File: BufferizeHLFIR.cpp

package info (click to toggle)
llvm-toolchain-18 1%3A18.1.8-18
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,908,340 kB
  • sloc: cpp: 6,667,937; ansic: 1,440,452; asm: 883,619; python: 230,549; objc: 76,880; f90: 74,238; lisp: 35,989; pascal: 16,571; sh: 10,229; perl: 7,459; ml: 5,047; awk: 3,523; makefile: 2,987; javascript: 2,149; xml: 892; fortran: 649; cs: 573
file content (940 lines) | stat: -rw-r--r-- 44,430 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
//===- BufferizeHLFIR.cpp - Bufferize HLFIR  ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file defines a pass that bufferize hlfir.expr. It translates operations
// producing or consuming hlfir.expr into operations operating on memory.
// An hlfir.expr is translated to a tuple<variable address, cleanupflag>
// where cleanupflag is set to true if storage for the expression was allocated
// on the heap.
//===----------------------------------------------------------------------===//

#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Runtime/Allocatable.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "flang/Optimizer/HLFIR/Passes.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/TypeSwitch.h"

namespace hlfir {
#define GEN_PASS_DEF_BUFFERIZEHLFIR
#include "flang/Optimizer/HLFIR/Passes.h.inc"
} // namespace hlfir

namespace {

/// Helper to create tuple from a bufferized expr storage and clean up
/// instruction flag. The storage is an HLFIR variable so that it can
/// be manipulated as a variable later (all shape and length information
/// cam be retrieved from it).
static mlir::Value packageBufferizedExpr(mlir::Location loc,
                                         fir::FirOpBuilder &builder,
                                         hlfir::Entity storage,
                                         mlir::Value mustFree) {
  auto tupleType = mlir::TupleType::get(
      builder.getContext(),
      mlir::TypeRange{storage.getType(), mustFree.getType()});
  auto undef = builder.create<fir::UndefOp>(loc, tupleType);
  auto insert = builder.create<fir::InsertValueOp>(
      loc, tupleType, undef, mustFree,
      builder.getArrayAttr(
          {builder.getIntegerAttr(builder.getIndexType(), 1)}));
  return builder.create<fir::InsertValueOp>(
      loc, tupleType, insert, storage,
      builder.getArrayAttr(
          {builder.getIntegerAttr(builder.getIndexType(), 0)}));
}

/// Helper to create tuple from a bufferized expr storage and constant
/// boolean clean-up flag.
static mlir::Value packageBufferizedExpr(mlir::Location loc,
                                         fir::FirOpBuilder &builder,
                                         hlfir::Entity storage, bool mustFree) {
  mlir::Value mustFreeValue = builder.createBool(loc, mustFree);
  return packageBufferizedExpr(loc, builder, storage, mustFreeValue);
}

/// Helper to extract the storage from a tuple created by packageBufferizedExpr.
/// It assumes no tuples are used as HLFIR operation operands, which is
/// currently enforced by the verifiers that only accept HLFIR value or
/// variable types which do not include tuples.
static hlfir::Entity getBufferizedExprStorage(mlir::Value bufferizedExpr) {
  auto tupleType = bufferizedExpr.getType().dyn_cast<mlir::TupleType>();
  if (!tupleType)
    return hlfir::Entity{bufferizedExpr};
  assert(tupleType.size() == 2 && "unexpected tuple type");
  if (auto insert = bufferizedExpr.getDefiningOp<fir::InsertValueOp>())
    if (insert.getVal().getType() == tupleType.getType(0))
      return hlfir::Entity{insert.getVal()};
  TODO(bufferizedExpr.getLoc(), "general extract storage case");
}

/// Helper to extract the clean-up flag from a tuple created by
/// packageBufferizedExpr.
static mlir::Value getBufferizedExprMustFreeFlag(mlir::Value bufferizedExpr) {
  auto tupleType = bufferizedExpr.getType().dyn_cast<mlir::TupleType>();
  if (!tupleType)
    return bufferizedExpr;
  assert(tupleType.size() == 2 && "unexpected tuple type");
  if (auto insert = bufferizedExpr.getDefiningOp<fir::InsertValueOp>())
    if (auto insert0 = insert.getAdt().getDefiningOp<fir::InsertValueOp>())
      if (insert0.getVal().getType() == tupleType.getType(1))
        return insert0.getVal();
  TODO(bufferizedExpr.getLoc(), "general extract storage case");
}

static std::pair<hlfir::Entity, mlir::Value>
createArrayTemp(mlir::Location loc, fir::FirOpBuilder &builder,
                mlir::Type exprType, mlir::Value shape,
                mlir::ValueRange extents, mlir::ValueRange lenParams,
                std::optional<hlfir::Entity> polymorphicMold) {
  mlir::Type sequenceType = hlfir::getFortranElementOrSequenceType(exprType);
  llvm::StringRef tmpName{".tmp.array"};

  if (polymorphicMold) {
    // Create *allocated* polymorphic temporary using the dynamic type
    // of the mold and the provided shape/extents. The created temporary
    // array will be written element per element, that is why it has to be
    // allocated.
    mlir::Type boxHeapType = fir::HeapType::get(sequenceType);
    mlir::Value alloc = fir::factory::genNullBoxStorage(
        builder, loc, fir::ClassType::get(boxHeapType));
    mlir::Value isHeapAlloc = builder.createBool(loc, true);
    fir::FortranVariableFlagsAttr declAttrs =
        fir::FortranVariableFlagsAttr::get(
            builder.getContext(), fir::FortranVariableFlagsEnum::allocatable);

    auto declareOp = builder.create<hlfir::DeclareOp>(loc, alloc, tmpName,
                                                      /*shape=*/nullptr,
                                                      lenParams, declAttrs);

    int rank = extents.size();
    fir::runtime::genAllocatableApplyMold(builder, loc, alloc,
                                          polymorphicMold->getFirBase(), rank);
    if (!extents.empty()) {
      mlir::Type idxTy = builder.getIndexType();
      mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
      unsigned dim = 0;
      for (mlir::Value extent : extents) {
        mlir::Value dimIndex = builder.createIntegerConstant(loc, idxTy, dim++);
        fir::runtime::genAllocatableSetBounds(builder, loc, alloc, dimIndex,
                                              one, extent);
      }
    }
    if (!lenParams.empty()) {
      // We should call AllocatableSetDerivedLength() here.
      // TODO: does the mold provide the length parameters or
      // the operation itself or should they be in sync?
      TODO(loc, "polymorphic type with length parameters in HLFIR");
    }
    fir::runtime::genAllocatableAllocate(builder, loc, alloc);

    return {hlfir::Entity{declareOp.getBase()}, isHeapAlloc};
  }

  mlir::Value allocmem = builder.createHeapTemporary(loc, sequenceType, tmpName,
                                                     extents, lenParams);
  auto declareOp =
      builder.create<hlfir::DeclareOp>(loc, allocmem, tmpName, shape, lenParams,
                                       fir::FortranVariableFlagsAttr{});
  mlir::Value trueVal = builder.createBool(loc, true);
  return {hlfir::Entity{declareOp.getBase()}, trueVal};
}

struct AsExprOpConversion : public mlir::OpConversionPattern<hlfir::AsExprOp> {
  using mlir::OpConversionPattern<hlfir::AsExprOp>::OpConversionPattern;
  explicit AsExprOpConversion(mlir::MLIRContext *ctx)
      : mlir::OpConversionPattern<hlfir::AsExprOp>{ctx} {}
  mlir::LogicalResult
  matchAndRewrite(hlfir::AsExprOp asExpr, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    mlir::Location loc = asExpr->getLoc();
    auto module = asExpr->getParentOfType<mlir::ModuleOp>();
    fir::FirOpBuilder builder(rewriter, module);
    if (asExpr.isMove()) {
      // Move variable storage for the hlfir.expr buffer.
      mlir::Value bufferizedExpr = packageBufferizedExpr(
          loc, builder, hlfir::Entity{adaptor.getVar()}, adaptor.getMustFree());
      rewriter.replaceOp(asExpr, bufferizedExpr);
      return mlir::success();
    }
    // Otherwise, create a copy in a new buffer.
    hlfir::Entity source = hlfir::Entity{adaptor.getVar()};
    auto [temp, cleanup] = hlfir::createTempFromMold(loc, builder, source);
    builder.create<hlfir::AssignOp>(loc, source, temp, temp.isAllocatable(),
                                    /*keep_lhs_length_if_realloc=*/false,
                                    /*temporary_lhs=*/true);
    mlir::Value bufferizedExpr =
        packageBufferizedExpr(loc, builder, temp, cleanup);
    rewriter.replaceOp(asExpr, bufferizedExpr);
    return mlir::success();
  }
};

struct ShapeOfOpConversion
    : public mlir::OpConversionPattern<hlfir::ShapeOfOp> {
  using mlir::OpConversionPattern<hlfir::ShapeOfOp>::OpConversionPattern;

  mlir::LogicalResult
  matchAndRewrite(hlfir::ShapeOfOp shapeOf, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    mlir::Location loc = shapeOf.getLoc();
    mlir::ModuleOp mod = shapeOf->getParentOfType<mlir::ModuleOp>();
    fir::FirOpBuilder builder(rewriter, mod);

    mlir::Value shape;
    hlfir::Entity bufferizedExpr{getBufferizedExprStorage(adaptor.getExpr())};
    if (bufferizedExpr.isVariable()) {
      shape = hlfir::genShape(loc, builder, bufferizedExpr);
    } else {
      // everything else failed so try to create a shape from static type info
      hlfir::ExprType exprTy =
          adaptor.getExpr().getType().dyn_cast_or_null<hlfir::ExprType>();
      if (exprTy)
        shape = hlfir::genExprShape(builder, loc, exprTy);
    }
    // expected to never happen
    if (!shape)
      return emitError(loc,
                       "Unresolvable hlfir.shape_of where extents are unknown");

    rewriter.replaceOp(shapeOf, shape);
    return mlir::success();
  }
};

struct ApplyOpConversion : public mlir::OpConversionPattern<hlfir::ApplyOp> {
  using mlir::OpConversionPattern<hlfir::ApplyOp>::OpConversionPattern;
  explicit ApplyOpConversion(mlir::MLIRContext *ctx)
      : mlir::OpConversionPattern<hlfir::ApplyOp>{ctx} {}
  mlir::LogicalResult
  matchAndRewrite(hlfir::ApplyOp apply, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    mlir::Location loc = apply->getLoc();
    hlfir::Entity bufferizedExpr = getBufferizedExprStorage(adaptor.getExpr());
    mlir::Type resultType = hlfir::getVariableElementType(bufferizedExpr);
    mlir::Value result = rewriter.create<hlfir::DesignateOp>(
        loc, resultType, bufferizedExpr, adaptor.getIndices(),
        adaptor.getTypeparams());
    if (fir::isa_trivial(apply.getType())) {
      result = rewriter.create<fir::LoadOp>(loc, result);
    } else {
      fir::FirOpBuilder builder(rewriter, apply.getOperation());
      result =
          packageBufferizedExpr(loc, builder, hlfir::Entity{result}, false);
    }
    rewriter.replaceOp(apply, result);
    return mlir::success();
  }
};

struct AssignOpConversion : public mlir::OpConversionPattern<hlfir::AssignOp> {
  using mlir::OpConversionPattern<hlfir::AssignOp>::OpConversionPattern;
  explicit AssignOpConversion(mlir::MLIRContext *ctx)
      : mlir::OpConversionPattern<hlfir::AssignOp>{ctx} {}
  mlir::LogicalResult
  matchAndRewrite(hlfir::AssignOp assign, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    llvm::SmallVector<mlir::Value> newOperands;
    for (mlir::Value operand : adaptor.getOperands())
      newOperands.push_back(getBufferizedExprStorage(operand));
    rewriter.startOpModification(assign);
    assign->setOperands(newOperands);
    rewriter.finalizeOpModification(assign);
    return mlir::success();
  }
};

struct ConcatOpConversion : public mlir::OpConversionPattern<hlfir::ConcatOp> {
  using mlir::OpConversionPattern<hlfir::ConcatOp>::OpConversionPattern;
  explicit ConcatOpConversion(mlir::MLIRContext *ctx)
      : mlir::OpConversionPattern<hlfir::ConcatOp>{ctx} {}
  mlir::LogicalResult
  matchAndRewrite(hlfir::ConcatOp concat, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    mlir::Location loc = concat->getLoc();
    fir::FirOpBuilder builder(rewriter, concat.getOperation());
    assert(adaptor.getStrings().size() >= 2 &&
           "must have at least two strings operands");
    if (adaptor.getStrings().size() > 2)
      TODO(loc, "codegen of optimized chained concatenation of more than two "
                "strings");
    hlfir::Entity lhs = getBufferizedExprStorage(adaptor.getStrings()[0]);
    hlfir::Entity rhs = getBufferizedExprStorage(adaptor.getStrings()[1]);
    auto [lhsExv, c1] = hlfir::translateToExtendedValue(loc, builder, lhs);
    auto [rhsExv, c2] = hlfir::translateToExtendedValue(loc, builder, rhs);
    assert(!c1 && !c2 && "expected variables");
    fir::ExtendedValue res =
        fir::factory::CharacterExprHelper{builder, loc}.createConcatenate(
            *lhsExv.getCharBox(), *rhsExv.getCharBox());
    // Ensure the memory type is the same as the result type.
    mlir::Type addrType = fir::ReferenceType::get(
        hlfir::getFortranElementType(concat.getResult().getType()));
    mlir::Value cast = builder.createConvert(loc, addrType, fir::getBase(res));
    res = fir::substBase(res, cast);
    hlfir::Entity hlfirTempRes =
        hlfir::Entity{hlfir::genDeclare(loc, builder, res, "tmp",
                                        fir::FortranVariableFlagsAttr{})
                          .getBase()};
    mlir::Value bufferizedExpr =
        packageBufferizedExpr(loc, builder, hlfirTempRes, false);
    rewriter.replaceOp(concat, bufferizedExpr);
    return mlir::success();
  }
};

struct SetLengthOpConversion
    : public mlir::OpConversionPattern<hlfir::SetLengthOp> {
  using mlir::OpConversionPattern<hlfir::SetLengthOp>::OpConversionPattern;
  explicit SetLengthOpConversion(mlir::MLIRContext *ctx)
      : mlir::OpConversionPattern<hlfir::SetLengthOp>{ctx} {}
  mlir::LogicalResult
  matchAndRewrite(hlfir::SetLengthOp setLength, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    mlir::Location loc = setLength->getLoc();
    fir::FirOpBuilder builder(rewriter, setLength.getOperation());
    // Create a temp with the new length.
    hlfir::Entity string = getBufferizedExprStorage(adaptor.getString());
    auto charType = hlfir::getFortranElementType(setLength.getType());
    llvm::StringRef tmpName{".tmp"};
    llvm::SmallVector<mlir::Value, 1> lenParams{adaptor.getLength()};
    auto alloca = builder.createTemporary(loc, charType, tmpName,
                                          /*shape=*/std::nullopt, lenParams);
    auto declareOp = builder.create<hlfir::DeclareOp>(
        loc, alloca, tmpName, /*shape=*/mlir::Value{}, lenParams,
        fir::FortranVariableFlagsAttr{});
    hlfir::Entity temp{declareOp.getBase()};
    // Assign string value to the created temp.
    builder.create<hlfir::AssignOp>(loc, string, temp,
                                    /*realloc=*/false,
                                    /*keep_lhs_length_if_realloc=*/false,
                                    /*temporary_lhs=*/true);
    mlir::Value bufferizedExpr =
        packageBufferizedExpr(loc, builder, temp, false);
    rewriter.replaceOp(setLength, bufferizedExpr);
    return mlir::success();
  }
};

struct GetLengthOpConversion
    : public mlir::OpConversionPattern<hlfir::GetLengthOp> {
  using mlir::OpConversionPattern<hlfir::GetLengthOp>::OpConversionPattern;
  explicit GetLengthOpConversion(mlir::MLIRContext *ctx)
      : mlir::OpConversionPattern<hlfir::GetLengthOp>{ctx} {}
  mlir::LogicalResult
  matchAndRewrite(hlfir::GetLengthOp getLength, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    mlir::Location loc = getLength->getLoc();
    fir::FirOpBuilder builder(rewriter, getLength.getOperation());
    hlfir::Entity bufferizedExpr = getBufferizedExprStorage(adaptor.getExpr());
    mlir::Value length = hlfir::genCharLength(loc, builder, bufferizedExpr);
    if (!length)
      return rewriter.notifyMatchFailure(
          getLength, "could not deduce length from GetLengthOp operand");
    rewriter.replaceOp(getLength, length);
    return mlir::success();
  }
};

/// The current hlfir.associate lowering does not handle multiple uses of a
/// non-trivial expression value because it generates the cleanup for the
/// expression bufferization at hlfir.end_associate. If there was more than one
/// hlfir.end_associate, it would be cleaned up multiple times, perhaps before
/// one of the other uses.
/// Note that we have to be careful about expressions used by a single
/// hlfir.end_associate that may be executed more times than the producer
/// of the expression value. This may also cause multiple clean-ups
/// for the same memory (e.g. cause double-free errors). For example,
/// hlfir.end_associate inside hlfir.elemental may cause such issues
/// for expressions produced outside of hlfir.elemental.
static bool allOtherUsesAreSafeForAssociate(mlir::Value value,
                                            mlir::Operation *currentUse,
                                            mlir::Operation *endAssociate) {
  // If value producer is from a different region than
  // hlfir.associate/end_associate, then conservatively assume
  // that the hlfir.end_associate may execute more times than
  // the value producer.
  // TODO: this may be improved for operations that cannot
  // result in multiple executions (e.g. ifOp).
  if (value.getParentRegion() != currentUse->getParentRegion() ||
      (endAssociate &&
       value.getParentRegion() != endAssociate->getParentRegion()))
    return false;

  for (mlir::Operation *useOp : value.getUsers()) {
    // Ignore DestroyOp's that do not imply finalization.
    // If finalization is implied, then we must delegate
    // the finalization to the correspoding EndAssociateOp,
    // but we currently do not; so we disable the buffer
    // reuse in this case.
    if (auto destroy = mlir::dyn_cast<hlfir::DestroyOp>(useOp)) {
      if (destroy.mustFinalizeExpr())
        return false;
      else
        continue;
    }

    if (useOp != currentUse) {
      // hlfir.shape_of and hlfir.get_length will not disrupt cleanup so it is
      // safe for hlfir.associate. These operations might read from the box and
      // so they need to come before the hflir.end_associate (which may
      // deallocate).
      if (mlir::isa<hlfir::ShapeOfOp>(useOp) ||
          mlir::isa<hlfir::GetLengthOp>(useOp)) {
        if (!endAssociate)
          continue;
        // If useOp dominates the endAssociate, then it is definitely safe.
        if (useOp->getBlock() != endAssociate->getBlock())
          if (mlir::DominanceInfo{}.dominates(useOp, endAssociate))
            continue;
        if (useOp->isBeforeInBlock(endAssociate))
          continue;
      }
      return false;
    }
  }
  return true;
}

static void eraseAllUsesInDestroys(mlir::Value value,
                                   mlir::ConversionPatternRewriter &rewriter) {
  for (mlir::Operation *useOp : value.getUsers())
    if (auto destroy = mlir::dyn_cast<hlfir::DestroyOp>(useOp)) {
      assert(!destroy.mustFinalizeExpr() &&
             "deleting DestroyOp with finalize attribute");
      rewriter.eraseOp(destroy);
    }
}

struct AssociateOpConversion
    : public mlir::OpConversionPattern<hlfir::AssociateOp> {
  using mlir::OpConversionPattern<hlfir::AssociateOp>::OpConversionPattern;
  explicit AssociateOpConversion(mlir::MLIRContext *ctx)
      : mlir::OpConversionPattern<hlfir::AssociateOp>{ctx} {}
  mlir::LogicalResult
  matchAndRewrite(hlfir::AssociateOp associate, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    mlir::Location loc = associate->getLoc();
    fir::FirOpBuilder builder(rewriter, associate.getOperation());
    mlir::Value bufferizedExpr = getBufferizedExprStorage(adaptor.getSource());
    const bool isTrivialValue = fir::isa_trivial(bufferizedExpr.getType());

    auto getEndAssociate =
        [](hlfir::AssociateOp associate) -> mlir::Operation * {
      for (mlir::Operation *useOp : associate->getUsers())
        if (mlir::isa<hlfir::EndAssociateOp>(useOp))
          return useOp;
      // happens in some hand coded mlir in tests
      return nullptr;
    };

    auto replaceWith = [&](mlir::Value hlfirVar, mlir::Value firVar,
                           mlir::Value flag) {
      // 0-dim variables may need special handling:
      //   %0 = hlfir.as_expr %x move %true :
      //       (!fir.box<!fir.heap<!fir.type<_T{y:i32}>>>, i1) ->
      //       !hlfir.expr<!fir.type<_T{y:i32}>>
      //   %1:3 = hlfir.associate %0 {adapt.valuebyref} :
      //       (!hlfir.expr<!fir.type<_T{y:i32}>>) ->
      //       (!fir.ref<!fir.type<_T{y:i32}>>,
      //        !fir.ref<!fir.type<_T{y:i32}>>,
      //        i1)
      //
      // !fir.box<!fir.heap<!fir.type<_T{y:i32}>>> value must be
      // propagated as the box address !fir.ref<!fir.type<_T{y:i32}>>.
      auto adjustVar = [&](mlir::Value sourceVar, mlir::Type assocType) {
        if (mlir::isa<fir::ReferenceType>(sourceVar.getType()) &&
            mlir::isa<fir::ClassType>(
                fir::unwrapRefType(sourceVar.getType()))) {
          // Association of a polymorphic value.
          sourceVar = builder.create<fir::LoadOp>(loc, sourceVar);
          assert(mlir::isa<fir::ClassType>(sourceVar.getType()) &&
                 fir::isAllocatableType(sourceVar.getType()));
          assert(sourceVar.getType() == assocType);
        } else if ((sourceVar.getType().isa<fir::BaseBoxType>() &&
                    !assocType.isa<fir::BaseBoxType>()) ||
                   ((sourceVar.getType().isa<fir::BoxCharType>() &&
                     !assocType.isa<fir::BoxCharType>()))) {
          sourceVar = builder.create<fir::BoxAddrOp>(loc, assocType, sourceVar);
        } else {
          sourceVar = builder.createConvert(loc, assocType, sourceVar);
        }
        return sourceVar;
      };

      mlir::Type associateHlfirVarType = associate.getResultTypes()[0];
      hlfirVar = adjustVar(hlfirVar, associateHlfirVarType);
      associate.getResult(0).replaceAllUsesWith(hlfirVar);

      mlir::Type associateFirVarType = associate.getResultTypes()[1];
      firVar = adjustVar(firVar, associateFirVarType);
      associate.getResult(1).replaceAllUsesWith(firVar);
      associate.getResult(2).replaceAllUsesWith(flag);
      // FIXME: note that the AssociateOp that is being erased
      // here will continue to be a user of the original Source
      // operand (e.g. a result of hlfir.elemental), because
      // the erasure is not immediate in the rewriter.
      // In case there are multiple uses of the Source operand,
      // the allOtherUsesAreSafeForAssociate() below will always
      // see them, so there is no way to reuse the buffer.
      // I think we have to run this analysis before doing
      // the conversions, so that we can analyze HLFIR in its
      // original form and decide which of the AssociateOp
      // users of hlfir.expr can reuse the buffer (if it can).
      rewriter.eraseOp(associate);
    };

    // If this is the last use of the expression value and this is an hlfir.expr
    // that was bufferized, re-use the storage.
    // Otherwise, create a temp and assign the storage to it.
    //
    // WARNING: it is important to use the original Source operand
    // of the AssociateOp to look for the users, because its replacement
    // has zero materialized users at this point.
    // So allOtherUsesAreSafeForAssociate() may incorrectly return
    // true here.
    if (!isTrivialValue && allOtherUsesAreSafeForAssociate(
                               associate.getSource(), associate.getOperation(),
                               getEndAssociate(associate))) {
      // Re-use hlfir.expr buffer if this is the only use of the hlfir.expr
      // outside of the hlfir.destroy. Take on the cleaning-up responsibility
      // for the related hlfir.end_associate, and erase the hlfir.destroy (if
      // any).
      mlir::Value mustFree = getBufferizedExprMustFreeFlag(adaptor.getSource());
      mlir::Value firBase = hlfir::Entity{bufferizedExpr}.getFirBase();
      replaceWith(bufferizedExpr, firBase, mustFree);
      eraseAllUsesInDestroys(associate.getSource(), rewriter);
      return mlir::success();
    }
    if (isTrivialValue) {
      llvm::SmallVector<mlir::NamedAttribute, 1> attrs;
      if (associate->hasAttr(fir::getAdaptToByRefAttrName())) {
        attrs.push_back(fir::getAdaptToByRefAttr(builder));
      }
      llvm::StringRef name = "";
      if (associate.getUniqName())
        name = *associate.getUniqName();
      auto temp =
          builder.createTemporary(loc, bufferizedExpr.getType(), name, attrs);
      builder.create<fir::StoreOp>(loc, bufferizedExpr, temp);
      mlir::Value mustFree = builder.createBool(loc, false);
      replaceWith(temp, temp, mustFree);
      return mlir::success();
    }
    // non-trivial value with more than one use. We will have to make a copy and
    // use that
    hlfir::Entity source = hlfir::Entity{bufferizedExpr};
    auto [temp, cleanup] = hlfir::createTempFromMold(loc, builder, source);
    builder.create<hlfir::AssignOp>(loc, source, temp, temp.isAllocatable(),
                                    /*keep_lhs_length_if_realloc=*/false,
                                    /*temporary_lhs=*/true);
    mlir::Value bufferTuple =
        packageBufferizedExpr(loc, builder, temp, cleanup);
    bufferizedExpr = getBufferizedExprStorage(bufferTuple);
    replaceWith(bufferizedExpr, hlfir::Entity{bufferizedExpr}.getFirBase(),
                getBufferizedExprMustFreeFlag(bufferTuple));
    return mlir::success();
  }
};

static void genBufferDestruction(mlir::Location loc, fir::FirOpBuilder &builder,
                                 mlir::Value var, mlir::Value mustFree,
                                 bool mustFinalize) {
  auto genFreeOrFinalize = [&](bool doFree, bool deallocComponents,
                               bool doFinalize) {
    if (!doFree && !deallocComponents && !doFinalize)
      return;

    mlir::Value addr = var;

    // fir::FreeMemOp operand type must be a fir::HeapType.
    mlir::Type heapType = fir::HeapType::get(
        hlfir::getFortranElementOrSequenceType(var.getType()));
    if (mlir::isa<fir::ReferenceType>(var.getType()) &&
        mlir::isa<fir::ClassType>(fir::unwrapRefType(var.getType()))) {
      // A temporary for a polymorphic expression is represented
      // via an allocatable. Variable type in this case
      // is !fir.ref<!fir.class<!fir.heap<!fir.type<>>>>.
      // We need to free the allocatable data, not the box
      // that is allocated on the stack.
      var = builder.create<fir::LoadOp>(loc, var);
      assert(mlir::isa<fir::ClassType>(var.getType()) &&
             fir::isAllocatableType(var.getType()));
      addr = builder.create<fir::BoxAddrOp>(loc, heapType, var);
      // Lowering currently does not produce DestroyOp with 'finalize'
      // for polymorphic temporaries. It will have to do so, for example,
      // for MERGE with polymorphic results.
      if (mustFinalize)
        TODO(loc, "finalizing polymorphic temporary in HLFIR");
    } else if (var.getType().isa<fir::BaseBoxType, fir::BoxCharType>()) {
      if (mustFinalize && !mlir::isa<fir::BaseBoxType>(var.getType()))
        fir::emitFatalError(loc, "non-finalizable variable");

      addr = builder.create<fir::BoxAddrOp>(loc, heapType, var);
    } else {
      if (!var.getType().isa<fir::HeapType>())
        addr = builder.create<fir::ConvertOp>(loc, heapType, var);

      if (mustFinalize || deallocComponents) {
        // Embox the raw pointer using proper shape and type params
        // (note that the shape might be visible via the array finalization
        // routines).
        if (!hlfir::isFortranEntity(var))
          TODO(loc, "need a Fortran entity to create a box");

        hlfir::Entity entity{var};
        llvm::SmallVector<mlir::Value> lenParams;
        hlfir::genLengthParameters(loc, builder, entity, lenParams);
        mlir::Value shape;
        if (entity.isArray())
          shape = hlfir::genShape(loc, builder, entity);
        mlir::Type boxType = fir::BoxType::get(heapType);
        var = builder.createBox(loc, boxType, addr, shape, /*slice=*/nullptr,
                                lenParams, /*tdesc=*/nullptr);
      }
    }

    if (mustFinalize)
      fir::runtime::genDerivedTypeFinalize(builder, loc, var);

    // If there are allocatable components, they need to be deallocated
    // (regardless of the mustFree and mustFinalize settings).
    if (deallocComponents)
      fir::runtime::genDerivedTypeDestroyWithoutFinalization(builder, loc, var);

    if (doFree)
      builder.create<fir::FreeMemOp>(loc, addr);
  };
  bool deallocComponents = hlfir::mayHaveAllocatableComponent(var.getType());

  auto genFree = [&]() {
    genFreeOrFinalize(/*doFree=*/true, /*deallocComponents=*/false,
                      /*doFinalize=*/false);
  };
  if (auto cstMustFree = fir::getIntIfConstant(mustFree)) {
    genFreeOrFinalize(*cstMustFree != 0 ? true : false, deallocComponents,
                      mustFinalize);
    return;
  }

  // If mustFree is dynamic, first, deallocate any allocatable
  // components and finalize.
  genFreeOrFinalize(/*doFree=*/false, deallocComponents,
                    /*doFinalize=*/mustFinalize);
  // Conditionally free the memory.
  builder.genIfThen(loc, mustFree).genThen(genFree).end();
}

struct EndAssociateOpConversion
    : public mlir::OpConversionPattern<hlfir::EndAssociateOp> {
  using mlir::OpConversionPattern<hlfir::EndAssociateOp>::OpConversionPattern;
  explicit EndAssociateOpConversion(mlir::MLIRContext *ctx)
      : mlir::OpConversionPattern<hlfir::EndAssociateOp>{ctx} {}
  mlir::LogicalResult
  matchAndRewrite(hlfir::EndAssociateOp endAssociate, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    mlir::Location loc = endAssociate->getLoc();
    fir::FirOpBuilder builder(rewriter, endAssociate.getOperation());
    genBufferDestruction(loc, builder, adaptor.getVar(), adaptor.getMustFree(),
                         /*mustFinalize=*/false);
    rewriter.eraseOp(endAssociate);
    return mlir::success();
  }
};

struct DestroyOpConversion
    : public mlir::OpConversionPattern<hlfir::DestroyOp> {
  using mlir::OpConversionPattern<hlfir::DestroyOp>::OpConversionPattern;
  explicit DestroyOpConversion(mlir::MLIRContext *ctx)
      : mlir::OpConversionPattern<hlfir::DestroyOp>{ctx} {}
  mlir::LogicalResult
  matchAndRewrite(hlfir::DestroyOp destroy, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    // If expr was bufferized on the heap, now is time to deallocate the buffer.
    mlir::Location loc = destroy->getLoc();
    hlfir::Entity bufferizedExpr = getBufferizedExprStorage(adaptor.getExpr());
    if (!fir::isa_trivial(bufferizedExpr.getType())) {
      fir::FirOpBuilder builder(rewriter, destroy.getOperation());
      mlir::Value mustFree = getBufferizedExprMustFreeFlag(adaptor.getExpr());
      // Passing FIR base might be enough for cases when
      // component deallocation and finalization are not required.
      // If extra BoxAddr operations become a performance problem,
      // we may pass both bases and let genBufferDestruction decide
      // which one to use.
      mlir::Value base = bufferizedExpr.getBase();
      genBufferDestruction(loc, builder, base, mustFree,
                           destroy.mustFinalizeExpr());
    }

    rewriter.eraseOp(destroy);
    return mlir::success();
  }
};

struct NoReassocOpConversion
    : public mlir::OpConversionPattern<hlfir::NoReassocOp> {
  using mlir::OpConversionPattern<hlfir::NoReassocOp>::OpConversionPattern;
  explicit NoReassocOpConversion(mlir::MLIRContext *ctx)
      : mlir::OpConversionPattern<hlfir::NoReassocOp>{ctx} {}
  mlir::LogicalResult
  matchAndRewrite(hlfir::NoReassocOp noreassoc, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    mlir::Location loc = noreassoc->getLoc();
    fir::FirOpBuilder builder(rewriter, noreassoc.getOperation());
    mlir::Value bufferizedExpr = getBufferizedExprStorage(adaptor.getVal());
    mlir::Value result =
        builder.create<hlfir::NoReassocOp>(loc, bufferizedExpr);

    if (!fir::isa_trivial(bufferizedExpr.getType())) {
      // NoReassocOp should not be needed on the mustFree path.
      mlir::Value mustFree = getBufferizedExprMustFreeFlag(adaptor.getVal());
      result =
          packageBufferizedExpr(loc, builder, hlfir::Entity{result}, mustFree);
    }
    rewriter.replaceOp(noreassoc, result);
    return mlir::success();
  }
};

/// Was \p value created in the mlir block where \p builder is currently set ?
static bool wasCreatedInCurrentBlock(mlir::Value value,
                                     fir::FirOpBuilder &builder) {
  if (mlir::Operation *op = value.getDefiningOp())
    return op->getBlock() == builder.getBlock();
  return false;
}

/// This Listener allows setting both the builder and the rewriter as
/// listeners. This is required when a pattern uses a firBuilder helper that
/// may create illegal operations that will need to be translated and requires
/// notifying the rewriter.
struct HLFIRListener : public mlir::OpBuilder::Listener {
  HLFIRListener(fir::FirOpBuilder &builder,
                mlir::ConversionPatternRewriter &rewriter)
      : builder{builder}, rewriter{rewriter} {}
  void notifyOperationInserted(mlir::Operation *op) override {
    builder.notifyOperationInserted(op);
    rewriter.notifyOperationInserted(op);
  }
  virtual void notifyBlockCreated(mlir::Block *block) override {
    builder.notifyBlockCreated(block);
    rewriter.notifyBlockCreated(block);
  }
  fir::FirOpBuilder &builder;
  mlir::ConversionPatternRewriter &rewriter;
};

struct ElementalOpConversion
    : public mlir::OpConversionPattern<hlfir::ElementalOp> {
  using mlir::OpConversionPattern<hlfir::ElementalOp>::OpConversionPattern;
  explicit ElementalOpConversion(mlir::MLIRContext *ctx)
      : mlir::OpConversionPattern<hlfir::ElementalOp>{ctx} {
    // This pattern recursively converts nested ElementalOp's
    // by cloning and then converting them, so we have to allow
    // for recursive pattern application. The recursion is bounded
    // by the nesting level of ElementalOp's.
    setHasBoundedRewriteRecursion();
  }
  mlir::LogicalResult
  matchAndRewrite(hlfir::ElementalOp elemental, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    mlir::Location loc = elemental->getLoc();
    fir::FirOpBuilder builder(rewriter, elemental.getOperation());
    // The body of the elemental op may contain operation that will require
    // to be translated. Notify the rewriter about the cloned operations.
    HLFIRListener listener{builder, rewriter};
    builder.setListener(&listener);

    mlir::Value shape = adaptor.getShape();
    std::optional<hlfir::Entity> mold;
    if (adaptor.getMold())
      mold = getBufferizedExprStorage(adaptor.getMold());
    auto extents = hlfir::getIndexExtents(loc, builder, shape);
    auto [temp, cleanup] =
        createArrayTemp(loc, builder, elemental.getType(), shape, extents,
                        adaptor.getTypeparams(), mold);
    // If the box load is needed, we'd better place it outside
    // of the loop nest.
    temp = derefPointersAndAllocatables(loc, builder, temp);

    // Generate a loop nest looping around the fir.elemental shape and clone
    // fir.elemental region inside the inner loop.
    hlfir::LoopNest loopNest =
        hlfir::genLoopNest(loc, builder, extents, !elemental.isOrdered());
    auto insPt = builder.saveInsertionPoint();
    builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
    auto yield = hlfir::inlineElementalOp(loc, builder, elemental,
                                          loopNest.oneBasedIndices);
    hlfir::Entity elementValue(yield.getElementValue());
    // Skip final AsExpr if any. It would create an element temporary,
    // which is no needed since the element will be assigned right away in
    // the array temporary. An hlfir.as_expr may have been added if the
    // elemental is a "view" over a variable (e.g parentheses or transpose).
    if (auto asExpr = elementValue.getDefiningOp<hlfir::AsExprOp>()) {
      if (asExpr->hasOneUse() && !asExpr.isMove()) {
        elementValue = hlfir::Entity{asExpr.getVar()};
        rewriter.eraseOp(asExpr);
      }
    }
    rewriter.eraseOp(yield);
    // Assign the element value to the temp element for this iteration.
    auto tempElement =
        hlfir::getElementAt(loc, builder, temp, loopNest.oneBasedIndices);
    // If the elemental result is a temporary of a derived type,
    // we can avoid the deep copy implied by the AssignOp and just
    // do the shallow copy with load/store. This helps avoiding the overhead
    // of deallocating allocatable components of the temporary (if any)
    // on each iteration of the elemental operation.
    auto asExpr = elementValue.getDefiningOp<hlfir::AsExprOp>();
    auto elemType = hlfir::getFortranElementType(elementValue.getType());
    if (asExpr && asExpr.isMove() && mlir::isa<fir::RecordType>(elemType) &&
        hlfir::mayHaveAllocatableComponent(elemType) &&
        wasCreatedInCurrentBlock(elementValue, builder)) {
      auto load = builder.create<fir::LoadOp>(loc, asExpr.getVar());
      builder.create<fir::StoreOp>(loc, load, tempElement);
    } else {
      builder.create<hlfir::AssignOp>(loc, elementValue, tempElement,
                                      /*realloc=*/false,
                                      /*keep_lhs_length_if_realloc=*/false,
                                      /*temporary_lhs=*/true);

      // hlfir.yield_element implicitly marks the end-of-life its operand if
      // it is an expression created in the hlfir.elemental (since it is its
      // last use and an hlfir.destroy could not be created afterwards)
      // Now that this node has been removed and the expression has been used in
      // the assign, insert an hlfir.destroy to mark the expression end-of-life.
      // If the expression creation allocated a buffer on the heap inside the
      // loop, this will ensure the buffer properly deallocated.
      if (elementValue.getType().isa<hlfir::ExprType>() &&
          wasCreatedInCurrentBlock(elementValue, builder))
        builder.create<hlfir::DestroyOp>(loc, elementValue);
    }
    builder.restoreInsertionPoint(insPt);

    mlir::Value bufferizedExpr =
        packageBufferizedExpr(loc, builder, temp, cleanup);
    // Explicitly delete the body of the elemental to get rid
    // of any users of hlfir.expr values inside the body as early
    // as possible.
    rewriter.startOpModification(elemental);
    rewriter.eraseBlock(elemental.getBody());
    rewriter.finalizeOpModification(elemental);
    rewriter.replaceOp(elemental, bufferizedExpr);
    return mlir::success();
  }
};
struct CharExtremumOpConversion
    : public mlir::OpConversionPattern<hlfir::CharExtremumOp> {
  using mlir::OpConversionPattern<hlfir::CharExtremumOp>::OpConversionPattern;
  explicit CharExtremumOpConversion(mlir::MLIRContext *ctx)
      : mlir::OpConversionPattern<hlfir::CharExtremumOp>{ctx} {}
  mlir::LogicalResult
  matchAndRewrite(hlfir::CharExtremumOp char_extremum, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    mlir::Location loc = char_extremum->getLoc();
    auto predicate = char_extremum.getPredicate();
    bool predIsMin =
        predicate == hlfir::CharExtremumPredicate::min ? true : false;
    fir::FirOpBuilder builder(rewriter, char_extremum.getOperation());
    assert(adaptor.getStrings().size() >= 2 &&
           "must have at least two strings operands");
    auto numOperands = adaptor.getStrings().size();

    std::vector<hlfir::Entity> chars;
    std::vector<
        std::pair<fir::ExtendedValue, std::optional<hlfir::CleanupFunction>>>
        pairs;
    llvm::SmallVector<fir::CharBoxValue> opCBVs;
    for (size_t i = 0; i < numOperands; ++i) {
      chars.emplace_back(getBufferizedExprStorage(adaptor.getStrings()[i]));
      pairs.emplace_back(
          hlfir::translateToExtendedValue(loc, builder, chars[i]));
      assert(!pairs[i].second && "expected variables");
      opCBVs.emplace_back(*pairs[i].first.getCharBox());
    }

    fir::ExtendedValue res =
        fir::factory::CharacterExprHelper{builder, loc}.createCharExtremum(
            predIsMin, opCBVs);
    mlir::Type addrType = fir::ReferenceType::get(
        hlfir::getFortranElementType(char_extremum.getResult().getType()));
    mlir::Value cast = builder.createConvert(loc, addrType, fir::getBase(res));
    res = fir::substBase(res, cast);
    hlfir::Entity hlfirTempRes =
        hlfir::Entity{hlfir::genDeclare(loc, builder, res, ".tmp.char_extremum",
                                        fir::FortranVariableFlagsAttr{})
                          .getBase()};
    mlir::Value bufferizedExpr =
        packageBufferizedExpr(loc, builder, hlfirTempRes, false);
    rewriter.replaceOp(char_extremum, bufferizedExpr);
    return mlir::success();
  }
};

class BufferizeHLFIR : public hlfir::impl::BufferizeHLFIRBase<BufferizeHLFIR> {
public:
  void runOnOperation() override {
    // TODO: make this a pass operating on FuncOp. The issue is that
    // FirOpBuilder helpers may generate new FuncOp because of runtime/llvm
    // intrinsics calls creation. This may create race conflict if the pass is
    // scheduled on FuncOp. A solution could be to provide an optional mutex
    // when building a FirOpBuilder and locking around FuncOp and GlobalOp
    // creation, but this needs a bit more thinking, so at this point the pass
    // is scheduled on the moduleOp.
    auto module = this->getOperation();
    auto *context = &getContext();
    mlir::RewritePatternSet patterns(context);
    patterns.insert<ApplyOpConversion, AsExprOpConversion, AssignOpConversion,
                    AssociateOpConversion, CharExtremumOpConversion,
                    ConcatOpConversion, DestroyOpConversion,
                    ElementalOpConversion, EndAssociateOpConversion,
                    NoReassocOpConversion, SetLengthOpConversion,
                    ShapeOfOpConversion, GetLengthOpConversion>(context);
    mlir::ConversionTarget target(*context);
    // Note that YieldElementOp is not marked as an illegal operation.
    // It must be erased by its parent converter and there is no explicit
    // conversion pattern to YieldElementOp itself. If any YieldElementOp
    // survives this pass, the verifier will detect it because it has to be
    // a child of ElementalOp and ElementalOp's are explicitly illegal.
    target.addIllegalOp<hlfir::ApplyOp, hlfir::AssociateOp, hlfir::ElementalOp,
                        hlfir::EndAssociateOp, hlfir::SetLengthOp>();

    target.markUnknownOpDynamicallyLegal([](mlir::Operation *op) {
      return llvm::all_of(
                 op->getResultTypes(),
                 [](mlir::Type ty) { return !ty.isa<hlfir::ExprType>(); }) &&
             llvm::all_of(op->getOperandTypes(), [](mlir::Type ty) {
               return !ty.isa<hlfir::ExprType>();
             });
    });
    if (mlir::failed(
            mlir::applyFullConversion(module, target, std::move(patterns)))) {
      mlir::emitError(mlir::UnknownLoc::get(context),
                      "failure in HLFIR bufferization pass");
      signalPassFailure();
    }
  }
};
} // namespace

std::unique_ptr<mlir::Pass> hlfir::createBufferizeHLFIRPass() {
  return std::make_unique<BufferizeHLFIR>();
}