1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
// Purpose:
// Verifies that the debugging experience of loops marked optnone is as expected.
// REQUIRES: lldb
// UNSUPPORTED: system-windows
// UNSUPPORTED: system-darwin
// RUN: %clang -std=gnu++11 -O2 -g %s -o %t
// RUN: %dexter --fail-lt 1.0 -w \
// RUN: --binary %t --debugger 'lldb' -- %s
// A simple loop of assignments.
// With optimization level > 0 the compiler reorders basic blocks
// based on the basic block frequency analysis information.
// This also happens with optnone and it shouldn't.
// This is not affecting debug info so it is a minor limitation.
// Basic block placement based on the block frequency analysis
// is normally done to improve i-Cache performances.
__attribute__((optnone)) void simple_memcpy_loop(int *dest, const int *src,
unsigned nelems) {
for (unsigned i = 0; i != nelems; ++i)
dest[i] = src[i]; // DexLabel('target_simple_memcpy_loop')
}
// DexLimitSteps('i', 0, 4, 8, on_line=ref('target_simple_memcpy_loop'))
// DexExpectWatchValue('nelems', '16', on_line=ref('target_simple_memcpy_loop'))
// DexExpectWatchValue('src[i]', '3', '7', '1', on_line=ref('target_simple_memcpy_loop'))
// A trivial loop that could be optimized into a builtin memcpy
// which is either expanded into a optimal sequence of mov
// instructions or directly into a call to memset@plt
__attribute__((optnone)) void trivial_memcpy_loop(int *dest, const int *src) {
for (unsigned i = 0; i != 16; ++i)
dest[i] = src[i]; // DexLabel('target_trivial_memcpy_loop')
}
// DexLimitSteps('i', 3, 7, 9, 14, 15, on_line=ref('target_trivial_memcpy_loop'))
// DexExpectWatchValue('i', 3, 7, 9, 14, 15, on_line=ref('target_trivial_memcpy_loop'))
// DexExpectWatchValue('dest[i-1] == src[i-1]', 'true', on_line=ref('target_trivial_memcpy_loop'))
__attribute__((always_inline)) int foo(int a) { return a + 5; }
// A trivial loop of calls to a 'always_inline' function.
__attribute__((optnone)) void nonleaf_function_with_loop(int *dest,
const int *src) {
for (unsigned i = 0; i != 16; ++i)
dest[i] = foo(src[i]); // DexLabel('target_nonleaf_function_with_loop')
}
// DexLimitSteps('i', 1, on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('dest[0]', '8', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('dest[1]', '4', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('dest[2]', '5', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('src[0]', '8', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('src[1]', '4', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('src[2]', '5', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('src[1] == dest[1]', 'true', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('src[2] == dest[2]', 'true', on_line=ref('target_nonleaf_function_with_loop'))
// This entire function could be optimized into a
// simple movl %esi, %eax.
// That is because we can compute the loop trip count
// knowing that ind-var 'i' can never be negative.
__attribute__((optnone)) int counting_loop(unsigned values) {
unsigned i = 0;
while (values--) // DexLabel('target_counting_loop')
i++;
return i;
}
// DexLimitSteps('i', 8, 16, on_line=ref('target_counting_loop'))
// DexExpectWatchValue('i', 8, 16, on_line=ref('target_counting_loop'))
// This loop could be rotated.
// while(cond){
// ..
// cond--;
// }
//
// -->
// if(cond) {
// do {
// ...
// cond--;
// } while(cond);
// }
//
// the compiler will not try to optimize this function.
// However the Machine BB Placement Pass will try
// to reorder the basic block that computes the
// expression 'count' in order to simplify the control
// flow.
__attribute__((optnone)) int loop_rotate_test(int *src, unsigned count) {
int result = 0;
while (count) {
result += src[count - 1]; // DexLabel('target_loop_rotate_test')
count--;
}
return result; // DexLabel('target_loop_rotate_test_ret')
}
// DexLimitSteps('result', 13, on_line=ref('target_loop_rotate_test'))
// DexExpectWatchValue('src[count]', 13, on_line=ref('target_loop_rotate_test'))
// DexLimitSteps('result', 158, on_line=ref('target_loop_rotate_test_ret'))
// DexExpectWatchValue('result', 158, on_line=ref('target_loop_rotate_test_ret'))
typedef int *intptr __attribute__((aligned(16)));
// This loop can be vectorized if we enable
// the loop vectorizer.
__attribute__((optnone)) void loop_vectorize_test(intptr dest, intptr src) {
unsigned count = 0;
int tempArray[16];
while(count != 16) { // DexLabel('target_loop_vectorize_test')
tempArray[count] = src[count];
tempArray[count+1] = src[count+1]; // DexLabel('target_loop_vectorize_test_2')
tempArray[count+2] = src[count+2]; // DexLabel('target_loop_vectorize_test_3')
tempArray[count+3] = src[count+3]; // DexLabel('target_loop_vectorize_test_4')
dest[count] = tempArray[count]; // DexLabel('target_loop_vectorize_test_5')
dest[count+1] = tempArray[count+1]; // DexLabel('target_loop_vectorize_test_6')
dest[count+2] = tempArray[count+2]; // DexLabel('target_loop_vectorize_test_7')
dest[count+3] = tempArray[count+3]; // DexLabel('target_loop_vectorize_test_8')
count += 4; // DexLabel('target_loop_vectorize_test_9')
}
}
// DexLimitSteps('count', 4, 8, 12, 16, from_line=ref('target_loop_vectorize_test'), to_line=ref('target_loop_vectorize_test_9'))
// DexExpectWatchValue('tempArray[count] == src[count]', 'true', on_line=ref('target_loop_vectorize_test_2'))
// DexExpectWatchValue('tempArray[count+1] == src[count+1]', 'true', on_line=ref('target_loop_vectorize_test_3'))
// DexExpectWatchValue('tempArray[count+2] == src[count+2]', 'true', on_line=ref('target_loop_vectorize_test_4'))
// DexExpectWatchValue('tempArray[count+3] == src[count+3]', 'true', on_line=ref('target_loop_vectorize_test_5'))
// DexExpectWatchValue('dest[count] == tempArray[count]', 'true', on_line=ref('target_loop_vectorize_test_6'))
// DexExpectWatchValue('dest[count+1] == tempArray[count+1]', 'true', on_line=ref('target_loop_vectorize_test_7'))
// DexExpectWatchValue('dest[count+2] == tempArray[count+2]', 'true', on_line=ref('target_loop_vectorize_test_8'))
// DexExpectWatchValue('dest[count+3] == tempArray[count+3]', 'true', on_line=ref('target_loop_vectorize_test_9'))
int main() {
int A[] = {3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
int B[] = {13, 14, 15, 16, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
int C[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
simple_memcpy_loop(C, A, 16);
trivial_memcpy_loop(B, C);
nonleaf_function_with_loop(B, B);
int count = counting_loop(16);
count += loop_rotate_test(B, 16);
loop_vectorize_test(A, B);
return A[0] + count;
}
|