1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
// RUN: %clang_builtins %s %librt -o %t && %run %t
// REQUIRES: librt_has_divtf3
#include "int_lib.h"
#include <stdio.h>
// The testcase currently assumes IEEE TF format, once that has been
// fixed the defined(CRT_HAS_IEEE_TF) guard can be removed to enable it for
// IBM 128 floats as well.
#if defined(CRT_HAS_IEEE_TF)
# include "fp_test.h"
// Returns: a / b
COMPILER_RT_ABI tf_float __divtf3(tf_float a, tf_float b);
int test__divtf3(tf_float a, tf_float b, uint64_t expectedHi,
uint64_t expectedLo) {
tf_float x = __divtf3(a, b);
int ret = compareResultF128(x, expectedHi, expectedLo);
if (ret) {
printf("error in test__divtf3(%.20Le, %.20Le) = %.20Le, "
"expected %.20Le\n",
a, b, x, fromRep128(expectedHi, expectedLo));
}
return ret;
}
char assumption_1[sizeof(tf_float) * CHAR_BIT == 128] = {0};
#endif
int main() {
#if defined(CRT_HAS_IEEE_TF)
// Returned NaNs are assumed to be qNaN by default
// qNaN / any = qNaN
if (test__divtf3(makeQNaN128(), TF_C(0x1.23456789abcdefp+5),
UINT64_C(0x7fff800000000000), UINT64_C(0x0)))
return 1;
// NaN / any = NaN
if (test__divtf3(makeNaN128(UINT64_C(0x30000000)),
TF_C(0x1.23456789abcdefp+5), UINT64_C(0x7fff800000000000),
UINT64_C(0x0)))
return 1;
// any / qNaN = qNaN
if (test__divtf3(TF_C(0x1.23456789abcdefp+5), makeQNaN128(),
UINT64_C(0x7fff800000000000), UINT64_C(0x0)))
return 1;
// any / NaN = NaN
if (test__divtf3(TF_C(0x1.23456789abcdefp+5),
makeNaN128(UINT64_C(0x30000000)),
UINT64_C(0x7fff800000000000), UINT64_C(0x0)))
return 1;
// +Inf / positive = +Inf
if (test__divtf3(makeInf128(), TF_C(3.), UINT64_C(0x7fff000000000000),
UINT64_C(0x0)))
return 1;
// +Inf / negative = -Inf
if (test__divtf3(makeInf128(), -TF_C(3.), UINT64_C(0xffff000000000000),
UINT64_C(0x0)))
return 1;
// -Inf / positive = -Inf
if (test__divtf3(makeNegativeInf128(), TF_C(3.), UINT64_C(0xffff000000000000),
UINT64_C(0x0)))
return 1;
// -Inf / negative = +Inf
if (test__divtf3(makeNegativeInf128(), -TF_C(3.),
UINT64_C(0x7fff000000000000), UINT64_C(0x0)))
return 1;
// Inf / Inf = NaN
if (test__divtf3(makeInf128(), makeInf128(), UINT64_C(0x7fff800000000000),
UINT64_C(0x0)))
return 1;
// 0.0 / 0.0 = NaN
if (test__divtf3(+TF_C(0x0.0p+0), +TF_C(0x0.0p+0),
UINT64_C(0x7fff800000000000), UINT64_C(0x0)))
return 1;
// +0.0 / +Inf = +0.0
if (test__divtf3(+TF_C(0x0.0p+0), makeInf128(), UINT64_C(0x0), UINT64_C(0x0)))
return 1;
// +Inf / +0.0 = +Inf
if (test__divtf3(makeInf128(), +TF_C(0x0.0p+0), UINT64_C(0x7fff000000000000),
UINT64_C(0x0)))
return 1;
// positive / +0.0 = +Inf
if (test__divtf3(+TF_C(1.0), +TF_C(0x0.0p+0), UINT64_C(0x7fff000000000000),
UINT64_C(0x0)))
return 1;
// positive / -0.0 = -Inf
if (test__divtf3(+1.0L, -TF_C(0x0.0p+0), UINT64_C(0xffff000000000000),
UINT64_C(0x0)))
return 1;
// negative / +0.0 = -Inf
if (test__divtf3(-1.0L, +TF_C(0x0.0p+0), UINT64_C(0xffff000000000000),
UINT64_C(0x0)))
return 1;
// negative / -0.0 = +Inf
if (test__divtf3(TF_C(-1.0), -TF_C(0x0.0p+0), UINT64_C(0x7fff000000000000),
UINT64_C(0x0)))
return 1;
// 1/3
if (test__divtf3(TF_C(1.), TF_C(3.), UINT64_C(0x3ffd555555555555),
UINT64_C(0x5555555555555555)))
return 1;
// smallest normal result
if (test__divtf3(TF_C(0x1.0p-16381), TF_C(2.), UINT64_C(0x0001000000000000),
UINT64_C(0x0)))
return 1;
// divisor is exactly 1.0
if (test__divtf3(TF_C(0x1.0p+0), TF_C(0x1.0p+0), UINT64_C(0x3fff000000000000),
UINT64_C(0x0)))
return 1;
// divisor is truncated to exactly 1.0 in UQ1.63
if (test__divtf3(TF_C(0x1.0p+0), TF_C(0x1.0000000000000001p+0),
UINT64_C(0x3ffeffffffffffff), UINT64_C(0xfffe000000000000)))
return 1;
// smallest normal value divided by 2.0
if (test__divtf3(TF_C(0x1.0p-16382), 2.L, UINT64_C(0x0000800000000000),
UINT64_C(0x0)))
return 1;
// smallest subnormal result
if (test__divtf3(TF_C(0x1.0p-16382), TF_C(0x1p+112), UINT64_C(0x0),
UINT64_C(0x1)))
return 1;
// any / any
if (test__divtf3(TF_C(0x1.a23b45362464523375893ab4cdefp+5),
TF_C(0x1.eedcbaba3a94546558237654321fp-1),
UINT64_C(0x4004b0b72924d407), UINT64_C(0x0717e84356c6eba2)))
return 1;
if (test__divtf3(TF_C(0x1.a2b34c56d745382f9abf2c3dfeffp-50),
TF_C(0x1.ed2c3ba15935332532287654321fp-9),
UINT64_C(0x3fd5b2af3f828c9b), UINT64_C(0x40e51f64cde8b1f2)))
return 15;
if (test__divtf3(TF_C(0x1.2345f6aaaa786555f42432abcdefp+456),
TF_C(0x1.edacbba9874f765463544dd3621fp+6400),
UINT64_C(0x28c62e15dc464466), UINT64_C(0xb5a07586348557ac)))
return 1;
if (test__divtf3(TF_C(0x1.2d3456f789ba6322bc665544edefp-234),
TF_C(0x1.eddcdba39f3c8b7a36564354321fp-4455),
UINT64_C(0x507b38442b539266), UINT64_C(0x22ce0f1d024e1252)))
return 1;
if (test__divtf3(TF_C(0x1.2345f6b77b7a8953365433abcdefp+234),
TF_C(0x1.edcba987d6bb3aa467754354321fp-4055),
UINT64_C(0x50bf2e02f0798d36), UINT64_C(0x5e6fcb6b60044078)))
return 1;
if (test__divtf3(TF_C(6.72420628622418701252535563464350521E-4932), TF_C(2.),
UINT64_C(0x0001000000000000), UINT64_C(0)))
return 1;
#else
printf("skipped\n");
#endif
return 0;
}
|