| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 
 | //===-- sanitizer_quarantine.h ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Memory quarantine for AddressSanitizer and potentially other tools.
// Quarantine caches some specified amount of memory in per-thread caches,
// then evicts to global FIFO queue. When the queue reaches specified threshold,
// oldest memory is recycled.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_QUARANTINE_H
#define SANITIZER_QUARANTINE_H
#include "sanitizer_internal_defs.h"
#include "sanitizer_mutex.h"
#include "sanitizer_list.h"
namespace __sanitizer {
template<typename Node> class QuarantineCache;
struct QuarantineBatch {
  static const uptr kSize = 1021;
  QuarantineBatch *next;
  uptr size;
  uptr count;
  void *batch[kSize];
  void init(void *ptr, uptr size) {
    count = 1;
    batch[0] = ptr;
    this->size = size + sizeof(QuarantineBatch);  // Account for the batch size.
  }
  // The total size of quarantined nodes recorded in this batch.
  uptr quarantined_size() const {
    return size - sizeof(QuarantineBatch);
  }
  void push_back(void *ptr, uptr size) {
    CHECK_LT(count, kSize);
    batch[count++] = ptr;
    this->size += size;
  }
  bool can_merge(const QuarantineBatch* const from) const {
    return count + from->count <= kSize;
  }
  void merge(QuarantineBatch* const from) {
    CHECK_LE(count + from->count, kSize);
    CHECK_GE(size, sizeof(QuarantineBatch));
    for (uptr i = 0; i < from->count; ++i)
      batch[count + i] = from->batch[i];
    count += from->count;
    size += from->quarantined_size();
    from->count = 0;
    from->size = sizeof(QuarantineBatch);
  }
};
COMPILER_CHECK(sizeof(QuarantineBatch) <= (1 << 13));  // 8Kb.
template<typename Callback, typename Node>
class Quarantine {
 public:
  typedef QuarantineCache<Callback> Cache;
  explicit Quarantine(LinkerInitialized)
      : cache_(LINKER_INITIALIZED) {
  }
  void Init(uptr size, uptr cache_size) {
    // Thread local quarantine size can be zero only when global quarantine size
    // is zero (it allows us to perform just one atomic read per Put() call).
    CHECK((size == 0 && cache_size == 0) || cache_size != 0);
    atomic_store_relaxed(&max_size_, size);
    atomic_store_relaxed(&min_size_, size / 10 * 9);  // 90% of max size.
    atomic_store_relaxed(&max_cache_size_, cache_size);
    cache_mutex_.Init();
    recycle_mutex_.Init();
  }
  uptr GetMaxSize() const { return atomic_load_relaxed(&max_size_); }
  uptr GetMaxCacheSize() const { return atomic_load_relaxed(&max_cache_size_); }
  void Put(Cache *c, Callback cb, Node *ptr, uptr size) {
    uptr max_cache_size = GetMaxCacheSize();
    if (max_cache_size && size <= GetMaxSize()) {
      cb.PreQuarantine(ptr);
      c->Enqueue(cb, ptr, size);
    } else {
      // GetMaxCacheSize() == 0 only when GetMaxSize() == 0 (see Init).
      cb.RecyclePassThrough(ptr);
    }
    // Check cache size anyway to accommodate for runtime cache_size change.
    if (c->Size() > max_cache_size)
      Drain(c, cb);
  }
  void NOINLINE Drain(Cache *c, Callback cb) {
    {
      SpinMutexLock l(&cache_mutex_);
      cache_.Transfer(c);
    }
    if (cache_.Size() > GetMaxSize() && recycle_mutex_.TryLock())
      Recycle(atomic_load_relaxed(&min_size_), cb);
  }
  void NOINLINE DrainAndRecycle(Cache *c, Callback cb) {
    {
      SpinMutexLock l(&cache_mutex_);
      cache_.Transfer(c);
    }
    recycle_mutex_.Lock();
    Recycle(0, cb);
  }
  void PrintStats() const {
    // It assumes that the world is stopped, just as the allocator's PrintStats.
    Printf("Quarantine limits: global: %zdMb; thread local: %zdKb\n",
           GetMaxSize() >> 20, GetMaxCacheSize() >> 10);
    cache_.PrintStats();
  }
 private:
  // Read-only data.
  char pad0_[kCacheLineSize];
  atomic_uintptr_t max_size_;
  atomic_uintptr_t min_size_;
  atomic_uintptr_t max_cache_size_;
  char pad1_[kCacheLineSize];
  StaticSpinMutex cache_mutex_;
  StaticSpinMutex recycle_mutex_;
  Cache cache_;
  char pad2_[kCacheLineSize];
  void NOINLINE Recycle(uptr min_size, Callback cb)
      SANITIZER_REQUIRES(recycle_mutex_) SANITIZER_RELEASE(recycle_mutex_) {
    Cache tmp;
    {
      SpinMutexLock l(&cache_mutex_);
      // Go over the batches and merge partially filled ones to
      // save some memory, otherwise batches themselves (since the memory used
      // by them is counted against quarantine limit) can overcome the actual
      // user's quarantined chunks, which diminishes the purpose of the
      // quarantine.
      uptr cache_size = cache_.Size();
      uptr overhead_size = cache_.OverheadSize();
      CHECK_GE(cache_size, overhead_size);
      // Do the merge only when overhead exceeds this predefined limit (might
      // require some tuning). It saves us merge attempt when the batch list
      // quarantine is unlikely to contain batches suitable for merge.
      const uptr kOverheadThresholdPercents = 100;
      if (cache_size > overhead_size &&
          overhead_size * (100 + kOverheadThresholdPercents) >
              cache_size * kOverheadThresholdPercents) {
        cache_.MergeBatches(&tmp);
      }
      // Extract enough chunks from the quarantine to get below the max
      // quarantine size and leave some leeway for the newly quarantined chunks.
      while (cache_.Size() > min_size) {
        tmp.EnqueueBatch(cache_.DequeueBatch());
      }
    }
    recycle_mutex_.Unlock();
    DoRecycle(&tmp, cb);
  }
  void NOINLINE DoRecycle(Cache *c, Callback cb) {
    while (QuarantineBatch *b = c->DequeueBatch()) {
      const uptr kPrefetch = 16;
      CHECK(kPrefetch <= ARRAY_SIZE(b->batch));
      for (uptr i = 0; i < kPrefetch; i++)
        PREFETCH(b->batch[i]);
      for (uptr i = 0, count = b->count; i < count; i++) {
        if (i + kPrefetch < count)
          PREFETCH(b->batch[i + kPrefetch]);
        cb.Recycle((Node*)b->batch[i]);
      }
      cb.Deallocate(b);
    }
  }
};
// Per-thread cache of memory blocks.
template<typename Callback>
class QuarantineCache {
 public:
  explicit QuarantineCache(LinkerInitialized) {
  }
  QuarantineCache()
      : size_() {
    list_.clear();
  }
  // Total memory used, including internal accounting.
  uptr Size() const {
    return atomic_load_relaxed(&size_);
  }
  // Memory used for internal accounting.
  uptr OverheadSize() const {
    return list_.size() * sizeof(QuarantineBatch);
  }
  void Enqueue(Callback cb, void *ptr, uptr size) {
    if (list_.empty() || list_.back()->count == QuarantineBatch::kSize) {
      QuarantineBatch *b = (QuarantineBatch *)cb.Allocate(sizeof(*b));
      CHECK(b);
      b->init(ptr, size);
      EnqueueBatch(b);
    } else {
      list_.back()->push_back(ptr, size);
      SizeAdd(size);
    }
  }
  void Transfer(QuarantineCache *from_cache) {
    list_.append_back(&from_cache->list_);
    SizeAdd(from_cache->Size());
    atomic_store_relaxed(&from_cache->size_, 0);
  }
  void EnqueueBatch(QuarantineBatch *b) {
    list_.push_back(b);
    SizeAdd(b->size);
  }
  QuarantineBatch *DequeueBatch() {
    if (list_.empty())
      return nullptr;
    QuarantineBatch *b = list_.front();
    list_.pop_front();
    SizeSub(b->size);
    return b;
  }
  void MergeBatches(QuarantineCache *to_deallocate) {
    uptr extracted_size = 0;
    QuarantineBatch *current = list_.front();
    while (current && current->next) {
      if (current->can_merge(current->next)) {
        QuarantineBatch *extracted = current->next;
        // Move all the chunks into the current batch.
        current->merge(extracted);
        CHECK_EQ(extracted->count, 0);
        CHECK_EQ(extracted->size, sizeof(QuarantineBatch));
        // Remove the next batch from the list and account for its size.
        list_.extract(current, extracted);
        extracted_size += extracted->size;
        // Add it to deallocation list.
        to_deallocate->EnqueueBatch(extracted);
      } else {
        current = current->next;
      }
    }
    SizeSub(extracted_size);
  }
  void PrintStats() const {
    uptr batch_count = 0;
    uptr total_overhead_bytes = 0;
    uptr total_bytes = 0;
    uptr total_quarantine_chunks = 0;
    for (List::ConstIterator it = list_.begin(); it != list_.end(); ++it) {
      batch_count++;
      total_bytes += (*it).size;
      total_overhead_bytes += (*it).size - (*it).quarantined_size();
      total_quarantine_chunks += (*it).count;
    }
    uptr quarantine_chunks_capacity = batch_count * QuarantineBatch::kSize;
    int chunks_usage_percent = quarantine_chunks_capacity == 0 ?
        0 : total_quarantine_chunks * 100 / quarantine_chunks_capacity;
    uptr total_quarantined_bytes = total_bytes - total_overhead_bytes;
    int memory_overhead_percent = total_quarantined_bytes == 0 ?
        0 : total_overhead_bytes * 100 / total_quarantined_bytes;
    Printf("Global quarantine stats: batches: %zd; bytes: %zd (user: %zd); "
           "chunks: %zd (capacity: %zd); %d%% chunks used; %d%% memory overhead"
           "\n",
           batch_count, total_bytes, total_quarantined_bytes,
           total_quarantine_chunks, quarantine_chunks_capacity,
           chunks_usage_percent, memory_overhead_percent);
  }
 private:
  typedef IntrusiveList<QuarantineBatch> List;
  List list_;
  atomic_uintptr_t size_;
  void SizeAdd(uptr add) {
    atomic_store_relaxed(&size_, Size() + add);
  }
  void SizeSub(uptr sub) {
    atomic_store_relaxed(&size_, Size() - sub);
  }
};
} // namespace __sanitizer
#endif // SANITIZER_QUARANTINE_H
 |