1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
// RUN: %clang_analyze_cc1 -Wno-array-bounds -analyzer-output=text \
// RUN: -analyzer-checker=core,alpha.security.ArrayBoundV2,unix.Malloc,alpha.security.taint -verify %s
int array[10];
void arrayUnderflow(void) {
array[-3] = 5;
// expected-warning@-1 {{Out of bound access to memory preceding 'array'}}
// expected-note@-2 {{Access of 'array' at negative byte offset -12}}
}
int underflowWithDeref(void) {
int *p = array;
--p;
return *p;
// expected-warning@-1 {{Out of bound access to memory preceding 'array'}}
// expected-note@-2 {{Access of 'array' at negative byte offset -4}}
}
int scanf(const char *restrict fmt, ...);
void taintedIndex(void) {
int index;
scanf("%d", &index);
// expected-note@-1 {{Taint originated here}}
// expected-note@-2 {{Taint propagated to the 2nd argument}}
array[index] = 5;
// expected-warning@-1 {{Potential out of bound access to 'array' with tainted index}}
// expected-note@-2 {{Access of 'array' with a tainted index that may be too large}}
}
int *taintedIndexAfterTheEndPtr(void) {
// NOTE: Technically speaking, this testcase does not trigger any UB because
// &array[10] is the after-the-end pointer which is well-defined; but this is
// a bug-prone situation and far from the idiomatic use of `&array[size]`, so
// it's better to report an error. This report can be easily silenced by
// writing array+index instead of &array[index].
int index;
scanf("%d", &index);
// expected-note@-1 {{Taint originated here}}
// expected-note@-2 {{Taint propagated to the 2nd argument}}
if (index < 0 || index > 10)
return array;
// expected-note@-2 {{Assuming 'index' is >= 0}}
// expected-note@-3 {{Left side of '||' is false}}
// expected-note@-4 {{Assuming 'index' is <= 10}}
// expected-note@-5 {{Taking false branch}}
return &array[index];
// expected-warning@-1 {{Potential out of bound access to 'array' with tainted index}}
// expected-note@-2 {{Access of 'array' with a tainted index that may be too large}}
}
void taintedOffset(void) {
int index;
scanf("%d", &index);
// expected-note@-1 {{Taint originated here}}
// expected-note@-2 {{Taint propagated to the 2nd argument}}
int *p = array + index;
p[0] = 5;
// expected-warning@-1 {{Potential out of bound access to 'array' with tainted offset}}
// expected-note@-2 {{Access of 'array' with a tainted offset that may be too large}}
}
void arrayOverflow(void) {
array[12] = 5;
// expected-warning@-1 {{Out of bound access to memory after the end of 'array'}}
// expected-note@-2 {{Access of 'array' at index 12, while it holds only 10 'int' elements}}
}
void flippedOverflow(void) {
12[array] = 5;
// expected-warning@-1 {{Out of bound access to memory after the end of 'array'}}
// expected-note@-2 {{Access of 'array' at index 12, while it holds only 10 'int' elements}}
}
int *afterTheEndPtr(void) {
// This is an unusual but standard-compliant way of writing (array + 10).
return &array[10]; // no-warning
}
int useAfterTheEndPtr(void) {
// ... but dereferencing the after-the-end pointer is still invalid.
return *afterTheEndPtr();
// expected-warning@-1 {{Out of bound access to memory after the end of 'array'}}
// expected-note@-2 {{Access of 'array' at index 10, while it holds only 10 'int' elements}}
}
int *afterAfterTheEndPtr(void) {
// This is UB, it's invalid to form an after-after-the-end pointer.
return &array[11];
// expected-warning@-1 {{Out of bound access to memory after the end of 'array'}}
// expected-note@-2 {{Access of 'array' at index 11, while it holds only 10 'int' elements}}
}
int *potentialAfterTheEndPtr(int idx) {
if (idx < 10) { /* ...do something... */ }
// expected-note@-1 {{Assuming 'idx' is >= 10}}
// expected-note@-2 {{Taking false branch}}
return &array[idx];
// expected-warning@-1 {{Out of bound access to memory after the end of 'array'}}
// expected-note@-2 {{Access of 'array' at an overflowing index, while it holds only 10 'int' elements}}
// NOTE: On the idx >= 10 branch the normal "optimistic" behavior would've
// been continuing with the assumption that idx == 10 and the return value is
// a legitimate after-the-end pointer. The checker deviates from this by
// reporting an error because this situation is very suspicious and far from
// the idiomatic `&array[size]` expressions. If the report is FP, the
// developer can easily silence it by writing array+idx instead of
// &array[idx].
}
int scalar;
int scalarOverflow(void) {
return (&scalar)[1];
// expected-warning@-1 {{Out of bound access to memory after the end of 'scalar'}}
// expected-note@-2 {{Access of 'scalar' at index 1, while it holds only a single 'int' element}}
}
int oneElementArray[1];
int oneElementArrayOverflow(void) {
return oneElementArray[1];
// expected-warning@-1 {{Out of bound access to memory after the end of 'oneElementArray'}}
// expected-note@-2 {{Access of 'oneElementArray' at index 1, while it holds only a single 'int' element}}
}
struct vec {
int len;
double elems[64];
} v;
double arrayInStruct(void) {
return v.elems[64];
// expected-warning@-1 {{Out of bound access to memory after the end of 'v.elems'}}
// expected-note@-2 {{Access of 'v.elems' at index 64, while it holds only 64 'double' elements}}
}
double arrayInStructPtr(struct vec *pv) {
return pv->elems[64];
// expected-warning@-1 {{Out of bound access to memory after the end of the field 'elems'}}
// expected-note@-2 {{Access of the field 'elems' at index 64, while it holds only 64 'double' elements}}
}
struct item {
int a, b;
} itemArray[20] = {0};
int arrayOfStructs(void) {
return itemArray[35].a;
// expected-warning@-1 {{Out of bound access to memory after the end of 'itemArray'}}
// expected-note@-2 {{Access of 'itemArray' at index 35, while it holds only 20 'struct item' elements}}
}
int arrayOfStructsArrow(void) {
return (itemArray + 35)->b;
// expected-warning@-1 {{Out of bound access to memory after the end of 'itemArray'}}
// expected-note@-2 {{Access of 'itemArray' at index 35, while it holds only 20 'struct item' elements}}
}
short convertedArray(void) {
return ((short*)array)[47];
// expected-warning@-1 {{Out of bound access to memory after the end of 'array'}}
// expected-note@-2 {{Access of 'array' at index 47, while it holds only 20 'short' elements}}
}
struct two_bytes {
char lo, hi;
};
struct two_bytes convertedArray2(void) {
// We report this with byte offsets because the offset is not divisible by the element size.
struct two_bytes a = {0, 0};
char *p = (char*)&a;
return *((struct two_bytes*)(p + 7));
// expected-warning@-1 {{Out of bound access to memory after the end of 'a'}}
// expected-note@-2 {{Access of 'a' at byte offset 7, while it holds only 2 bytes}}
}
int intFromString(void) {
// We report this with byte offsets because the extent is not divisible by the element size.
return ((const int*)"this is a string of 33 characters")[20];
// expected-warning@-1 {{Out of bound access to memory after the end of the string literal}}
// expected-note@-2 {{Access of the string literal at byte offset 80, while it holds only 34 bytes}}
}
int intFromStringDivisible(void) {
// However, this is reported with indices/elements, because the extent
// (of the string that consists of 'a', 'b', 'c' and '\0') happens to be a
// multiple of 4 bytes (= sizeof(int)).
return ((const int*)"abc")[20];
// expected-warning@-1 {{Out of bound access to memory after the end of the string literal}}
// expected-note@-2 {{Access of the string literal at index 20, while it holds only a single 'int' element}}
}
typedef __typeof(sizeof(int)) size_t;
void *malloc(size_t size);
int *mallocRegion(void) {
int *mem = (int*)malloc(2*sizeof(int));
mem[3] = -2;
// expected-warning@-1 {{Out of bound access to memory after the end of the heap area}}
// expected-note@-2 {{Access of the heap area at index 3, while it holds only 2 'int' elements}}
return mem;
}
void *alloca(size_t size);
int allocaRegion(void) {
int *mem = (int*)alloca(2*sizeof(int));
mem[3] = -2;
// expected-warning@-1 {{Out of bound access to memory after the end of the memory returned by 'alloca'}}
// expected-note@-2 {{Access of the memory returned by 'alloca' at index 3, while it holds only 2 'int' elements}}
return *mem;
}
int *unknownExtent(int arg) {
if (arg >= 2)
return 0;
int *mem = (int*)malloc(arg);
mem[8] = -2;
// FIXME: this should produce
// {{Out of bound access to memory after the end of the heap area}}
// {{Access of 'int' element in the heap area at index 8}}
return mem;
}
void unknownIndex(int arg) {
// expected-note@+2 {{Assuming 'arg' is >= 12}}
// expected-note@+1 {{Taking true branch}}
if (arg >= 12)
array[arg] = -2;
// expected-warning@-1 {{Out of bound access to memory after the end of 'array'}}
// expected-note@-2 {{Access of 'array' at an overflowing index, while it holds only 10 'int' elements}}
}
int *nothingIsCertain(int x, int y) {
if (x >= 2)
return 0;
int *mem = (int*)malloc(x);
if (y >= 8)
mem[y] = -2;
// FIXME: this should produce
// {{Out of bound access to memory after the end of the heap area}}
// {{Access of 'int' element in the heap area at an overflowing index}}
return mem;
}
|