File: Target.cpp

package info (click to toggle)
llvm-toolchain-18 1%3A18.1.8-18
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,908,340 kB
  • sloc: cpp: 6,667,937; ansic: 1,440,452; asm: 883,619; python: 230,549; objc: 76,880; f90: 74,238; lisp: 35,989; pascal: 16,571; sh: 10,229; perl: 7,459; ml: 5,047; awk: 3,523; makefile: 2,987; javascript: 2,149; xml: 892; fortran: 649; cs: 573
file content (1163 lines) | stat: -rw-r--r-- 47,133 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
//===-- Target.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//

#include "flang/Optimizer/CodeGen/Target.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "flang/Optimizer/Support/FatalError.h"
#include "flang/Optimizer/Support/Utils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/TypeRange.h"
#include "llvm/ADT/TypeSwitch.h"

#define DEBUG_TYPE "flang-codegen-target"

using namespace fir;

namespace fir::details {
llvm::StringRef Attributes::getIntExtensionAttrName() const {
  // The attribute names are available via LLVM dialect interfaces
  // like getZExtAttrName(), getByValAttrName(), etc., so we'd better
  // use them than literals.
  if (isZeroExt())
    return "llvm.zeroext";
  else if (isSignExt())
    return "llvm.signext";
  return {};
}
} // namespace fir::details

// Reduce a REAL/float type to the floating point semantics.
static const llvm::fltSemantics &floatToSemantics(const KindMapping &kindMap,
                                                  mlir::Type type) {
  assert(isa_real(type));
  if (auto ty = type.dyn_cast<fir::RealType>())
    return kindMap.getFloatSemantics(ty.getFKind());
  return type.cast<mlir::FloatType>().getFloatSemantics();
}

static void typeTodo(const llvm::fltSemantics *sem, mlir::Location loc,
                     std::string context) {
  if (sem == &llvm::APFloat::IEEEhalf()) {
    TODO(loc, "COMPLEX(KIND=2): for " + context + " type");
  } else if (sem == &llvm::APFloat::BFloat()) {
    TODO(loc, "COMPLEX(KIND=3): " + context + " type");
  } else if (sem == &llvm::APFloat::x87DoubleExtended()) {
    TODO(loc, "COMPLEX(KIND=10): " + context + " type");
  } else {
    TODO(loc, "complex for this precision for " + context + " type");
  }
}

/// Return the size and alignment of FIR types.
/// TODO: consider moving this to a DataLayoutTypeInterface implementation
/// for FIR types. It should first be ensured that it is OK to open the gate of
/// target dependent type size inquiries in lowering. It would also not be
/// straightforward given the need for a kind map that would need to be
/// converted in terms of mlir::DataLayoutEntryKey.
static std::pair<std::uint64_t, unsigned short>
getSizeAndAlignment(mlir::Location loc, mlir::Type ty,
                    const mlir::DataLayout &dl,
                    const fir::KindMapping &kindMap) {
  if (mlir::isa<mlir::IntegerType, mlir::FloatType, mlir::ComplexType>(ty)) {
    llvm::TypeSize size = dl.getTypeSize(ty);
    unsigned short alignment = dl.getTypeABIAlignment(ty);
    return {size, alignment};
  }
  if (auto firCmplx = mlir::dyn_cast<fir::ComplexType>(ty)) {
    auto [floatSize, floatAlign] =
        getSizeAndAlignment(loc, firCmplx.getEleType(kindMap), dl, kindMap);
    return {llvm::alignTo(floatSize, floatAlign) + floatSize, floatAlign};
  }
  if (auto real = mlir::dyn_cast<fir::RealType>(ty))
    return getSizeAndAlignment(loc, real.getFloatType(kindMap), dl, kindMap);

  if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(ty)) {
    auto [eleSize, eleAlign] =
        getSizeAndAlignment(loc, seqTy.getEleTy(), dl, kindMap);

    std::uint64_t size =
        llvm::alignTo(eleSize, eleAlign) * seqTy.getConstantArraySize();
    return {size, eleAlign};
  }
  if (auto recTy = mlir::dyn_cast<fir::RecordType>(ty)) {
    std::uint64_t size = 0;
    unsigned short align = 1;
    for (auto component : recTy.getTypeList()) {
      auto [compSize, compAlign] =
          getSizeAndAlignment(loc, component.second, dl, kindMap);
      size =
          llvm::alignTo(size, compAlign) + llvm::alignTo(compSize, compAlign);
      align = std::max(align, compAlign);
    }
    return {size, align};
  }
  if (auto logical = mlir::dyn_cast<fir::LogicalType>(ty)) {
    mlir::Type intTy = mlir::IntegerType::get(
        logical.getContext(), kindMap.getLogicalBitsize(logical.getFKind()));
    return getSizeAndAlignment(loc, intTy, dl, kindMap);
  }
  if (auto character = mlir::dyn_cast<fir::CharacterType>(ty)) {
    mlir::Type intTy = mlir::IntegerType::get(
        character.getContext(),
        kindMap.getCharacterBitsize(character.getFKind()));
    return getSizeAndAlignment(loc, intTy, dl, kindMap);
  }
  TODO(loc, "computing size of a component");
}

namespace {
template <typename S>
struct GenericTarget : public CodeGenSpecifics {
  using CodeGenSpecifics::CodeGenSpecifics;
  using AT = CodeGenSpecifics::Attributes;

  mlir::Type complexMemoryType(mlir::Type eleTy) const override {
    assert(fir::isa_real(eleTy));
    // Use a type that will be translated into LLVM as:
    // { t, t }   struct of 2 eleTy
    return mlir::TupleType::get(eleTy.getContext(),
                                mlir::TypeRange{eleTy, eleTy});
  }

  mlir::Type boxcharMemoryType(mlir::Type eleTy) const override {
    auto idxTy = mlir::IntegerType::get(eleTy.getContext(), S::defaultWidth);
    auto ptrTy = fir::ReferenceType::get(eleTy);
    // Use a type that will be translated into LLVM as:
    // { t*, index }
    return mlir::TupleType::get(eleTy.getContext(),
                                mlir::TypeRange{ptrTy, idxTy});
  }

  Marshalling boxcharArgumentType(mlir::Type eleTy, bool sret) const override {
    CodeGenSpecifics::Marshalling marshal;
    auto idxTy = mlir::IntegerType::get(eleTy.getContext(), S::defaultWidth);
    auto ptrTy = fir::ReferenceType::get(eleTy);
    marshal.emplace_back(ptrTy, AT{});
    // Return value arguments are grouped as a pair. Others are passed in a
    // split format with all pointers first (in the declared position) and all
    // LEN arguments appended after all of the dummy arguments.
    // NB: Other conventions/ABIs can/should be supported via options.
    marshal.emplace_back(idxTy, AT{/*alignment=*/0, /*byval=*/false,
                                   /*sret=*/sret, /*append=*/!sret});
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  structArgumentType(mlir::Location loc, fir::RecordType,
                     const Marshalling &) const override {
    TODO(loc, "passing VALUE BIND(C) derived type for this target");
  }

  CodeGenSpecifics::Marshalling
  integerArgumentType(mlir::Location loc,
                      mlir::IntegerType argTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    AT::IntegerExtension intExt = AT::IntegerExtension::None;
    if (argTy.getWidth() < getCIntTypeWidth()) {
      // isSigned() and isUnsigned() branches below are dead code currently.
      // If needed, we can generate calls with signed/unsigned argument types
      // to more precisely match C side (e.g. for Fortran runtime functions
      // with 'unsigned short' arguments).
      if (argTy.isSigned())
        intExt = AT::IntegerExtension::Sign;
      else if (argTy.isUnsigned())
        intExt = AT::IntegerExtension::Zero;
      else if (argTy.isSignless()) {
        // Zero extend for 'i1' and sign extend for other types.
        if (argTy.getWidth() == 1)
          intExt = AT::IntegerExtension::Zero;
        else
          intExt = AT::IntegerExtension::Sign;
      }
    }

    marshal.emplace_back(argTy, AT{/*alignment=*/0, /*byval=*/false,
                                   /*sret=*/false, /*append=*/false,
                                   /*intExt=*/intExt});
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  integerReturnType(mlir::Location loc,
                    mlir::IntegerType argTy) const override {
    return integerArgumentType(loc, argTy);
  }

  // Width of 'int' type is 32-bits for almost all targets, except
  // for AVR and MSP430 (see TargetInfo initializations
  // in clang/lib/Basic/Targets).
  unsigned char getCIntTypeWidth() const override { return 32; }
};
} // namespace

//===----------------------------------------------------------------------===//
// i386 (x86 32 bit) linux target specifics.
//===----------------------------------------------------------------------===//

namespace {
struct TargetI386 : public GenericTarget<TargetI386> {
  using GenericTarget::GenericTarget;

  static constexpr int defaultWidth = 32;

  CodeGenSpecifics::Marshalling
  complexArgumentType(mlir::Location, mlir::Type eleTy) const override {
    assert(fir::isa_real(eleTy));
    CodeGenSpecifics::Marshalling marshal;
    // Use a type that will be translated into LLVM as:
    // { t, t }   struct of 2 eleTy, byval, align 4
    auto structTy =
        mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy});
    marshal.emplace_back(fir::ReferenceType::get(structTy),
                         AT{/*alignment=*/4, /*byval=*/true});
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
    assert(fir::isa_real(eleTy));
    CodeGenSpecifics::Marshalling marshal;
    const auto *sem = &floatToSemantics(kindMap, eleTy);
    if (sem == &llvm::APFloat::IEEEsingle()) {
      // i64   pack both floats in a 64-bit GPR
      marshal.emplace_back(mlir::IntegerType::get(eleTy.getContext(), 64),
                           AT{});
    } else if (sem == &llvm::APFloat::IEEEdouble()) {
      // Use a type that will be translated into LLVM as:
      // { t, t }   struct of 2 eleTy, sret, align 4
      auto structTy = mlir::TupleType::get(eleTy.getContext(),
                                           mlir::TypeRange{eleTy, eleTy});
      marshal.emplace_back(fir::ReferenceType::get(structTy),
                           AT{/*alignment=*/4, /*byval=*/false, /*sret=*/true});
    } else {
      typeTodo(sem, loc, "return");
    }
    return marshal;
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// i386 (x86 32 bit) Windows target specifics.
//===----------------------------------------------------------------------===//

namespace {
struct TargetI386Win : public GenericTarget<TargetI386Win> {
  using GenericTarget::GenericTarget;

  static constexpr int defaultWidth = 32;

  CodeGenSpecifics::Marshalling
  complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    // Use a type that will be translated into LLVM as:
    // { t, t }   struct of 2 eleTy, byval, align 4
    auto structTy =
        mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy});
    marshal.emplace_back(fir::ReferenceType::get(structTy),
                         AT{/*align=*/4, /*byval=*/true});
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    const auto *sem = &floatToSemantics(kindMap, eleTy);
    if (sem == &llvm::APFloat::IEEEsingle()) {
      // i64   pack both floats in a 64-bit GPR
      marshal.emplace_back(mlir::IntegerType::get(eleTy.getContext(), 64),
                           AT{});
    } else if (sem == &llvm::APFloat::IEEEdouble()) {
      // Use a type that will be translated into LLVM as:
      // { double, double }   struct of 2 double, sret, align 8
      marshal.emplace_back(
          fir::ReferenceType::get(mlir::TupleType::get(
              eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
          AT{/*align=*/8, /*byval=*/false, /*sret=*/true});
    } else if (sem == &llvm::APFloat::IEEEquad()) {
      // Use a type that will be translated into LLVM as:
      // { fp128, fp128 }   struct of 2 fp128, sret, align 16
      marshal.emplace_back(
          fir::ReferenceType::get(mlir::TupleType::get(
              eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
          AT{/*align=*/16, /*byval=*/false, /*sret=*/true});
    } else if (sem == &llvm::APFloat::x87DoubleExtended()) {
      // Use a type that will be translated into LLVM as:
      // { x86_fp80, x86_fp80 }   struct of 2 x86_fp80, sret, align 4
      marshal.emplace_back(
          fir::ReferenceType::get(mlir::TupleType::get(
              eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
          AT{/*align=*/4, /*byval=*/false, /*sret=*/true});
    } else {
      typeTodo(sem, loc, "return");
    }
    return marshal;
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// x86_64 (x86 64 bit) linux target specifics.
//===----------------------------------------------------------------------===//

namespace {
struct TargetX86_64 : public GenericTarget<TargetX86_64> {
  using GenericTarget::GenericTarget;

  static constexpr int defaultWidth = 64;

  CodeGenSpecifics::Marshalling
  complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    const auto *sem = &floatToSemantics(kindMap, eleTy);
    if (sem == &llvm::APFloat::IEEEsingle()) {
      // <2 x t>   vector of 2 eleTy
      marshal.emplace_back(fir::VectorType::get(2, eleTy), AT{});
    } else if (sem == &llvm::APFloat::IEEEdouble()) {
      // FIXME: In case of SSE register exhaustion, the ABI here may be
      // incorrect since LLVM may pass the real via register and the imaginary
      // part via the stack while the ABI it should be all in register or all
      // in memory. Register occupancy must be analyzed here.
      // two distinct double arguments
      marshal.emplace_back(eleTy, AT{});
      marshal.emplace_back(eleTy, AT{});
    } else if (sem == &llvm::APFloat::x87DoubleExtended()) {
      // Use a type that will be translated into LLVM as:
      // { x86_fp80, x86_fp80 }  struct of 2 fp128, byval, align 16
      marshal.emplace_back(
          fir::ReferenceType::get(mlir::TupleType::get(
              eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
          AT{/*align=*/16, /*byval=*/true});
    } else if (sem == &llvm::APFloat::IEEEquad()) {
      // Use a type that will be translated into LLVM as:
      // { fp128, fp128 }   struct of 2 fp128, byval, align 16
      marshal.emplace_back(
          fir::ReferenceType::get(mlir::TupleType::get(
              eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
          AT{/*align=*/16, /*byval=*/true});
    } else {
      typeTodo(sem, loc, "argument");
    }
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    const auto *sem = &floatToSemantics(kindMap, eleTy);
    if (sem == &llvm::APFloat::IEEEsingle()) {
      // <2 x t>   vector of 2 eleTy
      marshal.emplace_back(fir::VectorType::get(2, eleTy), AT{});
    } else if (sem == &llvm::APFloat::IEEEdouble()) {
      // Use a type that will be translated into LLVM as:
      // { double, double }   struct of 2 double
      marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(),
                                                mlir::TypeRange{eleTy, eleTy}),
                           AT{});
    } else if (sem == &llvm::APFloat::x87DoubleExtended()) {
      // { x86_fp80, x86_fp80 }
      marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(),
                                                mlir::TypeRange{eleTy, eleTy}),
                           AT{});
    } else if (sem == &llvm::APFloat::IEEEquad()) {
      // Use a type that will be translated into LLVM as:
      // { fp128, fp128 }   struct of 2 fp128, sret, align 16
      marshal.emplace_back(
          fir::ReferenceType::get(mlir::TupleType::get(
              eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
          AT{/*align=*/16, /*byval=*/false, /*sret=*/true});
    } else {
      typeTodo(sem, loc, "return");
    }
    return marshal;
  }

  /// X86-64 argument classes from System V ABI version 1.0 section 3.2.3.
  enum ArgClass {
    Integer = 0,
    SSE,
    SSEUp,
    X87,
    X87Up,
    ComplexX87,
    NoClass,
    Memory
  };

  /// Classify an argument type or a field of an aggregate type argument.
  /// See System V ABI version 1.0 section 3.2.3.
  /// The Lo and Hi class are set to the class of the lower eight eightbytes
  /// and upper eight eightbytes on return.
  /// If this is called for an aggregate field, the caller is responsible to
  /// do the post-merge.
  void classify(mlir::Location loc, mlir::Type type, std::uint64_t byteOffset,
                ArgClass &Lo, ArgClass &Hi) const {
    Hi = Lo = ArgClass::NoClass;
    ArgClass &current = byteOffset < 8 ? Lo : Hi;
    // System V AMD64 ABI 3.2.3. version 1.0
    llvm::TypeSwitch<mlir::Type>(type)
        .template Case<mlir::IntegerType>([&](mlir::IntegerType intTy) {
          if (intTy.getWidth() == 128)
            Hi = Lo = ArgClass::Integer;
          else
            current = ArgClass::Integer;
        })
        .template Case<mlir::FloatType, fir::RealType>([&](mlir::Type floatTy) {
          const auto *sem = &floatToSemantics(kindMap, floatTy);
          if (sem == &llvm::APFloat::x87DoubleExtended()) {
            Lo = ArgClass::X87;
            Hi = ArgClass::X87Up;
          } else if (sem == &llvm::APFloat::IEEEquad()) {
            Lo = ArgClass::SSE;
            Hi = ArgClass::SSEUp;
          } else {
            current = ArgClass::SSE;
          }
        })
        .template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
          const auto *sem = &floatToSemantics(kindMap, cmplx.getElementType());
          if (sem == &llvm::APFloat::x87DoubleExtended()) {
            current = ArgClass::ComplexX87;
          } else {
            fir::SequenceType::Shape shape{2};
            classifyArray(loc,
                          fir::SequenceType::get(shape, cmplx.getElementType()),
                          byteOffset, Lo, Hi);
          }
        })
        .template Case<fir::LogicalType>([&](fir::LogicalType logical) {
          if (kindMap.getLogicalBitsize(logical.getFKind()) == 128)
            Hi = Lo = ArgClass::Integer;
          else
            current = ArgClass::Integer;
        })
        .template Case<fir::CharacterType>(
            [&](fir::CharacterType character) { current = ArgClass::Integer; })
        .template Case<fir::SequenceType>([&](fir::SequenceType seqTy) {
          // Array component.
          classifyArray(loc, seqTy, byteOffset, Lo, Hi);
        })
        .template Case<fir::RecordType>([&](fir::RecordType recTy) {
          // Component that is a derived type.
          classifyStruct(loc, recTy, byteOffset, Lo, Hi);
        })
        .template Case<fir::VectorType>([&](fir::VectorType vecTy) {
          // Previously marshalled SSE eight byte for a previous struct
          // argument.
          auto *sem = fir::isa_real(vecTy.getEleTy())
                          ? &floatToSemantics(kindMap, vecTy.getEleTy())
                          : nullptr;
          // Not expecting to hit this todo in standard code (it would
          // require some vector type extension).
          if (!(sem == &llvm::APFloat::IEEEsingle() && vecTy.getLen() <= 2) &&
              !(sem == &llvm::APFloat::IEEEhalf() && vecTy.getLen() <= 4))
            TODO(loc, "passing vector argument to C by value");
          current = SSE;
        })
        .Default([&](mlir::Type ty) {
          if (fir::conformsWithPassByRef(ty))
            current = ArgClass::Integer; // Pointers.
          else
            TODO(loc, "unsupported component type for BIND(C), VALUE derived "
                      "type argument");
        });
  }

  // Classify fields of a derived type starting at \p offset. Returns the new
  // offset. Post-merge is left to the caller.
  std::uint64_t classifyStruct(mlir::Location loc, fir::RecordType recTy,
                               std::uint64_t byteOffset, ArgClass &Lo,
                               ArgClass &Hi) const {
    for (auto component : recTy.getTypeList()) {
      if (byteOffset > 16) {
        // See 3.2.3 p. 1 and note 15. Note that when the offset is bigger
        // than 16 bytes here, it is not a single _m256 and or _m512 entity
        // that could fit in AVX registers.
        Lo = Hi = ArgClass::Memory;
        return byteOffset;
      }
      mlir::Type compType = component.second;
      auto [compSize, compAlign] =
          getSizeAndAlignment(loc, compType, getDataLayout(), kindMap);
      byteOffset = llvm::alignTo(byteOffset, compAlign);
      ArgClass LoComp, HiComp;
      classify(loc, compType, byteOffset, LoComp, HiComp);
      Lo = mergeClass(Lo, LoComp);
      Hi = mergeClass(Hi, HiComp);
      byteOffset = byteOffset + llvm::alignTo(compSize, compAlign);
      if (Lo == ArgClass::Memory || Hi == ArgClass::Memory)
        return byteOffset;
    }
    return byteOffset;
  }

  // Classify fields of a constant size array type starting at \p offset.
  // Returns the new offset. Post-merge is left to the caller.
  void classifyArray(mlir::Location loc, fir::SequenceType seqTy,
                     std::uint64_t byteOffset, ArgClass &Lo,
                     ArgClass &Hi) const {
    mlir::Type eleTy = seqTy.getEleTy();
    const std::uint64_t arraySize = seqTy.getConstantArraySize();
    auto [eleSize, eleAlign] =
        getSizeAndAlignment(loc, eleTy, getDataLayout(), kindMap);
    std::uint64_t eleStorageSize = llvm::alignTo(eleSize, eleAlign);
    for (std::uint64_t i = 0; i < arraySize; ++i) {
      byteOffset = llvm::alignTo(byteOffset, eleAlign);
      if (byteOffset > 16) {
        // See 3.2.3 p. 1 and note 15. Same as in classifyStruct.
        Lo = Hi = ArgClass::Memory;
        return;
      }
      ArgClass LoComp, HiComp;
      classify(loc, eleTy, byteOffset, LoComp, HiComp);
      Lo = mergeClass(Lo, LoComp);
      Hi = mergeClass(Hi, HiComp);
      byteOffset = byteOffset + eleStorageSize;
      if (Lo == ArgClass::Memory || Hi == ArgClass::Memory)
        return;
    }
  }

  // Goes through the previously marshalled arguments and count the
  // register occupancy to check if there are enough registers left.
  bool hasEnoughRegisters(mlir::Location loc, int neededIntRegisters,
                          int neededSSERegisters,
                          const Marshalling &previousArguments) const {
    int availIntRegisters = 6;
    int availSSERegisters = 8;
    for (auto typeAndAttr : previousArguments) {
      const auto &attr = std::get<Attributes>(typeAndAttr);
      if (attr.isByVal())
        continue; // Previous argument passed on the stack.
      ArgClass Lo, Hi;
      Lo = Hi = ArgClass::NoClass;
      classify(loc, std::get<mlir::Type>(typeAndAttr), 0, Lo, Hi);
      // post merge is not needed here since previous aggregate arguments
      // were marshalled into simpler arguments.
      if (Lo == ArgClass::Integer)
        --availIntRegisters;
      else if (Lo == SSE)
        --availSSERegisters;
      if (Hi == ArgClass::Integer)
        --availIntRegisters;
      else if (Hi == ArgClass::SSE)
        --availSSERegisters;
    }
    return availSSERegisters >= neededSSERegisters &&
           availIntRegisters >= neededIntRegisters;
  }

  /// Argument class merging as described in System V ABI 3.2.3 point 4.
  ArgClass mergeClass(ArgClass accum, ArgClass field) const {
    assert((accum != ArgClass::Memory && accum != ArgClass::ComplexX87) &&
           "Invalid accumulated classification during merge.");
    if (accum == field || field == NoClass)
      return accum;
    if (field == ArgClass::Memory)
      return ArgClass::Memory;
    if (accum == NoClass)
      return field;
    if (accum == Integer || field == Integer)
      return ArgClass::Integer;
    if (field == ArgClass::X87 || field == ArgClass::X87Up ||
        field == ArgClass::ComplexX87 || accum == ArgClass::X87 ||
        accum == ArgClass::X87Up)
      return Memory;
    return SSE;
  }

  /// Argument class post merging as described in System V ABI 3.2.3 point 5.
  void postMerge(std::uint64_t byteSize, ArgClass &Lo, ArgClass &Hi) const {
    if (Hi == ArgClass::Memory)
      Lo = ArgClass::Memory;
    if (Hi == ArgClass::X87Up && Lo != ArgClass::X87)
      Lo = ArgClass::Memory;
    if (byteSize > 16 && (Lo != ArgClass::SSE || Hi != ArgClass::SSEUp))
      Lo = ArgClass::Memory;
    if (Hi == ArgClass::SSEUp && Lo != ArgClass::SSE)
      Hi = SSE;
  }

  /// When \p recTy is a one field record type that can be passed
  /// like the field on its own, returns the field type. Returns
  /// a null type otherwise.
  mlir::Type passAsFieldIfOneFieldStruct(fir::RecordType recTy) const {
    auto typeList = recTy.getTypeList();
    if (typeList.size() != 1)
      return {};
    mlir::Type fieldType = typeList[0].second;
    if (mlir::isa<mlir::FloatType, mlir::IntegerType, fir::RealType,
                  fir::CharacterType, fir::LogicalType>(fieldType))
      return fieldType;
    // Complex field that needs to be split, or array.
    return {};
  }

  mlir::Type pickLLVMArgType(mlir::Location loc, mlir::MLIRContext *context,
                             ArgClass argClass,
                             std::uint64_t partByteSize) const {
    if (argClass == ArgClass::SSE) {
      if (partByteSize > 16)
        TODO(loc, "passing struct as a real > 128 bits in register");
      // Clang uses vector type when several fp fields are marshalled
      // into a single SSE register (like  <n x smallest fp field> ).
      // It should make no difference from an ABI point of view to just
      // select an fp type of the right size, and it makes things simpler
      // here.
      if (partByteSize > 8)
        return mlir::FloatType::getF128(context);
      if (partByteSize > 4)
        return mlir::FloatType::getF64(context);
      if (partByteSize > 2)
        return mlir::FloatType::getF32(context);
      return mlir::FloatType::getF16(context);
    }
    assert(partByteSize <= 8 &&
           "expect integer part of aggregate argument to fit into eight bytes");
    if (partByteSize > 4)
      return mlir::IntegerType::get(context, 64);
    if (partByteSize > 2)
      return mlir::IntegerType::get(context, 32);
    if (partByteSize > 1)
      return mlir::IntegerType::get(context, 16);
    return mlir::IntegerType::get(context, 8);
  }

  /// Marshal a derived type passed by value like a C struct.
  CodeGenSpecifics::Marshalling
  structArgumentType(mlir::Location loc, fir::RecordType recTy,
                     const Marshalling &previousArguments) const override {
    std::uint64_t byteOffset = 0;
    ArgClass Lo, Hi;
    Lo = Hi = ArgClass::NoClass;
    byteOffset = classifyStruct(loc, recTy, byteOffset, Lo, Hi);
    postMerge(byteOffset, Lo, Hi);
    if (Lo == ArgClass::Memory || Lo == ArgClass::X87 ||
        Lo == ArgClass::ComplexX87)
      return passOnTheStack(loc, recTy);
    int neededIntRegisters = 0;
    int neededSSERegisters = 0;
    if (Lo == ArgClass::SSE)
      ++neededSSERegisters;
    else if (Lo == ArgClass::Integer)
      ++neededIntRegisters;
    if (Hi == ArgClass::SSE)
      ++neededSSERegisters;
    else if (Hi == ArgClass::Integer)
      ++neededIntRegisters;
    // C struct should not be split into LLVM registers if LLVM codegen is not
    // able to later assign actual registers to all of them (struct passing is
    // all in registers or all on the stack).
    if (!hasEnoughRegisters(loc, neededIntRegisters, neededSSERegisters,
                            previousArguments))
      return passOnTheStack(loc, recTy);

    if (auto fieldType = passAsFieldIfOneFieldStruct(recTy)) {
      CodeGenSpecifics::Marshalling marshal;
      marshal.emplace_back(fieldType, AT{});
      return marshal;
    }
    if (Hi == ArgClass::NoClass || Hi == ArgClass::SSEUp) {
      // Pass a single integer or floating point argument.
      mlir::Type lowType =
          pickLLVMArgType(loc, recTy.getContext(), Lo, byteOffset);
      CodeGenSpecifics::Marshalling marshal;
      marshal.emplace_back(lowType, AT{});
      return marshal;
    }
    // Split into two integer or floating point arguments.
    // Note that for the first argument, this will always pick i64 or f64 which
    // may be bigger than needed if some struct padding ends the first eight
    // byte (e.g. for `{i32, f64}`). It is valid from an X86-64 ABI and
    // semantic point of view, but it may not match the LLVM IR interface clang
    // would produce for the equivalent C code (the assembly will still be
    // compatible).  This allows keeping the logic simpler here since it
    // avoids computing the "data" size of the Lo part.
    mlir::Type lowType = pickLLVMArgType(loc, recTy.getContext(), Lo, 8u);
    mlir::Type hiType =
        pickLLVMArgType(loc, recTy.getContext(), Hi, byteOffset - 8u);
    CodeGenSpecifics::Marshalling marshal;
    marshal.emplace_back(lowType, AT{});
    marshal.emplace_back(hiType, AT{});
    return marshal;
  }

  /// Marshal an argument that must be passed on the stack.
  CodeGenSpecifics::Marshalling passOnTheStack(mlir::Location loc,
                                               mlir::Type ty) const {
    CodeGenSpecifics::Marshalling marshal;
    auto sizeAndAlign = getSizeAndAlignment(loc, ty, getDataLayout(), kindMap);
    // The stack is always 8 byte aligned (note 14 in 3.2.3).
    unsigned short align =
        std::max(sizeAndAlign.second, static_cast<unsigned short>(8));
    marshal.emplace_back(fir::ReferenceType::get(ty),
                         AT{align, /*byval=*/true, /*sret=*/false});
    return marshal;
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// x86_64 (x86 64 bit) Windows target specifics.
//===----------------------------------------------------------------------===//

namespace {
struct TargetX86_64Win : public GenericTarget<TargetX86_64Win> {
  using GenericTarget::GenericTarget;

  static constexpr int defaultWidth = 64;

  CodeGenSpecifics::Marshalling
  complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    const auto *sem = &floatToSemantics(kindMap, eleTy);
    if (sem == &llvm::APFloat::IEEEsingle()) {
      // i64   pack both floats in a 64-bit GPR
      marshal.emplace_back(mlir::IntegerType::get(eleTy.getContext(), 64),
                           AT{});
    } else if (sem == &llvm::APFloat::IEEEdouble()) {
      // Use a type that will be translated into LLVM as:
      // { double, double }   struct of 2 double, byval, align 8
      marshal.emplace_back(
          fir::ReferenceType::get(mlir::TupleType::get(
              eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
          AT{/*align=*/8, /*byval=*/true});
    } else if (sem == &llvm::APFloat::IEEEquad() ||
               sem == &llvm::APFloat::x87DoubleExtended()) {
      // Use a type that will be translated into LLVM as:
      // { t, t }   struct of 2 eleTy, byval, align 16
      marshal.emplace_back(
          fir::ReferenceType::get(mlir::TupleType::get(
              eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
          AT{/*align=*/16, /*byval=*/true});
    } else {
      typeTodo(sem, loc, "argument");
    }
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    const auto *sem = &floatToSemantics(kindMap, eleTy);
    if (sem == &llvm::APFloat::IEEEsingle()) {
      // i64   pack both floats in a 64-bit GPR
      marshal.emplace_back(mlir::IntegerType::get(eleTy.getContext(), 64),
                           AT{});
    } else if (sem == &llvm::APFloat::IEEEdouble()) {
      // Use a type that will be translated into LLVM as:
      // { double, double }   struct of 2 double, sret, align 8
      marshal.emplace_back(
          fir::ReferenceType::get(mlir::TupleType::get(
              eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
          AT{/*align=*/8, /*byval=*/false, /*sret=*/true});
    } else if (sem == &llvm::APFloat::IEEEquad() ||
               sem == &llvm::APFloat::x87DoubleExtended()) {
      // Use a type that will be translated into LLVM as:
      // { t, t }   struct of 2 eleTy, sret, align 16
      marshal.emplace_back(
          fir::ReferenceType::get(mlir::TupleType::get(
              eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
          AT{/*align=*/16, /*byval=*/false, /*sret=*/true});
    } else {
      typeTodo(sem, loc, "return");
    }
    return marshal;
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// AArch64 linux target specifics.
//===----------------------------------------------------------------------===//

namespace {
struct TargetAArch64 : public GenericTarget<TargetAArch64> {
  using GenericTarget::GenericTarget;

  static constexpr int defaultWidth = 64;

  CodeGenSpecifics::Marshalling
  complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    const auto *sem = &floatToSemantics(kindMap, eleTy);
    if (sem == &llvm::APFloat::IEEEsingle() ||
        sem == &llvm::APFloat::IEEEdouble()) {
      // [2 x t]   array of 2 eleTy
      marshal.emplace_back(fir::SequenceType::get({2}, eleTy), AT{});
    } else {
      typeTodo(sem, loc, "argument");
    }
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    const auto *sem = &floatToSemantics(kindMap, eleTy);
    if (sem == &llvm::APFloat::IEEEsingle() ||
        sem == &llvm::APFloat::IEEEdouble()) {
      // Use a type that will be translated into LLVM as:
      // { t, t }   struct of 2 eleTy
      marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(),
                                                mlir::TypeRange{eleTy, eleTy}),
                           AT{});
    } else {
      typeTodo(sem, loc, "return");
    }
    return marshal;
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// PPC64 (AIX 64 bit) target specifics.
//===----------------------------------------------------------------------===//

namespace {
struct TargetPPC64 : public GenericTarget<TargetPPC64> {
  using GenericTarget::GenericTarget;

  static constexpr int defaultWidth = 64;

  CodeGenSpecifics::Marshalling
  complexArgumentType(mlir::Location, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    // two distinct element type arguments (re, im)
    marshal.emplace_back(eleTy, AT{});
    marshal.emplace_back(eleTy, AT{});
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  complexReturnType(mlir::Location, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    // Use a type that will be translated into LLVM as:
    // { t, t }   struct of 2 element type
    marshal.emplace_back(
        mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}),
        AT{});
    return marshal;
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// PPC64le linux target specifics.
//===----------------------------------------------------------------------===//

namespace {
struct TargetPPC64le : public GenericTarget<TargetPPC64le> {
  using GenericTarget::GenericTarget;

  static constexpr int defaultWidth = 64;

  CodeGenSpecifics::Marshalling
  complexArgumentType(mlir::Location, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    // two distinct element type arguments (re, im)
    marshal.emplace_back(eleTy, AT{});
    marshal.emplace_back(eleTy, AT{});
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  complexReturnType(mlir::Location, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    // Use a type that will be translated into LLVM as:
    // { t, t }   struct of 2 element type
    marshal.emplace_back(
        mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}),
        AT{});
    return marshal;
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// sparc (sparc 32 bit) target specifics.
//===----------------------------------------------------------------------===//

namespace {
struct TargetSparc : public GenericTarget<TargetSparc> {
  using GenericTarget::GenericTarget;

  static constexpr int defaultWidth = 32;

  CodeGenSpecifics::Marshalling
  complexArgumentType(mlir::Location, mlir::Type eleTy) const override {
    assert(fir::isa_real(eleTy));
    CodeGenSpecifics::Marshalling marshal;
    // Use a type that will be translated into LLVM as:
    // { t, t }   struct of 2 eleTy
    auto structTy =
        mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy});
    marshal.emplace_back(fir::ReferenceType::get(structTy), AT{});
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
    assert(fir::isa_real(eleTy));
    CodeGenSpecifics::Marshalling marshal;
    // Use a type that will be translated into LLVM as:
    // { t, t }   struct of 2 eleTy, byval
    auto structTy =
        mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy});
    marshal.emplace_back(fir::ReferenceType::get(structTy),
                         AT{/*alignment=*/0, /*byval=*/true});
    return marshal;
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// sparcv9 (sparc 64 bit) target specifics.
//===----------------------------------------------------------------------===//

namespace {
struct TargetSparcV9 : public GenericTarget<TargetSparcV9> {
  using GenericTarget::GenericTarget;

  static constexpr int defaultWidth = 64;

  CodeGenSpecifics::Marshalling
  complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    const auto *sem = &floatToSemantics(kindMap, eleTy);
    if (sem == &llvm::APFloat::IEEEsingle() ||
        sem == &llvm::APFloat::IEEEdouble()) {
      // two distinct float, double arguments
      marshal.emplace_back(eleTy, AT{});
      marshal.emplace_back(eleTy, AT{});
    } else if (sem == &llvm::APFloat::IEEEquad()) {
      // Use a type that will be translated into LLVM as:
      // { fp128, fp128 }   struct of 2 fp128, byval, align 16
      marshal.emplace_back(
          fir::ReferenceType::get(mlir::TupleType::get(
              eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
          AT{/*align=*/16, /*byval=*/true});
    } else {
      typeTodo(sem, loc, "argument");
    }
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    // Use a type that will be translated into LLVM as:
    // { eleTy, eleTy }   struct of 2 eleTy
    marshal.emplace_back(
        mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}),
        AT{});
    return marshal;
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// RISCV64 linux target specifics.
//===----------------------------------------------------------------------===//

namespace {
struct TargetRISCV64 : public GenericTarget<TargetRISCV64> {
  using GenericTarget::GenericTarget;

  static constexpr int defaultWidth = 64;

  CodeGenSpecifics::Marshalling
  complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    const auto *sem = &floatToSemantics(kindMap, eleTy);
    if (sem == &llvm::APFloat::IEEEsingle() ||
        sem == &llvm::APFloat::IEEEdouble()) {
      // Two distinct element type arguments (re, im)
      marshal.emplace_back(eleTy, AT{});
      marshal.emplace_back(eleTy, AT{});
    } else {
      typeTodo(sem, loc, "argument");
    }
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    const auto *sem = &floatToSemantics(kindMap, eleTy);
    if (sem == &llvm::APFloat::IEEEsingle() ||
        sem == &llvm::APFloat::IEEEdouble()) {
      // Use a type that will be translated into LLVM as:
      // { t, t }   struct of 2 eleTy, byVal
      marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(),
                                                mlir::TypeRange{eleTy, eleTy}),
                           AT{/*alignment=*/0, /*byval=*/true});
    } else {
      typeTodo(sem, loc, "return");
    }
    return marshal;
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// AMDGPU linux target specifics.
//===----------------------------------------------------------------------===//

namespace {
struct TargetAMDGPU : public GenericTarget<TargetAMDGPU> {
  using GenericTarget::GenericTarget;

  // Default size (in bits) of the index type for strings.
  static constexpr int defaultWidth = 64;

  CodeGenSpecifics::Marshalling
  complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    TODO(loc, "handle complex argument types");
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    TODO(loc, "handle complex return types");
    return marshal;
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// NVPTX linux target specifics.
//===----------------------------------------------------------------------===//

namespace {
struct TargetNVPTX : public GenericTarget<TargetNVPTX> {
  using GenericTarget::GenericTarget;

  // Default size (in bits) of the index type for strings.
  static constexpr int defaultWidth = 64;

  CodeGenSpecifics::Marshalling
  complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    TODO(loc, "handle complex argument types");
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    TODO(loc, "handle complex return types");
    return marshal;
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// LoongArch64 linux target specifics.
//===----------------------------------------------------------------------===//

namespace {
struct TargetLoongArch64 : public GenericTarget<TargetLoongArch64> {
  using GenericTarget::GenericTarget;

  static constexpr int defaultWidth = 64;

  CodeGenSpecifics::Marshalling
  complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    const auto *sem = &floatToSemantics(kindMap, eleTy);
    if (sem == &llvm::APFloat::IEEEsingle() ||
        sem == &llvm::APFloat::IEEEdouble()) {
      // Two distinct element type arguments (re, im)
      marshal.emplace_back(eleTy, AT{});
      marshal.emplace_back(eleTy, AT{});
    } else {
      typeTodo(sem, loc, "argument");
    }
    return marshal;
  }

  CodeGenSpecifics::Marshalling
  complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
    CodeGenSpecifics::Marshalling marshal;
    const auto *sem = &floatToSemantics(kindMap, eleTy);
    if (sem == &llvm::APFloat::IEEEsingle() ||
        sem == &llvm::APFloat::IEEEdouble()) {
      // Use a type that will be translated into LLVM as:
      // { t, t }   struct of 2 eleTy, byVal
      marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(),
                                                mlir::TypeRange{eleTy, eleTy}),
                           AT{/*alignment=*/0, /*byval=*/true});
    } else {
      typeTodo(sem, loc, "return");
    }
    return marshal;
  }
};
} // namespace

// Instantiate the overloaded target instance based on the triple value.
// TODO: Add other targets to this file as needed.
std::unique_ptr<fir::CodeGenSpecifics>
fir::CodeGenSpecifics::get(mlir::MLIRContext *ctx, llvm::Triple &&trp,
                           KindMapping &&kindMap, const mlir::DataLayout &dl) {
  switch (trp.getArch()) {
  default:
    break;
  case llvm::Triple::ArchType::x86:
    if (trp.isOSWindows())
      return std::make_unique<TargetI386Win>(ctx, std::move(trp),
                                             std::move(kindMap), dl);
    else
      return std::make_unique<TargetI386>(ctx, std::move(trp),
                                          std::move(kindMap), dl);
  case llvm::Triple::ArchType::x86_64:
    if (trp.isOSWindows())
      return std::make_unique<TargetX86_64Win>(ctx, std::move(trp),
                                               std::move(kindMap), dl);
    else
      return std::make_unique<TargetX86_64>(ctx, std::move(trp),
                                            std::move(kindMap), dl);
  case llvm::Triple::ArchType::aarch64:
    return std::make_unique<TargetAArch64>(ctx, std::move(trp),
                                           std::move(kindMap), dl);
  case llvm::Triple::ArchType::ppc64:
    return std::make_unique<TargetPPC64>(ctx, std::move(trp),
                                         std::move(kindMap), dl);
  case llvm::Triple::ArchType::ppc64le:
    return std::make_unique<TargetPPC64le>(ctx, std::move(trp),
                                           std::move(kindMap), dl);
  case llvm::Triple::ArchType::sparc:
    return std::make_unique<TargetSparc>(ctx, std::move(trp),
                                         std::move(kindMap), dl);
  case llvm::Triple::ArchType::sparcv9:
    return std::make_unique<TargetSparcV9>(ctx, std::move(trp),
                                           std::move(kindMap), dl);
  case llvm::Triple::ArchType::riscv64:
    return std::make_unique<TargetRISCV64>(ctx, std::move(trp),
                                           std::move(kindMap), dl);
  case llvm::Triple::ArchType::amdgcn:
    return std::make_unique<TargetAMDGPU>(ctx, std::move(trp),
                                          std::move(kindMap), dl);
  case llvm::Triple::ArchType::nvptx64:
    return std::make_unique<TargetNVPTX>(ctx, std::move(trp),
                                         std::move(kindMap), dl);
  case llvm::Triple::ArchType::loongarch64:
    return std::make_unique<TargetLoongArch64>(ctx, std::move(trp),
                                               std::move(kindMap), dl);
  }
  TODO(mlir::UnknownLoc::get(ctx), "target not implemented");
}