_to_info)
return _op_to_callable(self.op)(a, b)
# The current expression is a leaf node of the structured op. That is, it is
# a temporary tensor generated by its child structured op.
op_info = expr_to_info[self].structop_info
assert op_info is not None
dims = _mlir_dimensions_from_index_vars(op_info.dst_indices)
return lang.TensorUse(expr_to_opnd[self], dims)
def _visit(
self, func: _ExprVisitor, args, *, leaf_checker: _SubtreeLeafChecker = None
) -> None:
"""A post-order visitor."""
if leaf_checker is None or not leaf_checker(self, *args):
self.a._visit(func, args, leaf_checker=leaf_checker)
self.b._visit(func, args, leaf_checker=leaf_checker)
func(self, *args)
def dtype(self) -> DType:
"""Returns the data type of the binary operation."""
return self.a.dtype()
def _validate_and_collect_dim_info(
index_to_dim_info: Dict[IndexVar, _DimInfo],
indices: Tuple[IndexVar, ...],
dim_infos: Tuple[_DimInfo, ...],
expr: _BinaryExpr,
) -> None:
"""Validates and collects the dimension information for an index notation.
Validates (indices, dim_infos) against the information collected from other
source operands and is represented by index_to_dim_info. In particular, we
ensure that each IndexVar corresponds to only one dimension size. We also
aggregate the new information represented in (indices, dim_infos) to
index_to_dim_info.
Args:
index_to_dim: A dictionary of (IndexVar, _DimInfo) collected from the
previous operands.
indices: The IndexVars to be validated.
dim_infos: The dimension information for the IndexVars to be validated.
expr: The binary expression where (indices, dim_infos) is used.
Raises:
ValueError if there is any problem in the IndexVars or dimensional values.
"""
assert len(indices) == len(dim_infos)
for i, d in zip(indices, dim_infos):
if i not in index_to_dim_info:
index_to_dim_info[i] = d
else:
dim = index_to_dim_info[i].dim
if dim == -1 or d.dim == -1:
dim = dim if dim != -1 else d.dim
elif dim != d.dim:
raise ValueError(
f"Inconsistent source dimension for {i}: " f"{d.dim} vs {dim}"
)
mode_format = _mode_format_estimator(expr.op)(
index_to_dim_info[i].mode_format, d.mode_format
)
index_to_dim_info[i] = _DimInfo(d.dim, mode_format)
def _validate_and_collect_expr_info(
expr: IndexExpr,
expr_to_info: _ExprInfoDict,
) -> None:
"""Validates dimension information and constructs _ExprInfo.
Validates that dimensional values for the same IndexVar are the same. Collects
a list of IndexVar used by the expression and their corresponding dimensional
values. Constructs an _ExprInfo object to record the information for the
IndexExpr.
This routine is passed to the post-order visitor as an _ExprVisitor object.
Args:
expr: The IndexExpr being validated.
expr_to_info: The dictionary of (IndexExpr, _ExprInfo) for recording the
expression information.
Raises:
ValueError if there is any problem in the IndexVars or dimensional values.
"""
# Objects of class Access can be shared by different expressions. Avoid
# processing Access objects multiple times by skipping the processing if expr
# is already in the dictionary.
if expr in expr_to_info:
return
if isinstance(expr, IndexVar):
src_indices = (expr,) # A tuple with one element.
dim_infos = (_get_dummy_dim_info(),) # A tuple with one element.
elif isinstance(expr, Access):
src_indices = expr.indices
src_dims = tuple(expr.tensor.shape)
if expr.tensor.format is None:
# Treat each dimension of a dense tensor as DENSE for the purpose of
# calculating temporary tensor storage format.
mode_formats = tuple([ModeFormat.DENSE] * len(src_dims))
else:
mode_formats = tuple(expr.tensor.format.format_pack.formats)
assert len(src_dims) == len(mode_formats)
dim_infos = tuple([_DimInfo(d, m) for d, m in zip(src_dims, mode_formats)])
elif isinstance(expr, _UnaryExpr):
a_info = expr_to_info[expr.a]
index_to_dim_info = {i: d for i, d in zip(a_info.src_indices, a_info.dim_infos)}
# Here we rely on the fact that dictionaries keep the insertion order for
# keys and values.
src_indices = tuple(index_to_dim_info.keys())
dim_infos = tuple(index_to_dim_info.values())
else:
assert isinstance(expr, _BinaryExpr)
a_info = expr_to_info[expr.a]
index_to_dim_info = {i: d for i, d in zip(a_info.src_indices, a_info.dim_infos)}
b_info = expr_to_info[expr.b]
_validate_and_collect_dim_info(
index_to_dim_info, b_info.src_indices, b_info.dim_infos, expr
)
# Here we rely on the fact that dictionaries keep the insertion order for
# keys and values.
src_indices = tuple(index_to_dim_info.keys())
dim_infos = tuple(index_to_dim_info.values())
expr_to_info[expr] = _ExprInfo(src_indices, dim_infos)
def _mark_structured_op_root(
expr: IndexExpr,
reduce_index: IndexVar,
expr_to_info: _ExprInfoDict,
) -> None:
"""Identifies the root expression for a structured op in the linalg dialect.
An linalg structured op can only perform reduction on the whole expression.
For a TACO tensor algebra expression, the reduction on an IndexVar is done at
the smallest expression that contains all the uses of the IndexVar. If such an
expression is only part of the whole expression, we need to split this
sub-expression tree out from its parent and implement the sub-expression as a
structured op.
This routine identifies the root expression node for performing a reduction on
the given IndexVar. If the reduction of the given IndexVar should be performed
on expression X, then the IndexVar is added to expr_to_info[X].reduce_indices
Args:
expr: The root IndexExpr for the tensor algebra expression.
reduce_index: The IndexVar which we want to find out the proper expression
to perform a reduction.
expr_to_info: The dictionary to look up _ExprInfo for IndexExpr.
Raises:
ValueError: If the expression is not proper or not supported.
"""
expr_info = expr_to_info[expr]
if isinstance(expr, Access):
# Handle simple reduction expression in the format of A[i] = B[i, j].
if reduce_index in expr_info.src_indices:
expr_info.reduce_indices.add(reduce_index)
return
elif isinstance(expr, IndexVar):
# A[i] = B[i] + j is not allowed.
raise ValueError(f"IndexVar is not part of the iteration domain: {expr}.")
assert isinstance(expr, _BinaryExpr)
a_info = expr_to_info[expr.a]
b_info = expr_to_info[expr.b]
if reduce_index in a_info.src_indices and reduce_index in b_info.src_indices:
expr_info.reduce_indices.add(reduce_index)
return
if reduce_index in a_info.src_indices:
_mark_structured_op_root(expr.a, reduce_index, expr_to_info)
elif reduce_index in b_info.src_indices:
_mark_structured_op_root(expr.b, reduce_index, expr_to_info)
else:
assert False, "Unreachable path"
def _accumulate_reduce_indices(
expr: IndexExpr,
expr_to_info: _ExprInfoDict,
) -> None:
"""Propagates reduction indices from child expressions to parent expressions.
This routine is passed to the post-order visitor as an _ExprVisitor object.
Args:
expr: The IndexExpr being visited.
expr_to_info: The dictionary of (IndexExpr, _ExprInfo) for recording the
expression information.
"""
assert expr in expr_to_info
expr_info = expr_to_info[expr]
if isinstance(expr, _BinaryExpr):
a_info = expr_to_info[expr.a]
b_info = expr_to_info[expr.b]
expr_info.acc_reduce_indices = (
a_info.acc_reduce_indices
| b_info.acc_reduce_indices
| expr_info.reduce_indices
)
elif isinstance(expr, _UnaryExpr):
a_info = expr_to_info[expr.a]
expr_info.acc_reduce_indices = (
a_info.acc_reduce_indices | expr_info.reduce_indices
)
elif isinstance(expr, IndexVar):
# If an IndexVar is reducing itself, it means the IndexVar is outside the
# iteration domain. This usage is now allowed and we should emit an error
# before reaching here.
assert not expr_info.reduce_indices
else:
assert isinstance(expr, Access)
# Handle simple reduction expression in the format of A[i] = B[i, j].
expr_info.acc_reduce_indices = expr_info.reduce_indices
def _gather_structured_op(
expr: IndexExpr,
expr_to_info: _ExprInfoDict,
structop_roots: List[IndexExpr],
) -> None:
"""Adds structured op root expression information to structop_roots.
This routine is passed to the post-order visitor as an _ExprVisitor object.
Args:
expr: The IndexExpr being visited.
expr_to_info: The dictionary to look up _ExprInfo for IndexExpr.
structop_roots: The resulting list of IndexExpr that are the roots for
linalg structured ops.
"""
if not expr_to_info[expr].reduce_indices:
return
# If the expression is the root for reducing some indices, collect the indices
# and dimensions for the reduction result.
dst_indices = []
dst_dims = []
mode_fmts = []
for i, d in zip(expr_to_info[expr].src_indices, expr_to_info[expr].dim_infos):
if i not in expr_to_info[expr].acc_reduce_indices:
dst_indices.append(i)
dst_dims.append(d.dim)
mode_fmts.append(d.mode_format)
# Add the information to the dictionary.
op_info = _StructOpInfo(
tuple(dst_indices),
tuple(dst_dims),
expr.dtype(),
f"temp{len(structop_roots)}",
_make_format(mode_fmts),
)
expr_to_info[expr].structop_info = op_info
# Add the expression to the list of structured op roots.
structop_roots.append(expr)
def _is_structured_op_leaf(
expr: IndexExpr,
root: IndexExpr,
expr_to_info: _ExprInfoDict,
*unused_args,
) -> bool:
"""Returns true iff the expression is a leaf node for a structured op.
The root of a structured op is a leaf of its parent structured op that uses
its result. An expression node is a leaf node for the current structured op if
it is an Access node or the root for a structured op that is not the current
structured op.
This routine is passed to the post-order visitor as a _SubtreeLeafChecker
object. Because the post-order visitor pass the same parameters to both
_SubtreeLeafChecker and _ExprVisitor, this routine may received unused
parameters.
Args:
expr: The IndexExpr being visited.
root: The root of the current structured op.
expr_to_info: The dictionary to look up _ExprInfo for IndexExpr.
Returns:
True if the current IndexExpr is a leaf for the current structured op.
"""
return (
(expr != root and expr_to_info[expr].structop_info is not None)
or isinstance(expr, Access)
or isinstance(expr, IndexVar)
)
def _gather_structured_op_input(
expr: IndexExpr,
root: IndexExpr,
expr_to_info: _ExprInfoDict,
structop_inputs: List[IndexExpr],
) -> None:
"""Adds the IndexExpr to structop_inputs if it is an input.
If the current IndexExpr is an input for the current structured op, adds it to
structop_inputs. The current IndexExpr is an input if it is an Access node or
if it is the root for a structured op that is not the current structured op.
This routine is passed to the post-order visitor as an _ExprVisitor object.
Args:
expr: The IndexExpr being visited.
root: The root of the current structured op.
expr_to_info: The dictionary to look up _ExprInfo for IndexExpr.
structop_inputs: The resulting list of IndexExpr that provide input to the
current structured op.
"""
if (
(expr != root or isinstance(expr, Access)) and expr not in structop_inputs
) and (
isinstance(expr, Access)
or (expr in expr_to_info and expr_to_info[expr].structop_info)
):
structop_inputs.append(expr)
def _emit_structured_op_input(
expr: IndexExpr,
expr_to_info: _ExprInfoDict,
op_def: lang.LinalgOpDef,
) -> lang.OperandDef:
"""Emits OperandDef in the linalg dialect for the input IndexExpr.
Args:
expr: The input IndexExpr for the current structured op.
expr_to_info: The dictionary to look up _ExprInfo for IndexExpr.
op_def: The linalg operation for the current structured op.
Returns:
An OperandDef in the linalg dialect for the input IndexExpr.
"""
op_info = expr_to_info[expr].structop_info
if op_info and not isinstance(expr, Access):
# The input is a temporary tensor produced by another structured op.
indices = op_info.dst_indices
name = op_info.dst_name
else:
# The input is a user provided tensor.
assert isinstance(expr, Access)
indices = expr.indices
name = expr.tensor.name
dim_sym = _mlir_symbols_from_index_vars(indices)
opnd = lang.OperandDef(lang.OperandKind.INPUT_TENSOR, lang.T, dim_sym)
op_def.add_operand(name, opnd)
return opnd
def _check_and_build_unary(a: Access, op: _UnaryOp) -> "_UnaryExpr":
"""Build a unary operation ceil.
Args:
a: The operand, which could be any Python object from user inputs.
op: An _UnaryOp object representing the operation.
Returns:
A _UnaryExpr object representing the operation.
Raises:
ValueError: If a is not an IndexExpr.
"""
if not isinstance(a, Access):
raise ValueError(f"Expected an Access Operand: {a}")
return a._build_unary_expr(op)
def ceil(a: Access) -> "_UnaryExpr":
"""Defines the operation ceil.
Args:
a: The operand, which could be any Python object from user inputs.
Returns:
A _UnaryExpr object representing the operation.
Raises:
ValueError: If a is not an IndexExpr.
"""
return _check_and_build_unary(a, _op_ceil)
def floor(a: Access) -> "_UnaryExpr":
"""Defines the operation floor.
Args:
a: The operand, which could be any Python object from user inputs.
Returns:
A _UnaryExpr object representing the operation.
Raises:
ValueError: If a is not an IndexExpr.
"""
return _check_and_build_unary(a, _op_floor)
|