1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
|
//===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an Environment class that is used by dataflow analyses
// that run over Control-Flow Graphs (CFGs) to keep track of the state of the
// program at given program points.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/FlowSensitive/DataflowLattice.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <utility>
namespace clang {
namespace dataflow {
// FIXME: convert these to parameters of the analysis or environment. Current
// settings have been experimentaly validated, but only for a particular
// analysis.
static constexpr int MaxCompositeValueDepth = 3;
static constexpr int MaxCompositeValueSize = 1000;
/// Returns a map consisting of key-value entries that are present in both maps.
static llvm::DenseMap<const ValueDecl *, StorageLocation *> intersectDeclToLoc(
const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc1,
const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc2) {
llvm::DenseMap<const ValueDecl *, StorageLocation *> Result;
for (auto &Entry : DeclToLoc1) {
auto It = DeclToLoc2.find(Entry.first);
if (It != DeclToLoc2.end() && Entry.second == It->second)
Result.insert({Entry.first, Entry.second});
}
return Result;
}
// Whether to consider equivalent two values with an unknown relation.
//
// FIXME: this function is a hack enabling unsoundness to support
// convergence. Once we have widening support for the reference/pointer and
// struct built-in models, this should be unconditionally `false` (and inlined
// as such at its call sites).
static bool equateUnknownValues(Value::Kind K) {
switch (K) {
case Value::Kind::Integer:
case Value::Kind::Pointer:
case Value::Kind::Record:
return true;
default:
return false;
}
}
static bool compareDistinctValues(QualType Type, Value &Val1,
const Environment &Env1, Value &Val2,
const Environment &Env2,
Environment::ValueModel &Model) {
// Note: Potentially costly, but, for booleans, we could check whether both
// can be proven equivalent in their respective environments.
// FIXME: move the reference/pointers logic from `areEquivalentValues` to here
// and implement separate, join/widen specific handling for
// reference/pointers.
switch (Model.compare(Type, Val1, Env1, Val2, Env2)) {
case ComparisonResult::Same:
return true;
case ComparisonResult::Different:
return false;
case ComparisonResult::Unknown:
return equateUnknownValues(Val1.getKind());
}
llvm_unreachable("All cases covered in switch");
}
/// Attempts to merge distinct values `Val1` and `Val2` in `Env1` and `Env2`,
/// respectively, of the same type `Type`. Merging generally produces a single
/// value that (soundly) approximates the two inputs, although the actual
/// meaning depends on `Model`.
static Value *mergeDistinctValues(QualType Type, Value &Val1,
const Environment &Env1, Value &Val2,
const Environment &Env2,
Environment &MergedEnv,
Environment::ValueModel &Model) {
// Join distinct boolean values preserving information about the constraints
// in the respective path conditions.
if (isa<BoolValue>(&Val1) && isa<BoolValue>(&Val2)) {
// FIXME: Checking both values should be unnecessary, since they should have
// a consistent shape. However, right now we can end up with BoolValue's in
// integer-typed variables due to our incorrect handling of
// boolean-to-integer casts (we just propagate the BoolValue to the result
// of the cast). So, a join can encounter an integer in one branch but a
// bool in the other.
// For example:
// ```
// std::optional<bool> o;
// int x;
// if (o.has_value())
// x = o.value();
// ```
auto &Expr1 = cast<BoolValue>(Val1).formula();
auto &Expr2 = cast<BoolValue>(Val2).formula();
auto &A = MergedEnv.arena();
auto &MergedVal = A.makeAtomRef(A.makeAtom());
MergedEnv.assume(
A.makeOr(A.makeAnd(A.makeAtomRef(Env1.getFlowConditionToken()),
A.makeEquals(MergedVal, Expr1)),
A.makeAnd(A.makeAtomRef(Env2.getFlowConditionToken()),
A.makeEquals(MergedVal, Expr2))));
return &A.makeBoolValue(MergedVal);
}
Value *MergedVal = nullptr;
if (auto *RecordVal1 = dyn_cast<RecordValue>(&Val1)) {
auto *RecordVal2 = cast<RecordValue>(&Val2);
if (&RecordVal1->getLoc() == &RecordVal2->getLoc())
// `RecordVal1` and `RecordVal2` may have different properties associated
// with them. Create a new `RecordValue` with the same location but
// without any properties so that we soundly approximate both values. If a
// particular analysis needs to merge properties, it should do so in
// `DataflowAnalysis::merge()`.
MergedVal = &MergedEnv.create<RecordValue>(RecordVal1->getLoc());
else
// If the locations for the two records are different, need to create a
// completely new value.
MergedVal = MergedEnv.createValue(Type);
} else {
MergedVal = MergedEnv.createValue(Type);
}
// FIXME: Consider destroying `MergedValue` immediately if `ValueModel::merge`
// returns false to avoid storing unneeded values in `DACtx`.
if (MergedVal)
if (Model.merge(Type, Val1, Env1, Val2, Env2, *MergedVal, MergedEnv))
return MergedVal;
return nullptr;
}
// When widening does not change `Current`, return value will equal `&Prev`.
static Value &widenDistinctValues(QualType Type, Value &Prev,
const Environment &PrevEnv, Value &Current,
Environment &CurrentEnv,
Environment::ValueModel &Model) {
// Boolean-model widening.
if (auto *PrevBool = dyn_cast<BoolValue>(&Prev)) {
// If previous value was already Top, re-use that to (implicitly) indicate
// that no change occurred.
if (isa<TopBoolValue>(Prev))
return Prev;
// We may need to widen to Top, but before we do so, check whether both
// values are implied to be either true or false in the current environment.
// In that case, we can simply return a literal instead.
auto &CurBool = cast<BoolValue>(Current);
bool TruePrev = PrevEnv.proves(PrevBool->formula());
bool TrueCur = CurrentEnv.proves(CurBool.formula());
if (TruePrev && TrueCur)
return CurrentEnv.getBoolLiteralValue(true);
if (!TruePrev && !TrueCur &&
PrevEnv.proves(PrevEnv.arena().makeNot(PrevBool->formula())) &&
CurrentEnv.proves(CurrentEnv.arena().makeNot(CurBool.formula())))
return CurrentEnv.getBoolLiteralValue(false);
return CurrentEnv.makeTopBoolValue();
}
// FIXME: Add other built-in model widening.
// Custom-model widening.
if (auto *W = Model.widen(Type, Prev, PrevEnv, Current, CurrentEnv))
return *W;
return equateUnknownValues(Prev.getKind()) ? Prev : Current;
}
// Returns whether the values in `Map1` and `Map2` compare equal for those
// keys that `Map1` and `Map2` have in common.
template <typename Key>
bool compareKeyToValueMaps(const llvm::MapVector<Key, Value *> &Map1,
const llvm::MapVector<Key, Value *> &Map2,
const Environment &Env1, const Environment &Env2,
Environment::ValueModel &Model) {
for (auto &Entry : Map1) {
Key K = Entry.first;
assert(K != nullptr);
Value *Val = Entry.second;
assert(Val != nullptr);
auto It = Map2.find(K);
if (It == Map2.end())
continue;
assert(It->second != nullptr);
if (!areEquivalentValues(*Val, *It->second) &&
!compareDistinctValues(K->getType(), *Val, Env1, *It->second, Env2,
Model))
return false;
}
return true;
}
// Perform a join on two `LocToVal` maps.
static llvm::MapVector<const StorageLocation *, Value *>
joinLocToVal(const llvm::MapVector<const StorageLocation *, Value *> &LocToVal,
const llvm::MapVector<const StorageLocation *, Value *> &LocToVal2,
const Environment &Env1, const Environment &Env2,
Environment &JoinedEnv, Environment::ValueModel &Model) {
llvm::MapVector<const StorageLocation *, Value *> Result;
for (auto &Entry : LocToVal) {
const StorageLocation *Loc = Entry.first;
assert(Loc != nullptr);
Value *Val = Entry.second;
assert(Val != nullptr);
auto It = LocToVal2.find(Loc);
if (It == LocToVal2.end())
continue;
assert(It->second != nullptr);
if (areEquivalentValues(*Val, *It->second)) {
Result.insert({Loc, Val});
continue;
}
if (Value *MergedVal = mergeDistinctValues(
Loc->getType(), *Val, Env1, *It->second, Env2, JoinedEnv, Model)) {
Result.insert({Loc, MergedVal});
}
}
return Result;
}
// Perform widening on either `LocToVal` or `ExprToVal`. `Key` must be either
// `const StorageLocation *` or `const Expr *`.
template <typename Key>
llvm::MapVector<Key, Value *>
widenKeyToValueMap(const llvm::MapVector<Key, Value *> &CurMap,
const llvm::MapVector<Key, Value *> &PrevMap,
Environment &CurEnv, const Environment &PrevEnv,
Environment::ValueModel &Model, LatticeJoinEffect &Effect) {
llvm::MapVector<Key, Value *> WidenedMap;
for (auto &Entry : CurMap) {
Key K = Entry.first;
assert(K != nullptr);
Value *Val = Entry.second;
assert(Val != nullptr);
auto PrevIt = PrevMap.find(K);
if (PrevIt == PrevMap.end())
continue;
assert(PrevIt->second != nullptr);
if (areEquivalentValues(*Val, *PrevIt->second)) {
WidenedMap.insert({K, Val});
continue;
}
Value &WidenedVal = widenDistinctValues(K->getType(), *PrevIt->second,
PrevEnv, *Val, CurEnv, Model);
WidenedMap.insert({K, &WidenedVal});
if (&WidenedVal != PrevIt->second)
Effect = LatticeJoinEffect::Changed;
}
return WidenedMap;
}
/// Initializes a global storage value.
static void insertIfGlobal(const Decl &D,
llvm::DenseSet<const VarDecl *> &Vars) {
if (auto *V = dyn_cast<VarDecl>(&D))
if (V->hasGlobalStorage())
Vars.insert(V);
}
static void insertIfFunction(const Decl &D,
llvm::DenseSet<const FunctionDecl *> &Funcs) {
if (auto *FD = dyn_cast<FunctionDecl>(&D))
Funcs.insert(FD);
}
static MemberExpr *getMemberForAccessor(const CXXMemberCallExpr &C) {
// Use getCalleeDecl instead of getMethodDecl in order to handle
// pointer-to-member calls.
const auto *MethodDecl = dyn_cast_or_null<CXXMethodDecl>(C.getCalleeDecl());
if (!MethodDecl)
return nullptr;
auto *Body = dyn_cast_or_null<CompoundStmt>(MethodDecl->getBody());
if (!Body || Body->size() != 1)
return nullptr;
if (auto *RS = dyn_cast<ReturnStmt>(*Body->body_begin()))
if (auto *Return = RS->getRetValue())
return dyn_cast<MemberExpr>(Return->IgnoreParenImpCasts());
return nullptr;
}
static void
getFieldsGlobalsAndFuncs(const Decl &D, FieldSet &Fields,
llvm::DenseSet<const VarDecl *> &Vars,
llvm::DenseSet<const FunctionDecl *> &Funcs) {
insertIfGlobal(D, Vars);
insertIfFunction(D, Funcs);
if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D))
for (const auto *B : Decomp->bindings())
if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding()))
// FIXME: should we be using `E->getFoundDecl()`?
if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
Fields.insert(FD);
}
/// Traverses `S` and inserts into `Fields`, `Vars` and `Funcs` any fields,
/// global variables and functions that are declared in or referenced from
/// sub-statements.
static void
getFieldsGlobalsAndFuncs(const Stmt &S, FieldSet &Fields,
llvm::DenseSet<const VarDecl *> &Vars,
llvm::DenseSet<const FunctionDecl *> &Funcs) {
for (auto *Child : S.children())
if (Child != nullptr)
getFieldsGlobalsAndFuncs(*Child, Fields, Vars, Funcs);
if (const auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(&S))
getFieldsGlobalsAndFuncs(*DefaultInit->getExpr(), Fields, Vars, Funcs);
if (auto *DS = dyn_cast<DeclStmt>(&S)) {
if (DS->isSingleDecl())
getFieldsGlobalsAndFuncs(*DS->getSingleDecl(), Fields, Vars, Funcs);
else
for (auto *D : DS->getDeclGroup())
getFieldsGlobalsAndFuncs(*D, Fields, Vars, Funcs);
} else if (auto *E = dyn_cast<DeclRefExpr>(&S)) {
insertIfGlobal(*E->getDecl(), Vars);
insertIfFunction(*E->getDecl(), Funcs);
} else if (const auto *C = dyn_cast<CXXMemberCallExpr>(&S)) {
// If this is a method that returns a member variable but does nothing else,
// model the field of the return value.
if (MemberExpr *E = getMemberForAccessor(*C))
if (const auto *FD = dyn_cast<FieldDecl>(E->getMemberDecl()))
Fields.insert(FD);
} else if (auto *E = dyn_cast<MemberExpr>(&S)) {
// FIXME: should we be using `E->getFoundDecl()`?
const ValueDecl *VD = E->getMemberDecl();
insertIfGlobal(*VD, Vars);
insertIfFunction(*VD, Funcs);
if (const auto *FD = dyn_cast<FieldDecl>(VD))
Fields.insert(FD);
} else if (auto *InitList = dyn_cast<InitListExpr>(&S)) {
if (RecordDecl *RD = InitList->getType()->getAsRecordDecl())
for (const auto *FD : getFieldsForInitListExpr(RD))
Fields.insert(FD);
}
}
Environment::Environment(DataflowAnalysisContext &DACtx)
: DACtx(&DACtx),
FlowConditionToken(DACtx.arena().makeFlowConditionToken()) {}
Environment::Environment(DataflowAnalysisContext &DACtx,
const DeclContext &DeclCtx)
: Environment(DACtx) {
CallStack.push_back(&DeclCtx);
}
void Environment::initialize() {
const DeclContext *DeclCtx = getDeclCtx();
if (DeclCtx == nullptr)
return;
if (const auto *FuncDecl = dyn_cast<FunctionDecl>(DeclCtx)) {
assert(FuncDecl->doesThisDeclarationHaveABody());
initFieldsGlobalsAndFuncs(FuncDecl);
for (const auto *ParamDecl : FuncDecl->parameters()) {
assert(ParamDecl != nullptr);
setStorageLocation(*ParamDecl, createObject(*ParamDecl, nullptr));
}
}
if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclCtx)) {
auto *Parent = MethodDecl->getParent();
assert(Parent != nullptr);
if (Parent->isLambda()) {
for (auto Capture : Parent->captures()) {
if (Capture.capturesVariable()) {
const auto *VarDecl = Capture.getCapturedVar();
assert(VarDecl != nullptr);
setStorageLocation(*VarDecl, createObject(*VarDecl, nullptr));
} else if (Capture.capturesThis()) {
const auto *SurroundingMethodDecl =
cast<CXXMethodDecl>(DeclCtx->getNonClosureAncestor());
QualType ThisPointeeType =
SurroundingMethodDecl->getFunctionObjectParameterType();
setThisPointeeStorageLocation(
cast<RecordValue>(createValue(ThisPointeeType))->getLoc());
}
}
} else if (MethodDecl->isImplicitObjectMemberFunction()) {
QualType ThisPointeeType = MethodDecl->getFunctionObjectParameterType();
setThisPointeeStorageLocation(
cast<RecordValue>(createValue(ThisPointeeType))->getLoc());
}
}
}
// FIXME: Add support for resetting globals after function calls to enable
// the implementation of sound analyses.
void Environment::initFieldsGlobalsAndFuncs(const FunctionDecl *FuncDecl) {
assert(FuncDecl->doesThisDeclarationHaveABody());
FieldSet Fields;
llvm::DenseSet<const VarDecl *> Vars;
llvm::DenseSet<const FunctionDecl *> Funcs;
// Look for global variable and field references in the
// constructor-initializers.
if (const auto *CtorDecl = dyn_cast<CXXConstructorDecl>(FuncDecl)) {
for (const auto *Init : CtorDecl->inits()) {
if (Init->isMemberInitializer()) {
Fields.insert(Init->getMember());
} else if (Init->isIndirectMemberInitializer()) {
for (const auto *I : Init->getIndirectMember()->chain())
Fields.insert(cast<FieldDecl>(I));
}
const Expr *E = Init->getInit();
assert(E != nullptr);
getFieldsGlobalsAndFuncs(*E, Fields, Vars, Funcs);
}
// Add all fields mentioned in default member initializers.
for (const FieldDecl *F : CtorDecl->getParent()->fields())
if (const auto *I = F->getInClassInitializer())
getFieldsGlobalsAndFuncs(*I, Fields, Vars, Funcs);
}
getFieldsGlobalsAndFuncs(*FuncDecl->getBody(), Fields, Vars, Funcs);
// These have to be added before the lines that follow to ensure that
// `create*` work correctly for structs.
DACtx->addModeledFields(Fields);
for (const VarDecl *D : Vars) {
if (getStorageLocation(*D) != nullptr)
continue;
setStorageLocation(*D, createObject(*D));
}
for (const FunctionDecl *FD : Funcs) {
if (getStorageLocation(*FD) != nullptr)
continue;
auto &Loc = createStorageLocation(FD->getType());
setStorageLocation(*FD, Loc);
}
}
Environment Environment::fork() const {
Environment Copy(*this);
Copy.FlowConditionToken = DACtx->forkFlowCondition(FlowConditionToken);
return Copy;
}
bool Environment::canDescend(unsigned MaxDepth,
const DeclContext *Callee) const {
return CallStack.size() <= MaxDepth && !llvm::is_contained(CallStack, Callee);
}
Environment Environment::pushCall(const CallExpr *Call) const {
Environment Env(*this);
if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Call)) {
if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) {
if (!isa<CXXThisExpr>(Arg))
Env.ThisPointeeLoc =
cast<RecordStorageLocation>(getStorageLocation(*Arg));
// Otherwise (when the argument is `this`), retain the current
// environment's `ThisPointeeLoc`.
}
}
Env.pushCallInternal(Call->getDirectCallee(),
llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
return Env;
}
Environment Environment::pushCall(const CXXConstructExpr *Call) const {
Environment Env(*this);
Env.ThisPointeeLoc = &Env.getResultObjectLocation(*Call);
Env.pushCallInternal(Call->getConstructor(),
llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
return Env;
}
void Environment::pushCallInternal(const FunctionDecl *FuncDecl,
ArrayRef<const Expr *> Args) {
// Canonicalize to the definition of the function. This ensures that we're
// putting arguments into the same `ParamVarDecl`s` that the callee will later
// be retrieving them from.
assert(FuncDecl->getDefinition() != nullptr);
FuncDecl = FuncDecl->getDefinition();
CallStack.push_back(FuncDecl);
initFieldsGlobalsAndFuncs(FuncDecl);
const auto *ParamIt = FuncDecl->param_begin();
// FIXME: Parameters don't always map to arguments 1:1; examples include
// overloaded operators implemented as member functions, and parameter packs.
for (unsigned ArgIndex = 0; ArgIndex < Args.size(); ++ParamIt, ++ArgIndex) {
assert(ParamIt != FuncDecl->param_end());
const VarDecl *Param = *ParamIt;
setStorageLocation(*Param, createObject(*Param, Args[ArgIndex]));
}
}
void Environment::popCall(const CallExpr *Call, const Environment &CalleeEnv) {
// We ignore some entries of `CalleeEnv`:
// - `DACtx` because is already the same in both
// - We don't want the callee's `DeclCtx`, `ReturnVal`, `ReturnLoc` or
// `ThisPointeeLoc` because they don't apply to us.
// - `DeclToLoc`, `ExprToLoc`, and `ExprToVal` capture information from the
// callee's local scope, so when popping that scope, we do not propagate
// the maps.
this->LocToVal = std::move(CalleeEnv.LocToVal);
this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
if (Call->isGLValue()) {
if (CalleeEnv.ReturnLoc != nullptr)
setStorageLocation(*Call, *CalleeEnv.ReturnLoc);
} else if (!Call->getType()->isVoidType()) {
if (CalleeEnv.ReturnVal != nullptr)
setValue(*Call, *CalleeEnv.ReturnVal);
}
}
void Environment::popCall(const CXXConstructExpr *Call,
const Environment &CalleeEnv) {
// See also comment in `popCall(const CallExpr *, const Environment &)` above.
this->LocToVal = std::move(CalleeEnv.LocToVal);
this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
if (Value *Val = CalleeEnv.getValue(*CalleeEnv.ThisPointeeLoc)) {
setValue(*Call, *Val);
}
}
bool Environment::equivalentTo(const Environment &Other,
Environment::ValueModel &Model) const {
assert(DACtx == Other.DACtx);
if (ReturnVal != Other.ReturnVal)
return false;
if (ReturnLoc != Other.ReturnLoc)
return false;
if (ThisPointeeLoc != Other.ThisPointeeLoc)
return false;
if (DeclToLoc != Other.DeclToLoc)
return false;
if (ExprToLoc != Other.ExprToLoc)
return false;
if (!compareKeyToValueMaps(ExprToVal, Other.ExprToVal, *this, Other, Model))
return false;
if (!compareKeyToValueMaps(LocToVal, Other.LocToVal, *this, Other, Model))
return false;
return true;
}
LatticeJoinEffect Environment::widen(const Environment &PrevEnv,
Environment::ValueModel &Model) {
assert(DACtx == PrevEnv.DACtx);
assert(ReturnVal == PrevEnv.ReturnVal);
assert(ReturnLoc == PrevEnv.ReturnLoc);
assert(ThisPointeeLoc == PrevEnv.ThisPointeeLoc);
assert(CallStack == PrevEnv.CallStack);
auto Effect = LatticeJoinEffect::Unchanged;
// By the API, `PrevEnv` is a previous version of the environment for the same
// block, so we have some guarantees about its shape. In particular, it will
// be the result of a join or widen operation on previous values for this
// block. For `DeclToLoc`, `ExprToVal`, and `ExprToLoc`, join guarantees that
// these maps are subsets of the maps in `PrevEnv`. So, as long as we maintain
// this property here, we don't need change their current values to widen.
assert(DeclToLoc.size() <= PrevEnv.DeclToLoc.size());
assert(ExprToVal.size() <= PrevEnv.ExprToVal.size());
assert(ExprToLoc.size() <= PrevEnv.ExprToLoc.size());
ExprToVal = widenKeyToValueMap(ExprToVal, PrevEnv.ExprToVal, *this, PrevEnv,
Model, Effect);
LocToVal = widenKeyToValueMap(LocToVal, PrevEnv.LocToVal, *this, PrevEnv,
Model, Effect);
if (DeclToLoc.size() != PrevEnv.DeclToLoc.size() ||
ExprToLoc.size() != PrevEnv.ExprToLoc.size() ||
ExprToVal.size() != PrevEnv.ExprToVal.size() ||
LocToVal.size() != PrevEnv.LocToVal.size())
Effect = LatticeJoinEffect::Changed;
return Effect;
}
Environment Environment::join(const Environment &EnvA, const Environment &EnvB,
Environment::ValueModel &Model) {
assert(EnvA.DACtx == EnvB.DACtx);
assert(EnvA.ThisPointeeLoc == EnvB.ThisPointeeLoc);
assert(EnvA.CallStack == EnvB.CallStack);
Environment JoinedEnv(*EnvA.DACtx);
JoinedEnv.CallStack = EnvA.CallStack;
JoinedEnv.ThisPointeeLoc = EnvA.ThisPointeeLoc;
if (EnvA.ReturnVal == nullptr || EnvB.ReturnVal == nullptr) {
// `ReturnVal` might not always get set -- for example if we have a return
// statement of the form `return some_other_func()` and we decide not to
// analyze `some_other_func()`.
// In this case, we can't say anything about the joined return value -- we
// don't simply want to propagate the return value that we do have, because
// it might not be the correct one.
// This occurs for example in the test `ContextSensitiveMutualRecursion`.
JoinedEnv.ReturnVal = nullptr;
} else if (areEquivalentValues(*EnvA.ReturnVal, *EnvB.ReturnVal)) {
JoinedEnv.ReturnVal = EnvA.ReturnVal;
} else {
assert(!EnvA.CallStack.empty());
// FIXME: Make `CallStack` a vector of `FunctionDecl` so we don't need this
// cast.
auto *Func = dyn_cast<FunctionDecl>(EnvA.CallStack.back());
assert(Func != nullptr);
if (Value *MergedVal =
mergeDistinctValues(Func->getReturnType(), *EnvA.ReturnVal, EnvA,
*EnvB.ReturnVal, EnvB, JoinedEnv, Model))
JoinedEnv.ReturnVal = MergedVal;
}
if (EnvA.ReturnLoc == EnvB.ReturnLoc)
JoinedEnv.ReturnLoc = EnvA.ReturnLoc;
else
JoinedEnv.ReturnLoc = nullptr;
JoinedEnv.DeclToLoc = intersectDeclToLoc(EnvA.DeclToLoc, EnvB.DeclToLoc);
// FIXME: update join to detect backedges and simplify the flow condition
// accordingly.
JoinedEnv.FlowConditionToken = EnvA.DACtx->joinFlowConditions(
EnvA.FlowConditionToken, EnvB.FlowConditionToken);
JoinedEnv.LocToVal =
joinLocToVal(EnvA.LocToVal, EnvB.LocToVal, EnvA, EnvB, JoinedEnv, Model);
// We intentionally leave `JoinedEnv.ExprToLoc` and `JoinedEnv.ExprToVal`
// empty, as we never need to access entries in these maps outside of the
// basic block that sets them.
return JoinedEnv;
}
StorageLocation &Environment::createStorageLocation(QualType Type) {
return DACtx->createStorageLocation(Type);
}
StorageLocation &Environment::createStorageLocation(const ValueDecl &D) {
// Evaluated declarations are always assigned the same storage locations to
// ensure that the environment stabilizes across loop iterations. Storage
// locations for evaluated declarations are stored in the analysis context.
return DACtx->getStableStorageLocation(D);
}
StorageLocation &Environment::createStorageLocation(const Expr &E) {
// Evaluated expressions are always assigned the same storage locations to
// ensure that the environment stabilizes across loop iterations. Storage
// locations for evaluated expressions are stored in the analysis context.
return DACtx->getStableStorageLocation(E);
}
void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) {
assert(!DeclToLoc.contains(&D));
DeclToLoc[&D] = &Loc;
}
StorageLocation *Environment::getStorageLocation(const ValueDecl &D) const {
auto It = DeclToLoc.find(&D);
if (It == DeclToLoc.end())
return nullptr;
StorageLocation *Loc = It->second;
return Loc;
}
void Environment::removeDecl(const ValueDecl &D) { DeclToLoc.erase(&D); }
void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) {
// `DeclRefExpr`s to builtin function types aren't glvalues, for some reason,
// but we still want to be able to associate a `StorageLocation` with them,
// so allow these as an exception.
assert(E.isGLValue() ||
E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
const Expr &CanonE = ignoreCFGOmittedNodes(E);
assert(!ExprToLoc.contains(&CanonE));
ExprToLoc[&CanonE] = &Loc;
}
StorageLocation *Environment::getStorageLocation(const Expr &E) const {
// See comment in `setStorageLocation()`.
assert(E.isGLValue() ||
E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
return It == ExprToLoc.end() ? nullptr : &*It->second;
}
// Returns whether a prvalue of record type is the one that originally
// constructs the object (i.e. it doesn't propagate it from one of its
// children).
static bool isOriginalRecordConstructor(const Expr &RecordPRValue) {
if (auto *Init = dyn_cast<InitListExpr>(&RecordPRValue))
return !Init->isSemanticForm() || !Init->isTransparent();
return isa<CXXConstructExpr>(RecordPRValue) || isa<CallExpr>(RecordPRValue) ||
isa<LambdaExpr>(RecordPRValue) ||
isa<CXXDefaultInitExpr>(RecordPRValue) ||
// The framework currently does not propagate the objects created in
// the two branches of a `ConditionalOperator` because there is no way
// to reconcile their storage locations, which are different. We
// therefore claim that the `ConditionalOperator` is the expression
// that originally constructs the object.
// Ultimately, this will be fixed by propagating locations down from
// the result object, rather than up from the original constructor as
// we do now (see also the FIXME in the documentation for
// `getResultObjectLocation()`).
isa<ConditionalOperator>(RecordPRValue);
}
RecordStorageLocation &
Environment::getResultObjectLocation(const Expr &RecordPRValue) const {
assert(RecordPRValue.getType()->isRecordType());
assert(RecordPRValue.isPRValue());
// Returns a storage location that we can use if assertions fail.
auto FallbackForAssertFailure =
[this, &RecordPRValue]() -> RecordStorageLocation & {
return cast<RecordStorageLocation>(
DACtx->getStableStorageLocation(RecordPRValue));
};
if (isOriginalRecordConstructor(RecordPRValue)) {
auto *Val = cast_or_null<RecordValue>(getValue(RecordPRValue));
// The builtin transfer function should have created a `RecordValue` for all
// original record constructors.
assert(Val);
if (!Val)
return FallbackForAssertFailure();
return Val->getLoc();
}
if (auto *Op = dyn_cast<BinaryOperator>(&RecordPRValue);
Op && Op->isCommaOp()) {
return getResultObjectLocation(*Op->getRHS());
}
// All other expression nodes that propagate a record prvalue should have
// exactly one child.
llvm::SmallVector<const Stmt *> children(RecordPRValue.child_begin(),
RecordPRValue.child_end());
assert(children.size() == 1);
if (children.empty())
return FallbackForAssertFailure();
return getResultObjectLocation(*cast<Expr>(children[0]));
}
PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) {
return DACtx->getOrCreateNullPointerValue(PointeeType);
}
void Environment::setValue(const StorageLocation &Loc, Value &Val) {
assert(!isa<RecordValue>(&Val) || &cast<RecordValue>(&Val)->getLoc() == &Loc);
LocToVal[&Loc] = &Val;
}
void Environment::setValue(const Expr &E, Value &Val) {
const Expr &CanonE = ignoreCFGOmittedNodes(E);
if (auto *RecordVal = dyn_cast<RecordValue>(&Val)) {
assert(isOriginalRecordConstructor(CanonE) ||
&RecordVal->getLoc() == &getResultObjectLocation(CanonE));
}
assert(CanonE.isPRValue());
ExprToVal[&CanonE] = &Val;
}
Value *Environment::getValue(const StorageLocation &Loc) const {
return LocToVal.lookup(&Loc);
}
Value *Environment::getValue(const ValueDecl &D) const {
auto *Loc = getStorageLocation(D);
if (Loc == nullptr)
return nullptr;
return getValue(*Loc);
}
Value *Environment::getValue(const Expr &E) const {
if (E.isPRValue()) {
auto It = ExprToVal.find(&ignoreCFGOmittedNodes(E));
return It == ExprToVal.end() ? nullptr : It->second;
}
auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
if (It == ExprToLoc.end())
return nullptr;
return getValue(*It->second);
}
Value *Environment::createValue(QualType Type) {
llvm::DenseSet<QualType> Visited;
int CreatedValuesCount = 0;
Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0,
CreatedValuesCount);
if (CreatedValuesCount > MaxCompositeValueSize) {
llvm::errs() << "Attempting to initialize a huge value of type: " << Type
<< '\n';
}
return Val;
}
Value *Environment::createValueUnlessSelfReferential(
QualType Type, llvm::DenseSet<QualType> &Visited, int Depth,
int &CreatedValuesCount) {
assert(!Type.isNull());
assert(!Type->isReferenceType());
// Allow unlimited fields at depth 1; only cap at deeper nesting levels.
if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) ||
Depth > MaxCompositeValueDepth)
return nullptr;
if (Type->isBooleanType()) {
CreatedValuesCount++;
return &makeAtomicBoolValue();
}
if (Type->isIntegerType()) {
// FIXME: consider instead `return nullptr`, given that we do nothing useful
// with integers, and so distinguishing them serves no purpose, but could
// prevent convergence.
CreatedValuesCount++;
return &arena().create<IntegerValue>();
}
if (Type->isPointerType()) {
CreatedValuesCount++;
QualType PointeeType = Type->getPointeeType();
StorageLocation &PointeeLoc =
createLocAndMaybeValue(PointeeType, Visited, Depth, CreatedValuesCount);
return &arena().create<PointerValue>(PointeeLoc);
}
if (Type->isRecordType()) {
CreatedValuesCount++;
llvm::DenseMap<const ValueDecl *, StorageLocation *> FieldLocs;
for (const FieldDecl *Field : DACtx->getModeledFields(Type)) {
assert(Field != nullptr);
QualType FieldType = Field->getType();
FieldLocs.insert(
{Field, &createLocAndMaybeValue(FieldType, Visited, Depth + 1,
CreatedValuesCount)});
}
RecordStorageLocation::SyntheticFieldMap SyntheticFieldLocs;
for (const auto &Entry : DACtx->getSyntheticFields(Type)) {
SyntheticFieldLocs.insert(
{Entry.getKey(),
&createLocAndMaybeValue(Entry.getValue(), Visited, Depth + 1,
CreatedValuesCount)});
}
RecordStorageLocation &Loc = DACtx->createRecordStorageLocation(
Type, std::move(FieldLocs), std::move(SyntheticFieldLocs));
RecordValue &RecordVal = create<RecordValue>(Loc);
// As we already have a storage location for the `RecordValue`, we can and
// should associate them in the environment.
setValue(Loc, RecordVal);
return &RecordVal;
}
return nullptr;
}
StorageLocation &
Environment::createLocAndMaybeValue(QualType Ty,
llvm::DenseSet<QualType> &Visited,
int Depth, int &CreatedValuesCount) {
if (!Visited.insert(Ty.getCanonicalType()).second)
return createStorageLocation(Ty.getNonReferenceType());
Value *Val = createValueUnlessSelfReferential(
Ty.getNonReferenceType(), Visited, Depth, CreatedValuesCount);
Visited.erase(Ty.getCanonicalType());
Ty = Ty.getNonReferenceType();
if (Val == nullptr)
return createStorageLocation(Ty);
if (Ty->isRecordType())
return cast<RecordValue>(Val)->getLoc();
StorageLocation &Loc = createStorageLocation(Ty);
setValue(Loc, *Val);
return Loc;
}
StorageLocation &Environment::createObjectInternal(const ValueDecl *D,
QualType Ty,
const Expr *InitExpr) {
if (Ty->isReferenceType()) {
// Although variables of reference type always need to be initialized, it
// can happen that we can't see the initializer, so `InitExpr` may still
// be null.
if (InitExpr) {
if (auto *InitExprLoc = getStorageLocation(*InitExpr))
return *InitExprLoc;
}
// Even though we have an initializer, we might not get an
// InitExprLoc, for example if the InitExpr is a CallExpr for which we
// don't have a function body. In this case, we just invent a storage
// location and value -- it's the best we can do.
return createObjectInternal(D, Ty.getNonReferenceType(), nullptr);
}
Value *Val = nullptr;
if (InitExpr)
// In the (few) cases where an expression is intentionally
// "uninterpreted", `InitExpr` is not associated with a value. There are
// two ways to handle this situation: propagate the status, so that
// uninterpreted initializers result in uninterpreted variables, or
// provide a default value. We choose the latter so that later refinements
// of the variable can be used for reasoning about the surrounding code.
// For this reason, we let this case be handled by the `createValue()`
// call below.
//
// FIXME. If and when we interpret all language cases, change this to
// assert that `InitExpr` is interpreted, rather than supplying a
// default value (assuming we don't update the environment API to return
// references).
Val = getValue(*InitExpr);
if (!Val)
Val = createValue(Ty);
if (Ty->isRecordType())
return cast<RecordValue>(Val)->getLoc();
StorageLocation &Loc =
D ? createStorageLocation(*D) : createStorageLocation(Ty);
if (Val)
setValue(Loc, *Val);
return Loc;
}
void Environment::assume(const Formula &F) {
DACtx->addFlowConditionConstraint(FlowConditionToken, F);
}
bool Environment::proves(const Formula &F) const {
return DACtx->flowConditionImplies(FlowConditionToken, F);
}
bool Environment::allows(const Formula &F) const {
return DACtx->flowConditionAllows(FlowConditionToken, F);
}
void Environment::dump(raw_ostream &OS) const {
// FIXME: add printing for remaining fields and allow caller to decide what
// fields are printed.
OS << "DeclToLoc:\n";
for (auto [D, L] : DeclToLoc)
OS << " [" << D->getNameAsString() << ", " << L << "]\n";
OS << "ExprToLoc:\n";
for (auto [E, L] : ExprToLoc)
OS << " [" << E << ", " << L << "]\n";
OS << "ExprToVal:\n";
for (auto [E, V] : ExprToVal)
OS << " [" << E << ", " << V << ": " << *V << "]\n";
OS << "LocToVal:\n";
for (auto [L, V] : LocToVal) {
OS << " [" << L << ", " << V << ": " << *V << "]\n";
}
OS << "\n";
DACtx->dumpFlowCondition(FlowConditionToken, OS);
}
void Environment::dump() const {
dump(llvm::dbgs());
}
RecordStorageLocation *getImplicitObjectLocation(const CXXMemberCallExpr &MCE,
const Environment &Env) {
Expr *ImplicitObject = MCE.getImplicitObjectArgument();
if (ImplicitObject == nullptr)
return nullptr;
if (ImplicitObject->getType()->isPointerType()) {
if (auto *Val = Env.get<PointerValue>(*ImplicitObject))
return &cast<RecordStorageLocation>(Val->getPointeeLoc());
return nullptr;
}
return cast_or_null<RecordStorageLocation>(
Env.getStorageLocation(*ImplicitObject));
}
RecordStorageLocation *getBaseObjectLocation(const MemberExpr &ME,
const Environment &Env) {
Expr *Base = ME.getBase();
if (Base == nullptr)
return nullptr;
if (ME.isArrow()) {
if (auto *Val = Env.get<PointerValue>(*Base))
return &cast<RecordStorageLocation>(Val->getPointeeLoc());
return nullptr;
}
return Env.get<RecordStorageLocation>(*Base);
}
std::vector<FieldDecl *> getFieldsForInitListExpr(const RecordDecl *RD) {
// Unnamed bitfields are only used for padding and do not appear in
// `InitListExpr`'s inits. However, those fields do appear in `RecordDecl`'s
// field list, and we thus need to remove them before mapping inits to
// fields to avoid mapping inits to the wrongs fields.
std::vector<FieldDecl *> Fields;
llvm::copy_if(
RD->fields(), std::back_inserter(Fields),
[](const FieldDecl *Field) { return !Field->isUnnamedBitfield(); });
return Fields;
}
RecordValue &refreshRecordValue(RecordStorageLocation &Loc, Environment &Env) {
auto &NewVal = Env.create<RecordValue>(Loc);
Env.setValue(Loc, NewVal);
return NewVal;
}
RecordValue &refreshRecordValue(const Expr &Expr, Environment &Env) {
assert(Expr.getType()->isRecordType());
if (Expr.isPRValue()) {
if (auto *ExistingVal = Env.get<RecordValue>(Expr)) {
auto &NewVal = Env.create<RecordValue>(ExistingVal->getLoc());
Env.setValue(Expr, NewVal);
Env.setValue(NewVal.getLoc(), NewVal);
return NewVal;
}
auto &NewVal = *cast<RecordValue>(Env.createValue(Expr.getType()));
Env.setValue(Expr, NewVal);
return NewVal;
}
if (auto *Loc = Env.get<RecordStorageLocation>(Expr)) {
auto &NewVal = Env.create<RecordValue>(*Loc);
Env.setValue(*Loc, NewVal);
return NewVal;
}
auto &NewVal = *cast<RecordValue>(Env.createValue(Expr.getType()));
Env.setStorageLocation(Expr, NewVal.getLoc());
return NewVal;
}
} // namespace dataflow
} // namespace clang
|