File: ArrayBoundCheckerV2.cpp

package info (click to toggle)
llvm-toolchain-18 1%3A18.1.8-18
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,908,340 kB
  • sloc: cpp: 6,667,937; ansic: 1,440,452; asm: 883,619; python: 230,549; objc: 76,880; f90: 74,238; lisp: 35,989; pascal: 16,571; sh: 10,229; perl: 7,459; ml: 5,047; awk: 3,523; makefile: 2,987; javascript: 2,149; xml: 892; fortran: 649; cs: 573
file content (485 lines) | stat: -rw-r--r-- 19,171 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines ArrayBoundCheckerV2, which is a path-sensitive check
// which looks for an out-of-bound array element access.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/CharUnits.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>

using namespace clang;
using namespace ento;
using namespace taint;
using llvm::formatv;

namespace {
enum OOB_Kind { OOB_Precedes, OOB_Exceeds, OOB_Taint };

struct Messages {
  std::string Short, Full;
};

// NOTE: The `ArraySubscriptExpr` and `UnaryOperator` callbacks are `PostStmt`
// instead of `PreStmt` because the current implementation passes the whole
// expression to `CheckerContext::getSVal()` which only works after the
// symbolic evaluation of the expression. (To turn them into `PreStmt`
// callbacks, we'd need to duplicate the logic that evaluates these
// expressions.) The `MemberExpr` callback would work as `PreStmt` but it's
// defined as `PostStmt` for the sake of consistency with the other callbacks.
class ArrayBoundCheckerV2 : public Checker<check::PostStmt<ArraySubscriptExpr>,
                                           check::PostStmt<UnaryOperator>,
                                           check::PostStmt<MemberExpr>> {
  BugType BT{this, "Out-of-bound access"};
  BugType TaintBT{this, "Out-of-bound access", categories::TaintedData};

  void performCheck(const Expr *E, CheckerContext &C) const;

  void reportOOB(CheckerContext &C, ProgramStateRef ErrorState, OOB_Kind Kind,
                 NonLoc Offset, Messages Msgs) const;

  static bool isFromCtypeMacro(const Stmt *S, ASTContext &AC);

  static bool isInAddressOf(const Stmt *S, ASTContext &AC);

public:
  void checkPostStmt(const ArraySubscriptExpr *E, CheckerContext &C) const {
    performCheck(E, C);
  }
  void checkPostStmt(const UnaryOperator *E, CheckerContext &C) const {
    if (E->getOpcode() == UO_Deref)
      performCheck(E, C);
  }
  void checkPostStmt(const MemberExpr *E, CheckerContext &C) const {
    if (E->isArrow())
      performCheck(E->getBase(), C);
  }
};

} // anonymous namespace

/// For a given Location that can be represented as a symbolic expression
/// Arr[Idx] (or perhaps Arr[Idx1][Idx2] etc.), return the parent memory block
/// Arr and the distance of Location from the beginning of Arr (expressed in a
/// NonLoc that specifies the number of CharUnits). Returns nullopt when these
/// cannot be determined.
static std::optional<std::pair<const SubRegion *, NonLoc>>
computeOffset(ProgramStateRef State, SValBuilder &SVB, SVal Location) {
  QualType T = SVB.getArrayIndexType();
  auto EvalBinOp = [&SVB, State, T](BinaryOperatorKind Op, NonLoc L, NonLoc R) {
    // We will use this utility to add and multiply values.
    return SVB.evalBinOpNN(State, Op, L, R, T).getAs<NonLoc>();
  };

  const SubRegion *OwnerRegion = nullptr;
  std::optional<NonLoc> Offset = SVB.makeZeroArrayIndex();

  const ElementRegion *CurRegion =
      dyn_cast_or_null<ElementRegion>(Location.getAsRegion());

  while (CurRegion) {
    const auto Index = CurRegion->getIndex().getAs<NonLoc>();
    if (!Index)
      return std::nullopt;

    QualType ElemType = CurRegion->getElementType();

    // FIXME: The following early return was presumably added to safeguard the
    // getTypeSizeInChars() call (which doesn't accept an incomplete type), but
    // it seems that `ElemType` cannot be incomplete at this point.
    if (ElemType->isIncompleteType())
      return std::nullopt;

    // Calculate Delta = Index * sizeof(ElemType).
    NonLoc Size = SVB.makeArrayIndex(
        SVB.getContext().getTypeSizeInChars(ElemType).getQuantity());
    auto Delta = EvalBinOp(BO_Mul, *Index, Size);
    if (!Delta)
      return std::nullopt;

    // Perform Offset += Delta.
    Offset = EvalBinOp(BO_Add, *Offset, *Delta);
    if (!Offset)
      return std::nullopt;

    OwnerRegion = CurRegion->getSuperRegion()->getAs<SubRegion>();
    // When this is just another ElementRegion layer, we need to continue the
    // offset calculations:
    CurRegion = dyn_cast_or_null<ElementRegion>(OwnerRegion);
  }

  if (OwnerRegion)
    return std::make_pair(OwnerRegion, *Offset);

  return std::nullopt;
}

// TODO: once the constraint manager is smart enough to handle non simplified
// symbolic expressions remove this function. Note that this can not be used in
// the constraint manager as is, since this does not handle overflows. It is
// safe to assume, however, that memory offsets will not overflow.
// NOTE: callers of this function need to be aware of the effects of overflows
// and signed<->unsigned conversions!
static std::pair<NonLoc, nonloc::ConcreteInt>
getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent,
                     SValBuilder &svalBuilder) {
  std::optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>();
  if (SymVal && SymVal->isExpression()) {
    if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) {
      llvm::APSInt constant =
          APSIntType(extent.getValue()).convert(SIE->getRHS());
      switch (SIE->getOpcode()) {
      case BO_Mul:
        // The constant should never be 0 here, becasue multiplication by zero
        // is simplified by the engine.
        if ((extent.getValue() % constant) != 0)
          return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
        else
          return getSimplifiedOffsets(
              nonloc::SymbolVal(SIE->getLHS()),
              svalBuilder.makeIntVal(extent.getValue() / constant),
              svalBuilder);
      case BO_Add:
        return getSimplifiedOffsets(
            nonloc::SymbolVal(SIE->getLHS()),
            svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder);
      default:
        break;
      }
    }
  }

  return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
}

// Evaluate the comparison Value < Threshold with the help of the custom
// simplification algorithm defined for this checker. Return a pair of states,
// where the first one corresponds to "value below threshold" and the second
// corresponds to "value at or above threshold". Returns {nullptr, nullptr} in
// the case when the evaluation fails.
// If the optional argument CheckEquality is true, then use BO_EQ instead of
// the default BO_LT after consistently applying the same simplification steps.
static std::pair<ProgramStateRef, ProgramStateRef>
compareValueToThreshold(ProgramStateRef State, NonLoc Value, NonLoc Threshold,
                        SValBuilder &SVB, bool CheckEquality = false) {
  if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
    std::tie(Value, Threshold) = getSimplifiedOffsets(Value, *ConcreteThreshold, SVB);
  }
  if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
    QualType T = Value.getType(SVB.getContext());
    if (T->isUnsignedIntegerType() && ConcreteThreshold->getValue().isNegative()) {
      // In this case we reduced the bound check to a comparison of the form
      //   (symbol or value with unsigned type) < (negative number)
      // which is always false. We are handling these cases separately because
      // evalBinOpNN can perform a signed->unsigned conversion that turns the
      // negative number into a huge positive value and leads to wildly
      // inaccurate conclusions.
      return {nullptr, State};
    }
  }
  const BinaryOperatorKind OpKind = CheckEquality ? BO_EQ : BO_LT;
  auto BelowThreshold =
      SVB.evalBinOpNN(State, OpKind, Value, Threshold, SVB.getConditionType())
          .getAs<NonLoc>();

  if (BelowThreshold)
    return State->assume(*BelowThreshold);

  return {nullptr, nullptr};
}

static std::string getRegionName(const SubRegion *Region) {
  if (std::string RegName = Region->getDescriptiveName(); !RegName.empty())
    return RegName;

  // Field regions only have descriptive names when their parent has a
  // descriptive name; so we provide a fallback representation for them:
  if (const auto *FR = Region->getAs<FieldRegion>()) {
    if (StringRef Name = FR->getDecl()->getName(); !Name.empty())
      return formatv("the field '{0}'", Name);
    return "the unnamed field";
  }

  if (isa<AllocaRegion>(Region))
    return "the memory returned by 'alloca'";

  if (isa<SymbolicRegion>(Region) &&
      isa<HeapSpaceRegion>(Region->getMemorySpace()))
    return "the heap area";

  if (isa<StringRegion>(Region))
    return "the string literal";

  return "the region";
}

static std::optional<int64_t> getConcreteValue(NonLoc SV) {
  if (auto ConcreteVal = SV.getAs<nonloc::ConcreteInt>()) {
    return ConcreteVal->getValue().tryExtValue();
  }
  return std::nullopt;
}

static std::string getShortMsg(OOB_Kind Kind, std::string RegName) {
  static const char *ShortMsgTemplates[] = {
      "Out of bound access to memory preceding {0}",
      "Out of bound access to memory after the end of {0}",
      "Potential out of bound access to {0} with tainted offset"};

  return formatv(ShortMsgTemplates[Kind], RegName);
}

static Messages getPrecedesMsgs(const SubRegion *Region, NonLoc Offset) {
  std::string RegName = getRegionName(Region);
  SmallString<128> Buf;
  llvm::raw_svector_ostream Out(Buf);
  Out << "Access of " << RegName << " at negative byte offset";
  if (auto ConcreteIdx = Offset.getAs<nonloc::ConcreteInt>())
    Out << ' ' << ConcreteIdx->getValue();
  return {getShortMsg(OOB_Precedes, RegName), std::string(Buf)};
}

static Messages getExceedsMsgs(ASTContext &ACtx, const SubRegion *Region,
                               NonLoc Offset, NonLoc Extent, SVal Location) {
  std::string RegName = getRegionName(Region);
  const auto *EReg = Location.getAsRegion()->getAs<ElementRegion>();
  assert(EReg && "this checker only handles element access");
  QualType ElemType = EReg->getElementType();

  std::optional<int64_t> OffsetN = getConcreteValue(Offset);
  std::optional<int64_t> ExtentN = getConcreteValue(Extent);

  bool UseByteOffsets = true;
  if (int64_t ElemSize = ACtx.getTypeSizeInChars(ElemType).getQuantity()) {
    const bool OffsetHasRemainder = OffsetN && *OffsetN % ElemSize;
    const bool ExtentHasRemainder = ExtentN && *ExtentN % ElemSize;
    if (!OffsetHasRemainder && !ExtentHasRemainder) {
      UseByteOffsets = false;
      if (OffsetN)
        *OffsetN /= ElemSize;
      if (ExtentN)
        *ExtentN /= ElemSize;
    }
  }

  SmallString<256> Buf;
  llvm::raw_svector_ostream Out(Buf);
  Out << "Access of ";
  if (!ExtentN && !UseByteOffsets)
    Out << "'" << ElemType.getAsString() << "' element in ";
  Out << RegName << " at ";
  if (OffsetN) {
    Out << (UseByteOffsets ? "byte offset " : "index ") << *OffsetN;
  } else {
    Out << "an overflowing " << (UseByteOffsets ? "byte offset" : "index");
  }
  if (ExtentN) {
    Out << ", while it holds only ";
    if (*ExtentN != 1)
      Out << *ExtentN;
    else
      Out << "a single";
    if (UseByteOffsets)
      Out << " byte";
    else
      Out << " '" << ElemType.getAsString() << "' element";

    if (*ExtentN > 1)
      Out << "s";
  }

  return {getShortMsg(OOB_Exceeds, RegName), std::string(Buf)};
}

static Messages getTaintMsgs(const SubRegion *Region, const char *OffsetName) {
  std::string RegName = getRegionName(Region);
  return {formatv("Potential out of bound access to {0} with tainted {1}",
                  RegName, OffsetName),
          formatv("Access of {0} with a tainted {1} that may be too large",
                  RegName, OffsetName)};
}

void ArrayBoundCheckerV2::performCheck(const Expr *E, CheckerContext &C) const {
  // NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping
  // some new logic here that reasons directly about memory region extents.
  // Once that logic is more mature, we can bring it back to assumeInBound()
  // for all clients to use.
  //
  // The algorithm we are using here for bounds checking is to see if the
  // memory access is within the extent of the base region.  Since we
  // have some flexibility in defining the base region, we can achieve
  // various levels of conservatism in our buffer overflow checking.

  const SVal Location = C.getSVal(E);

  // The header ctype.h (from e.g. glibc) implements the isXXXXX() macros as
  //   #define isXXXXX(arg) (LOOKUP_TABLE[arg] & BITMASK_FOR_XXXXX)
  // and incomplete analysis of these leads to false positives. As even
  // accurate reports would be confusing for the users, just disable reports
  // from these macros:
  if (isFromCtypeMacro(E, C.getASTContext()))
    return;

  ProgramStateRef State = C.getState();
  SValBuilder &SVB = C.getSValBuilder();

  const std::optional<std::pair<const SubRegion *, NonLoc>> &RawOffset =
      computeOffset(State, SVB, Location);

  if (!RawOffset)
    return;

  auto [Reg, ByteOffset] = *RawOffset;

  // CHECK LOWER BOUND
  const MemSpaceRegion *Space = Reg->getMemorySpace();
  if (!(isa<SymbolicRegion>(Reg) && isa<UnknownSpaceRegion>(Space))) {
    // A symbolic region in unknown space represents an unknown pointer that
    // may point into the middle of an array, so we don't look for underflows.
    // Both conditions are significant because we want to check underflows in
    // symbolic regions on the heap (which may be introduced by checkers like
    // MallocChecker that call SValBuilder::getConjuredHeapSymbolVal()) and
    // non-symbolic regions (e.g. a field subregion of a symbolic region) in
    // unknown space.
    auto [PrecedesLowerBound, WithinLowerBound] = compareValueToThreshold(
        State, ByteOffset, SVB.makeZeroArrayIndex(), SVB);

    if (PrecedesLowerBound && !WithinLowerBound) {
      // We know that the index definitely precedes the lower bound.
      Messages Msgs = getPrecedesMsgs(Reg, ByteOffset);
      reportOOB(C, PrecedesLowerBound, OOB_Precedes, ByteOffset, Msgs);
      return;
    }

    if (WithinLowerBound)
      State = WithinLowerBound;
  }

  // CHECK UPPER BOUND
  DefinedOrUnknownSVal Size = getDynamicExtent(State, Reg, SVB);
  if (auto KnownSize = Size.getAs<NonLoc>()) {
    auto [WithinUpperBound, ExceedsUpperBound] =
        compareValueToThreshold(State, ByteOffset, *KnownSize, SVB);

    if (ExceedsUpperBound) {
      if (!WithinUpperBound) {
        // We know that the index definitely exceeds the upper bound.
        if (isa<ArraySubscriptExpr>(E) && isInAddressOf(E, C.getASTContext())) {
          // ...but this is within an addressof expression, so we need to check
          // for the exceptional case that `&array[size]` is valid.
          auto [EqualsToThreshold, NotEqualToThreshold] =
              compareValueToThreshold(ExceedsUpperBound, ByteOffset, *KnownSize,
                                      SVB, /*CheckEquality=*/true);
          if (EqualsToThreshold && !NotEqualToThreshold) {
            // We are definitely in the exceptional case, so return early
            // instead of reporting a bug.
            C.addTransition(EqualsToThreshold);
            return;
          }
        }
        Messages Msgs = getExceedsMsgs(C.getASTContext(), Reg, ByteOffset,
                                       *KnownSize, Location);
        reportOOB(C, ExceedsUpperBound, OOB_Exceeds, ByteOffset, Msgs);
        return;
      }
      if (isTainted(State, ByteOffset)) {
        // Both cases are possible, but the offset is tainted, so report.
        std::string RegName = getRegionName(Reg);

        // Diagnostic detail: "tainted offset" is always correct, but the
        // common case is that 'idx' is tainted in 'arr[idx]' and then it's
        // nicer to say "tainted index".
        const char *OffsetName = "offset";
        if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(E))
          if (isTainted(State, ASE->getIdx(), C.getLocationContext()))
            OffsetName = "index";

        Messages Msgs = getTaintMsgs(Reg, OffsetName);
        reportOOB(C, ExceedsUpperBound, OOB_Taint, ByteOffset, Msgs);
        return;
      }
    }

    if (WithinUpperBound)
      State = WithinUpperBound;
  }

  C.addTransition(State);
}

void ArrayBoundCheckerV2::reportOOB(CheckerContext &C,
                                    ProgramStateRef ErrorState, OOB_Kind Kind,
                                    NonLoc Offset, Messages Msgs) const {

  ExplodedNode *ErrorNode = C.generateErrorNode(ErrorState);
  if (!ErrorNode)
    return;

  auto BR = std::make_unique<PathSensitiveBugReport>(
      Kind == OOB_Taint ? TaintBT : BT, Msgs.Short, Msgs.Full, ErrorNode);

  // Track back the propagation of taintedness.
  if (Kind == OOB_Taint)
    for (SymbolRef Sym : getTaintedSymbols(ErrorState, Offset))
      BR->markInteresting(Sym);

  C.emitReport(std::move(BR));
}

bool ArrayBoundCheckerV2::isFromCtypeMacro(const Stmt *S, ASTContext &ACtx) {
  SourceLocation Loc = S->getBeginLoc();
  if (!Loc.isMacroID())
    return false;

  StringRef MacroName = Lexer::getImmediateMacroName(
      Loc, ACtx.getSourceManager(), ACtx.getLangOpts());

  if (MacroName.size() < 7 || MacroName[0] != 'i' || MacroName[1] != 's')
    return false;

  return ((MacroName == "isalnum") || (MacroName == "isalpha") ||
          (MacroName == "isblank") || (MacroName == "isdigit") ||
          (MacroName == "isgraph") || (MacroName == "islower") ||
          (MacroName == "isnctrl") || (MacroName == "isprint") ||
          (MacroName == "ispunct") || (MacroName == "isspace") ||
          (MacroName == "isupper") || (MacroName == "isxdigit"));
}

bool ArrayBoundCheckerV2::isInAddressOf(const Stmt *S, ASTContext &ACtx) {
  ParentMapContext &ParentCtx = ACtx.getParentMapContext();
  do {
    const DynTypedNodeList Parents = ParentCtx.getParents(*S);
    if (Parents.empty())
      return false;
    S = Parents[0].get<Stmt>();
  } while (isa_and_nonnull<ParenExpr, ImplicitCastExpr>(S));
  const auto *UnaryOp = dyn_cast_or_null<UnaryOperator>(S);
  return UnaryOp && UnaryOp->getOpcode() == UO_AddrOf;
}

void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) {
  mgr.registerChecker<ArrayBoundCheckerV2>();
}

bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) {
  return true;
}