1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines ArrayBoundCheckerV2, which is a path-sensitive check
// which looks for an out-of-bound array element access.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/CharUnits.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
using namespace clang;
using namespace ento;
using namespace taint;
using llvm::formatv;
namespace {
enum OOB_Kind { OOB_Precedes, OOB_Exceeds, OOB_Taint };
struct Messages {
std::string Short, Full;
};
// NOTE: The `ArraySubscriptExpr` and `UnaryOperator` callbacks are `PostStmt`
// instead of `PreStmt` because the current implementation passes the whole
// expression to `CheckerContext::getSVal()` which only works after the
// symbolic evaluation of the expression. (To turn them into `PreStmt`
// callbacks, we'd need to duplicate the logic that evaluates these
// expressions.) The `MemberExpr` callback would work as `PreStmt` but it's
// defined as `PostStmt` for the sake of consistency with the other callbacks.
class ArrayBoundCheckerV2 : public Checker<check::PostStmt<ArraySubscriptExpr>,
check::PostStmt<UnaryOperator>,
check::PostStmt<MemberExpr>> {
BugType BT{this, "Out-of-bound access"};
BugType TaintBT{this, "Out-of-bound access", categories::TaintedData};
void performCheck(const Expr *E, CheckerContext &C) const;
void reportOOB(CheckerContext &C, ProgramStateRef ErrorState, OOB_Kind Kind,
NonLoc Offset, Messages Msgs) const;
static bool isFromCtypeMacro(const Stmt *S, ASTContext &AC);
static bool isInAddressOf(const Stmt *S, ASTContext &AC);
public:
void checkPostStmt(const ArraySubscriptExpr *E, CheckerContext &C) const {
performCheck(E, C);
}
void checkPostStmt(const UnaryOperator *E, CheckerContext &C) const {
if (E->getOpcode() == UO_Deref)
performCheck(E, C);
}
void checkPostStmt(const MemberExpr *E, CheckerContext &C) const {
if (E->isArrow())
performCheck(E->getBase(), C);
}
};
} // anonymous namespace
/// For a given Location that can be represented as a symbolic expression
/// Arr[Idx] (or perhaps Arr[Idx1][Idx2] etc.), return the parent memory block
/// Arr and the distance of Location from the beginning of Arr (expressed in a
/// NonLoc that specifies the number of CharUnits). Returns nullopt when these
/// cannot be determined.
static std::optional<std::pair<const SubRegion *, NonLoc>>
computeOffset(ProgramStateRef State, SValBuilder &SVB, SVal Location) {
QualType T = SVB.getArrayIndexType();
auto EvalBinOp = [&SVB, State, T](BinaryOperatorKind Op, NonLoc L, NonLoc R) {
// We will use this utility to add and multiply values.
return SVB.evalBinOpNN(State, Op, L, R, T).getAs<NonLoc>();
};
const SubRegion *OwnerRegion = nullptr;
std::optional<NonLoc> Offset = SVB.makeZeroArrayIndex();
const ElementRegion *CurRegion =
dyn_cast_or_null<ElementRegion>(Location.getAsRegion());
while (CurRegion) {
const auto Index = CurRegion->getIndex().getAs<NonLoc>();
if (!Index)
return std::nullopt;
QualType ElemType = CurRegion->getElementType();
// FIXME: The following early return was presumably added to safeguard the
// getTypeSizeInChars() call (which doesn't accept an incomplete type), but
// it seems that `ElemType` cannot be incomplete at this point.
if (ElemType->isIncompleteType())
return std::nullopt;
// Calculate Delta = Index * sizeof(ElemType).
NonLoc Size = SVB.makeArrayIndex(
SVB.getContext().getTypeSizeInChars(ElemType).getQuantity());
auto Delta = EvalBinOp(BO_Mul, *Index, Size);
if (!Delta)
return std::nullopt;
// Perform Offset += Delta.
Offset = EvalBinOp(BO_Add, *Offset, *Delta);
if (!Offset)
return std::nullopt;
OwnerRegion = CurRegion->getSuperRegion()->getAs<SubRegion>();
// When this is just another ElementRegion layer, we need to continue the
// offset calculations:
CurRegion = dyn_cast_or_null<ElementRegion>(OwnerRegion);
}
if (OwnerRegion)
return std::make_pair(OwnerRegion, *Offset);
return std::nullopt;
}
// TODO: once the constraint manager is smart enough to handle non simplified
// symbolic expressions remove this function. Note that this can not be used in
// the constraint manager as is, since this does not handle overflows. It is
// safe to assume, however, that memory offsets will not overflow.
// NOTE: callers of this function need to be aware of the effects of overflows
// and signed<->unsigned conversions!
static std::pair<NonLoc, nonloc::ConcreteInt>
getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent,
SValBuilder &svalBuilder) {
std::optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>();
if (SymVal && SymVal->isExpression()) {
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) {
llvm::APSInt constant =
APSIntType(extent.getValue()).convert(SIE->getRHS());
switch (SIE->getOpcode()) {
case BO_Mul:
// The constant should never be 0 here, becasue multiplication by zero
// is simplified by the engine.
if ((extent.getValue() % constant) != 0)
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
else
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extent.getValue() / constant),
svalBuilder);
case BO_Add:
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder);
default:
break;
}
}
}
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
}
// Evaluate the comparison Value < Threshold with the help of the custom
// simplification algorithm defined for this checker. Return a pair of states,
// where the first one corresponds to "value below threshold" and the second
// corresponds to "value at or above threshold". Returns {nullptr, nullptr} in
// the case when the evaluation fails.
// If the optional argument CheckEquality is true, then use BO_EQ instead of
// the default BO_LT after consistently applying the same simplification steps.
static std::pair<ProgramStateRef, ProgramStateRef>
compareValueToThreshold(ProgramStateRef State, NonLoc Value, NonLoc Threshold,
SValBuilder &SVB, bool CheckEquality = false) {
if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
std::tie(Value, Threshold) = getSimplifiedOffsets(Value, *ConcreteThreshold, SVB);
}
if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
QualType T = Value.getType(SVB.getContext());
if (T->isUnsignedIntegerType() && ConcreteThreshold->getValue().isNegative()) {
// In this case we reduced the bound check to a comparison of the form
// (symbol or value with unsigned type) < (negative number)
// which is always false. We are handling these cases separately because
// evalBinOpNN can perform a signed->unsigned conversion that turns the
// negative number into a huge positive value and leads to wildly
// inaccurate conclusions.
return {nullptr, State};
}
}
const BinaryOperatorKind OpKind = CheckEquality ? BO_EQ : BO_LT;
auto BelowThreshold =
SVB.evalBinOpNN(State, OpKind, Value, Threshold, SVB.getConditionType())
.getAs<NonLoc>();
if (BelowThreshold)
return State->assume(*BelowThreshold);
return {nullptr, nullptr};
}
static std::string getRegionName(const SubRegion *Region) {
if (std::string RegName = Region->getDescriptiveName(); !RegName.empty())
return RegName;
// Field regions only have descriptive names when their parent has a
// descriptive name; so we provide a fallback representation for them:
if (const auto *FR = Region->getAs<FieldRegion>()) {
if (StringRef Name = FR->getDecl()->getName(); !Name.empty())
return formatv("the field '{0}'", Name);
return "the unnamed field";
}
if (isa<AllocaRegion>(Region))
return "the memory returned by 'alloca'";
if (isa<SymbolicRegion>(Region) &&
isa<HeapSpaceRegion>(Region->getMemorySpace()))
return "the heap area";
if (isa<StringRegion>(Region))
return "the string literal";
return "the region";
}
static std::optional<int64_t> getConcreteValue(NonLoc SV) {
if (auto ConcreteVal = SV.getAs<nonloc::ConcreteInt>()) {
return ConcreteVal->getValue().tryExtValue();
}
return std::nullopt;
}
static std::string getShortMsg(OOB_Kind Kind, std::string RegName) {
static const char *ShortMsgTemplates[] = {
"Out of bound access to memory preceding {0}",
"Out of bound access to memory after the end of {0}",
"Potential out of bound access to {0} with tainted offset"};
return formatv(ShortMsgTemplates[Kind], RegName);
}
static Messages getPrecedesMsgs(const SubRegion *Region, NonLoc Offset) {
std::string RegName = getRegionName(Region);
SmallString<128> Buf;
llvm::raw_svector_ostream Out(Buf);
Out << "Access of " << RegName << " at negative byte offset";
if (auto ConcreteIdx = Offset.getAs<nonloc::ConcreteInt>())
Out << ' ' << ConcreteIdx->getValue();
return {getShortMsg(OOB_Precedes, RegName), std::string(Buf)};
}
static Messages getExceedsMsgs(ASTContext &ACtx, const SubRegion *Region,
NonLoc Offset, NonLoc Extent, SVal Location) {
std::string RegName = getRegionName(Region);
const auto *EReg = Location.getAsRegion()->getAs<ElementRegion>();
assert(EReg && "this checker only handles element access");
QualType ElemType = EReg->getElementType();
std::optional<int64_t> OffsetN = getConcreteValue(Offset);
std::optional<int64_t> ExtentN = getConcreteValue(Extent);
bool UseByteOffsets = true;
if (int64_t ElemSize = ACtx.getTypeSizeInChars(ElemType).getQuantity()) {
const bool OffsetHasRemainder = OffsetN && *OffsetN % ElemSize;
const bool ExtentHasRemainder = ExtentN && *ExtentN % ElemSize;
if (!OffsetHasRemainder && !ExtentHasRemainder) {
UseByteOffsets = false;
if (OffsetN)
*OffsetN /= ElemSize;
if (ExtentN)
*ExtentN /= ElemSize;
}
}
SmallString<256> Buf;
llvm::raw_svector_ostream Out(Buf);
Out << "Access of ";
if (!ExtentN && !UseByteOffsets)
Out << "'" << ElemType.getAsString() << "' element in ";
Out << RegName << " at ";
if (OffsetN) {
Out << (UseByteOffsets ? "byte offset " : "index ") << *OffsetN;
} else {
Out << "an overflowing " << (UseByteOffsets ? "byte offset" : "index");
}
if (ExtentN) {
Out << ", while it holds only ";
if (*ExtentN != 1)
Out << *ExtentN;
else
Out << "a single";
if (UseByteOffsets)
Out << " byte";
else
Out << " '" << ElemType.getAsString() << "' element";
if (*ExtentN > 1)
Out << "s";
}
return {getShortMsg(OOB_Exceeds, RegName), std::string(Buf)};
}
static Messages getTaintMsgs(const SubRegion *Region, const char *OffsetName) {
std::string RegName = getRegionName(Region);
return {formatv("Potential out of bound access to {0} with tainted {1}",
RegName, OffsetName),
formatv("Access of {0} with a tainted {1} that may be too large",
RegName, OffsetName)};
}
void ArrayBoundCheckerV2::performCheck(const Expr *E, CheckerContext &C) const {
// NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping
// some new logic here that reasons directly about memory region extents.
// Once that logic is more mature, we can bring it back to assumeInBound()
// for all clients to use.
//
// The algorithm we are using here for bounds checking is to see if the
// memory access is within the extent of the base region. Since we
// have some flexibility in defining the base region, we can achieve
// various levels of conservatism in our buffer overflow checking.
const SVal Location = C.getSVal(E);
// The header ctype.h (from e.g. glibc) implements the isXXXXX() macros as
// #define isXXXXX(arg) (LOOKUP_TABLE[arg] & BITMASK_FOR_XXXXX)
// and incomplete analysis of these leads to false positives. As even
// accurate reports would be confusing for the users, just disable reports
// from these macros:
if (isFromCtypeMacro(E, C.getASTContext()))
return;
ProgramStateRef State = C.getState();
SValBuilder &SVB = C.getSValBuilder();
const std::optional<std::pair<const SubRegion *, NonLoc>> &RawOffset =
computeOffset(State, SVB, Location);
if (!RawOffset)
return;
auto [Reg, ByteOffset] = *RawOffset;
// CHECK LOWER BOUND
const MemSpaceRegion *Space = Reg->getMemorySpace();
if (!(isa<SymbolicRegion>(Reg) && isa<UnknownSpaceRegion>(Space))) {
// A symbolic region in unknown space represents an unknown pointer that
// may point into the middle of an array, so we don't look for underflows.
// Both conditions are significant because we want to check underflows in
// symbolic regions on the heap (which may be introduced by checkers like
// MallocChecker that call SValBuilder::getConjuredHeapSymbolVal()) and
// non-symbolic regions (e.g. a field subregion of a symbolic region) in
// unknown space.
auto [PrecedesLowerBound, WithinLowerBound] = compareValueToThreshold(
State, ByteOffset, SVB.makeZeroArrayIndex(), SVB);
if (PrecedesLowerBound && !WithinLowerBound) {
// We know that the index definitely precedes the lower bound.
Messages Msgs = getPrecedesMsgs(Reg, ByteOffset);
reportOOB(C, PrecedesLowerBound, OOB_Precedes, ByteOffset, Msgs);
return;
}
if (WithinLowerBound)
State = WithinLowerBound;
}
// CHECK UPPER BOUND
DefinedOrUnknownSVal Size = getDynamicExtent(State, Reg, SVB);
if (auto KnownSize = Size.getAs<NonLoc>()) {
auto [WithinUpperBound, ExceedsUpperBound] =
compareValueToThreshold(State, ByteOffset, *KnownSize, SVB);
if (ExceedsUpperBound) {
if (!WithinUpperBound) {
// We know that the index definitely exceeds the upper bound.
if (isa<ArraySubscriptExpr>(E) && isInAddressOf(E, C.getASTContext())) {
// ...but this is within an addressof expression, so we need to check
// for the exceptional case that `&array[size]` is valid.
auto [EqualsToThreshold, NotEqualToThreshold] =
compareValueToThreshold(ExceedsUpperBound, ByteOffset, *KnownSize,
SVB, /*CheckEquality=*/true);
if (EqualsToThreshold && !NotEqualToThreshold) {
// We are definitely in the exceptional case, so return early
// instead of reporting a bug.
C.addTransition(EqualsToThreshold);
return;
}
}
Messages Msgs = getExceedsMsgs(C.getASTContext(), Reg, ByteOffset,
*KnownSize, Location);
reportOOB(C, ExceedsUpperBound, OOB_Exceeds, ByteOffset, Msgs);
return;
}
if (isTainted(State, ByteOffset)) {
// Both cases are possible, but the offset is tainted, so report.
std::string RegName = getRegionName(Reg);
// Diagnostic detail: "tainted offset" is always correct, but the
// common case is that 'idx' is tainted in 'arr[idx]' and then it's
// nicer to say "tainted index".
const char *OffsetName = "offset";
if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(E))
if (isTainted(State, ASE->getIdx(), C.getLocationContext()))
OffsetName = "index";
Messages Msgs = getTaintMsgs(Reg, OffsetName);
reportOOB(C, ExceedsUpperBound, OOB_Taint, ByteOffset, Msgs);
return;
}
}
if (WithinUpperBound)
State = WithinUpperBound;
}
C.addTransition(State);
}
void ArrayBoundCheckerV2::reportOOB(CheckerContext &C,
ProgramStateRef ErrorState, OOB_Kind Kind,
NonLoc Offset, Messages Msgs) const {
ExplodedNode *ErrorNode = C.generateErrorNode(ErrorState);
if (!ErrorNode)
return;
auto BR = std::make_unique<PathSensitiveBugReport>(
Kind == OOB_Taint ? TaintBT : BT, Msgs.Short, Msgs.Full, ErrorNode);
// Track back the propagation of taintedness.
if (Kind == OOB_Taint)
for (SymbolRef Sym : getTaintedSymbols(ErrorState, Offset))
BR->markInteresting(Sym);
C.emitReport(std::move(BR));
}
bool ArrayBoundCheckerV2::isFromCtypeMacro(const Stmt *S, ASTContext &ACtx) {
SourceLocation Loc = S->getBeginLoc();
if (!Loc.isMacroID())
return false;
StringRef MacroName = Lexer::getImmediateMacroName(
Loc, ACtx.getSourceManager(), ACtx.getLangOpts());
if (MacroName.size() < 7 || MacroName[0] != 'i' || MacroName[1] != 's')
return false;
return ((MacroName == "isalnum") || (MacroName == "isalpha") ||
(MacroName == "isblank") || (MacroName == "isdigit") ||
(MacroName == "isgraph") || (MacroName == "islower") ||
(MacroName == "isnctrl") || (MacroName == "isprint") ||
(MacroName == "ispunct") || (MacroName == "isspace") ||
(MacroName == "isupper") || (MacroName == "isxdigit"));
}
bool ArrayBoundCheckerV2::isInAddressOf(const Stmt *S, ASTContext &ACtx) {
ParentMapContext &ParentCtx = ACtx.getParentMapContext();
do {
const DynTypedNodeList Parents = ParentCtx.getParents(*S);
if (Parents.empty())
return false;
S = Parents[0].get<Stmt>();
} while (isa_and_nonnull<ParenExpr, ImplicitCastExpr>(S));
const auto *UnaryOp = dyn_cast_or_null<UnaryOperator>(S);
return UnaryOp && UnaryOp->getOpcode() == UO_AddrOf;
}
void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) {
mgr.registerChecker<ArrayBoundCheckerV2>();
}
bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) {
return true;
}
|