1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
|
//===- LowerHLFIROrderedAssignments.cpp - Lower HLFIR ordered assignments -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file defines a pass to lower HLFIR ordered assignments.
// Ordered assignments are all the operations with the
// OrderedAssignmentTreeOpInterface that implements user defined assignments,
// assignment to vector subscripted entities, and assignments inside forall and
// where.
// The pass lowers these operations to regular hlfir.assign, loops and, if
// needed, introduces temporary storage to fulfill Fortran semantics.
//
// For each rewrite, an analysis builds an evaluation schedule, and then the
// new code is generated by following the evaluation schedule.
//===----------------------------------------------------------------------===//
#include "ScheduleOrderedAssignments.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/TemporaryStorage.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/HLFIR/Passes.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
namespace hlfir {
#define GEN_PASS_DEF_LOWERHLFIRORDEREDASSIGNMENTS
#include "flang/Optimizer/HLFIR/Passes.h.inc"
} // namespace hlfir
#define DEBUG_TYPE "flang-ordered-assignment"
// Test option only to test the scheduling part only (operations are erased
// without codegen). The only goal is to allow printing and testing the debug
// info.
static llvm::cl::opt<bool> dbgScheduleOnly(
"flang-dbg-order-assignment-schedule-only",
llvm::cl::desc("Only run ordered assignment scheduling with no codegen"),
llvm::cl::init(false));
namespace {
/// Structure that represents a masked expression being lowered. Masked
/// expressions are any expressions inside an hlfir.where. As described in
/// Fortran 2018 section 10.2.3.2, the evaluation of the elemental parts of such
/// expressions must be masked, while the evaluation of none elemental parts
/// must not be masked. This structure analyzes the region evaluating the
/// expression and allows splitting the generation of the none elemental part
/// from the elemental part.
struct MaskedArrayExpr {
MaskedArrayExpr(mlir::Location loc, mlir::Region ®ion);
/// Generate the none elemental part. Must be called outside of the
/// loops created for the WHERE construct.
void generateNoneElementalPart(fir::FirOpBuilder &builder,
mlir::IRMapping &mapper);
/// Methods below can only be called once generateNoneElementalPart has been
/// called.
/// Return the shape of the expression.
mlir::Value generateShape(fir::FirOpBuilder &builder,
mlir::IRMapping &mapper);
/// Return the value of an element value for this expression given the current
/// where loop indices.
mlir::Value generateElementalParts(fir::FirOpBuilder &builder,
mlir::ValueRange oneBasedIndices,
mlir::IRMapping &mapper);
/// Generate the cleanup for the none elemental parts, if any. This must be
/// called after the loops created for the WHERE construct.
void generateNoneElementalCleanupIfAny(fir::FirOpBuilder &builder,
mlir::IRMapping &mapper);
mlir::Location loc;
mlir::Region ®ion;
/// Was generateNoneElementalPart called?
bool noneElementalPartWasGenerated = false;
/// Set of operations that form the elemental parts of the
/// expression evaluation. These are the hlfir.elemental and
/// hlfir.elemental_addr that form the elemental tree producing
/// the expression value. hlfir.elemental that produce values
/// used inside transformational operations are not part of this set.
llvm::SmallSet<mlir::Operation *, 4> elementalParts{};
};
} // namespace
namespace {
/// Structure that visits an ordered assignment tree and generates code for
/// it according to a schedule.
class OrderedAssignmentRewriter {
public:
OrderedAssignmentRewriter(fir::FirOpBuilder &builder,
hlfir::OrderedAssignmentTreeOpInterface root)
: builder{builder}, root{root} {}
/// Generate code for the current run of the schedule.
void lowerRun(hlfir::Run &run) {
currentRun = &run;
walk(root);
currentRun = nullptr;
assert(constructStack.empty() && "must exit constructs after a run");
mapper.clear();
savedInCurrentRunBeforeUse.clear();
}
/// After all run have been lowered, clean-up all the temporary
/// storage that were created (do not call final routines).
void cleanupSavedEntities() {
for (auto &temp : savedEntities)
temp.second.destroy(root.getLoc(), builder);
}
/// Lowered value for an expression, and the original hlfir.yield if any
/// clean-up needs to be cloned after usage.
using ValueAndCleanUp = std::pair<mlir::Value, std::optional<hlfir::YieldOp>>;
private:
/// Walk the part of an order assignment tree node that needs
/// to be evaluated in the current run.
void walk(hlfir::OrderedAssignmentTreeOpInterface node);
/// Generate code when entering a given ordered assignment node.
void pre(hlfir::ForallOp forallOp);
void pre(hlfir::ForallIndexOp);
void pre(hlfir::ForallMaskOp);
void pre(hlfir::WhereOp whereOp);
void pre(hlfir::ElseWhereOp elseWhereOp);
void pre(hlfir::RegionAssignOp);
/// Generate code when leaving a given ordered assignment node.
void post(hlfir::ForallOp);
void post(hlfir::ForallMaskOp);
void post(hlfir::WhereOp);
void post(hlfir::ElseWhereOp);
/// Enter (and maybe create) the fir.if else block of an ElseWhereOp,
/// but do not generate the elswhere mask or the new fir.if.
void enterElsewhere(hlfir::ElseWhereOp);
/// Are there any leaf region in the node that must be saved in the current
/// run?
bool mustSaveRegionIn(
hlfir::OrderedAssignmentTreeOpInterface node,
llvm::SmallVectorImpl<hlfir::SaveEntity> &saveEntities) const;
/// Should this node be evaluated in the current run? Saving a region in a
/// node does not imply the node needs to be evaluated.
bool
isRequiredInCurrentRun(hlfir::OrderedAssignmentTreeOpInterface node) const;
/// Generate a scalar value yielded by an ordered assignment tree region.
/// If the value was not saved in a previous run, this clone the region
/// code, except the final yield, at the current execution point.
/// If the value was saved in a previous run, this fetches the saved value
/// from the temporary storage and returns the value.
/// Inside Forall, the value will be hoisted outside of the forall loops if
/// it does not depend on the forall indices.
/// An optional type can be provided to get a value from a specific type
/// (the cast will be hoisted if the computation is hoisted).
mlir::Value generateYieldedScalarValue(
mlir::Region ®ion,
std::optional<mlir::Type> castToType = std::nullopt);
/// Generate an entity yielded by an ordered assignment tree region, and
/// optionally return the (uncloned) yield if there is any clean-up that
/// should be done after using the entity. Like, generateYieldedScalarValue,
/// this will return the saved value if the region was saved in a previous
/// run.
ValueAndCleanUp
generateYieldedEntity(mlir::Region ®ion,
std::optional<mlir::Type> castToType = std::nullopt);
struct LhsValueAndCleanUp {
mlir::Value lhs;
std::optional<hlfir::YieldOp> elementalCleanup;
mlir::Region *nonElementalCleanup = nullptr;
std::optional<hlfir::LoopNest> vectorSubscriptLoopNest;
std::optional<mlir::Value> vectorSubscriptShape;
};
/// Generate the left-hand side. If the left-hand side is vector
/// subscripted (hlfir.elemental_addr), this will create a loop nest
/// (unless it was already created by a WHERE mask) and return the
/// element address.
LhsValueAndCleanUp
generateYieldedLHS(mlir::Location loc, mlir::Region &lhsRegion,
std::optional<hlfir::Entity> loweredRhs = std::nullopt);
/// If \p maybeYield is present and has a clean-up, generate the clean-up
/// at the current insertion point (by cloning).
void generateCleanupIfAny(std::optional<hlfir::YieldOp> maybeYield);
void generateCleanupIfAny(mlir::Region *cleanupRegion);
/// Generate a masked entity. This can only be called when whereLoopNest was
/// set (When an hlfir.where is being visited).
/// This method returns the scalar element (that may have been previously
/// saved) for the current indices inside the where loop.
mlir::Value generateMaskedEntity(mlir::Location loc, mlir::Region ®ion) {
MaskedArrayExpr maskedExpr(loc, region);
return generateMaskedEntity(maskedExpr);
}
mlir::Value generateMaskedEntity(MaskedArrayExpr &maskedExpr);
/// Create a fir.if at the current position inside the where loop nest
/// given the element value of a mask.
void generateMaskIfOp(mlir::Value cdt);
/// Save a value for subsequent runs.
void generateSaveEntity(hlfir::SaveEntity savedEntity,
bool willUseSavedEntityInSameRun);
void saveLeftHandSide(hlfir::SaveEntity savedEntity,
hlfir::RegionAssignOp regionAssignOp);
/// Get a value if it was saved in this run or a previous run. Returns
/// nullopt if it has not been saved.
std::optional<ValueAndCleanUp> getIfSaved(mlir::Region ®ion);
/// Generate code before the loop nest for the current run, if any.
void doBeforeLoopNest(const std::function<void()> &callback) {
if (constructStack.empty()) {
callback();
return;
}
auto insertionPoint = builder.saveInsertionPoint();
builder.setInsertionPoint(constructStack[0]);
callback();
builder.restoreInsertionPoint(insertionPoint);
}
/// Can the current loop nest iteration number be computed? For simplicity,
/// this is true if and only if all the bounds and steps of the fir.do_loop
/// nest dominates the outer loop. The argument is filled with the current
/// loop nest on success.
bool currentLoopNestIterationNumberCanBeComputed(
llvm::SmallVectorImpl<fir::DoLoopOp> &loopNest);
template <typename T>
fir::factory::TemporaryStorage *insertSavedEntity(mlir::Region ®ion,
T &&temp) {
auto inserted =
savedEntities.insert(std::make_pair(®ion, std::forward<T>(temp)));
assert(inserted.second && "temp must have been emplaced");
return &inserted.first->second;
}
fir::FirOpBuilder &builder;
/// Map containing the mapping between the original order assignment tree
/// operations and the operations that have been cloned in the current run.
/// It is reset between two runs.
mlir::IRMapping mapper;
/// Dominance info is used to determine if inner loop bounds are all computed
/// before outer loop for the current loop. It does not need to be reset
/// between runs.
mlir::DominanceInfo dominanceInfo;
/// Construct stack in the current run. This allows setting back the insertion
/// point correctly when leaving a node that requires a fir.do_loop or fir.if
/// operation.
llvm::SmallVector<mlir::Operation *> constructStack;
/// Current where loop nest, if any.
std::optional<hlfir::LoopNest> whereLoopNest;
/// Map of temporary storage to keep track of saved entity once the run
/// that saves them has been lowered. It is kept in-between runs.
/// llvm::MapVector is used to guarantee deterministic order
/// of iterating through savedEntities (e.g. for generating
/// destruction code for the temporary storages).
llvm::MapVector<mlir::Region *, fir::factory::TemporaryStorage> savedEntities;
/// Map holding the values that were saved in the current run and that also
/// need to be used (because their construct will be visited). It is reset
/// after each run. It avoids having to store and fetch in the temporary
/// during the same run, which would require the temporary to have different
/// fetching and storing counters.
llvm::DenseMap<mlir::Region *, ValueAndCleanUp> savedInCurrentRunBeforeUse;
/// Root of the order assignment tree being lowered.
hlfir::OrderedAssignmentTreeOpInterface root;
/// Pointer to the current run of the schedule being lowered.
hlfir::Run *currentRun = nullptr;
/// When allocating temporary storage inlined, indicate if the storage should
/// be heap or stack allocated. Temporary allocated with the runtime are heap
/// allocated by the runtime.
bool allocateOnHeap = true;
};
} // namespace
void OrderedAssignmentRewriter::walk(
hlfir::OrderedAssignmentTreeOpInterface node) {
bool mustVisit =
isRequiredInCurrentRun(node) || mlir::isa<hlfir::ForallIndexOp>(node);
llvm::SmallVector<hlfir::SaveEntity> saveEntities;
mlir::Operation *nodeOp = node.getOperation();
if (mustSaveRegionIn(node, saveEntities)) {
mlir::IRRewriter::InsertPoint insertionPoint;
if (auto elseWhereOp = mlir::dyn_cast<hlfir::ElseWhereOp>(nodeOp)) {
// ElseWhere mask to save must be evaluated inside the fir.if else
// for the previous where/elsewehere (its evaluation must be
// masked by the "pending control mask").
insertionPoint = builder.saveInsertionPoint();
enterElsewhere(elseWhereOp);
}
for (hlfir::SaveEntity saveEntity : saveEntities)
generateSaveEntity(saveEntity, mustVisit);
if (insertionPoint.isSet())
builder.restoreInsertionPoint(insertionPoint);
}
if (mustVisit) {
llvm::TypeSwitch<mlir::Operation *, void>(nodeOp)
.Case<hlfir::ForallOp, hlfir::ForallIndexOp, hlfir::ForallMaskOp,
hlfir::RegionAssignOp, hlfir::WhereOp, hlfir::ElseWhereOp>(
[&](auto concreteOp) { pre(concreteOp); })
.Default([](auto) {});
if (auto *body = node.getSubTreeRegion()) {
for (mlir::Operation &op : body->getOps())
if (auto subNode =
mlir::dyn_cast<hlfir::OrderedAssignmentTreeOpInterface>(op))
walk(subNode);
llvm::TypeSwitch<mlir::Operation *, void>(nodeOp)
.Case<hlfir::ForallOp, hlfir::ForallMaskOp, hlfir::WhereOp,
hlfir::ElseWhereOp>([&](auto concreteOp) { post(concreteOp); })
.Default([](auto) {});
}
}
}
void OrderedAssignmentRewriter::pre(hlfir::ForallOp forallOp) {
/// Create a fir.do_loop given the hlfir.forall control values.
mlir::Type idxTy = builder.getIndexType();
mlir::Location loc = forallOp.getLoc();
mlir::Value lb = generateYieldedScalarValue(forallOp.getLbRegion(), idxTy);
mlir::Value ub = generateYieldedScalarValue(forallOp.getUbRegion(), idxTy);
mlir::Value step;
if (forallOp.getStepRegion().empty()) {
auto insertionPoint = builder.saveInsertionPoint();
if (!constructStack.empty())
builder.setInsertionPoint(constructStack[0]);
step = builder.createIntegerConstant(loc, idxTy, 1);
if (!constructStack.empty())
builder.restoreInsertionPoint(insertionPoint);
} else {
step = generateYieldedScalarValue(forallOp.getStepRegion(), idxTy);
}
auto doLoop = builder.create<fir::DoLoopOp>(loc, lb, ub, step);
builder.setInsertionPointToStart(doLoop.getBody());
mlir::Value oldIndex = forallOp.getForallIndexValue();
mlir::Value newIndex =
builder.createConvert(loc, oldIndex.getType(), doLoop.getInductionVar());
mapper.map(oldIndex, newIndex);
constructStack.push_back(doLoop);
}
void OrderedAssignmentRewriter::post(hlfir::ForallOp) {
assert(!constructStack.empty() && "must contain a loop");
builder.setInsertionPointAfter(constructStack.pop_back_val());
}
void OrderedAssignmentRewriter::pre(hlfir::ForallIndexOp forallIndexOp) {
mlir::Location loc = forallIndexOp.getLoc();
mlir::Type intTy = fir::unwrapRefType(forallIndexOp.getType());
mlir::Value indexVar =
builder.createTemporary(loc, intTy, forallIndexOp.getName());
mlir::Value newVal = mapper.lookupOrDefault(forallIndexOp.getIndex());
builder.createStoreWithConvert(loc, newVal, indexVar);
mapper.map(forallIndexOp, indexVar);
}
void OrderedAssignmentRewriter::pre(hlfir::ForallMaskOp forallMaskOp) {
mlir::Location loc = forallMaskOp.getLoc();
mlir::Value mask = generateYieldedScalarValue(forallMaskOp.getMaskRegion(),
builder.getI1Type());
auto ifOp = builder.create<fir::IfOp>(loc, std::nullopt, mask, false);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
constructStack.push_back(ifOp);
}
void OrderedAssignmentRewriter::post(hlfir::ForallMaskOp forallMaskOp) {
assert(!constructStack.empty() && "must contain an ifop");
builder.setInsertionPointAfter(constructStack.pop_back_val());
}
/// Convert an entity to the type of a given mold.
/// This is intended to help with cases where hlfir entity is a value while
/// it must be used as a variable or vice-versa. These mismatches may occur
/// between the type of user defined assignment block arguments and the actual
/// argument that was lowered for them. The actual may be an in-memory copy
/// while the block argument expects an hlfir.expr.
static hlfir::Entity
convertToMoldType(mlir::Location loc, fir::FirOpBuilder &builder,
hlfir::Entity input, hlfir::Entity mold,
llvm::SmallVectorImpl<hlfir::CleanupFunction> &cleanups) {
if (input.getType() == mold.getType())
return input;
fir::FirOpBuilder *b = &builder;
if (input.isVariable() && mold.isValue()) {
if (fir::isa_trivial(mold.getType())) {
// fir.ref<T> to T.
mlir::Value load = builder.create<fir::LoadOp>(loc, input);
return hlfir::Entity{builder.createConvert(loc, mold.getType(), load)};
}
// fir.ref<T> to hlfir.expr<T>.
mlir::Value asExpr = builder.create<hlfir::AsExprOp>(loc, input);
if (asExpr.getType() != mold.getType())
TODO(loc, "hlfir.expr conversion");
cleanups.emplace_back([=]() { b->create<hlfir::DestroyOp>(loc, asExpr); });
return hlfir::Entity{asExpr};
}
if (input.isValue() && mold.isVariable()) {
// T to fir.ref<T>, or hlfir.expr<T> to fir.ref<T>.
hlfir::AssociateOp associate = hlfir::genAssociateExpr(
loc, builder, input, mold.getFortranElementType(), ".tmp.val2ref");
cleanups.emplace_back(
[=]() { b->create<hlfir::EndAssociateOp>(loc, associate); });
return hlfir::Entity{associate.getBase()};
}
// Variable to Variable mismatch (e.g., fir.heap<T> vs fir.ref<T>), or value
// to Value mismatch (e.g. i1 vs fir.logical<4>).
if (mlir::isa<fir::BaseBoxType>(mold.getType()) &&
!mlir::isa<fir::BaseBoxType>(input.getType())) {
// An entity may have have been saved without descriptor while the original
// value had a descriptor (e.g., it was not contiguous).
auto emboxed = hlfir::convertToBox(loc, builder, input, mold.getType());
assert(!emboxed.second && "temp should already be in memory");
input = hlfir::Entity{fir::getBase(emboxed.first)};
}
return hlfir::Entity{builder.createConvert(loc, mold.getType(), input)};
}
void OrderedAssignmentRewriter::pre(hlfir::RegionAssignOp regionAssignOp) {
mlir::Location loc = regionAssignOp.getLoc();
std::optional<hlfir::LoopNest> elementalLoopNest;
auto [rhsValue, oldRhsYield] =
generateYieldedEntity(regionAssignOp.getRhsRegion());
hlfir::Entity rhsEntity{rhsValue};
LhsValueAndCleanUp loweredLhs =
generateYieldedLHS(loc, regionAssignOp.getLhsRegion(), rhsEntity);
hlfir::Entity lhsEntity{loweredLhs.lhs};
if (loweredLhs.vectorSubscriptLoopNest)
rhsEntity = hlfir::getElementAt(
loc, builder, rhsEntity,
loweredLhs.vectorSubscriptLoopNest->oneBasedIndices);
if (!regionAssignOp.getUserDefinedAssignment().empty()) {
hlfir::Entity userAssignLhs{regionAssignOp.getUserAssignmentLhs()};
hlfir::Entity userAssignRhs{regionAssignOp.getUserAssignmentRhs()};
std::optional<hlfir::LoopNest> elementalLoopNest;
if (lhsEntity.isArray() && userAssignLhs.isScalar()) {
// Elemental assignment with array argument (the RHS cannot be an array
// if the LHS is not).
mlir::Value shape = hlfir::genShape(loc, builder, lhsEntity);
elementalLoopNest = hlfir::genLoopNest(loc, builder, shape);
builder.setInsertionPointToStart(elementalLoopNest->innerLoop.getBody());
lhsEntity = hlfir::getElementAt(loc, builder, lhsEntity,
elementalLoopNest->oneBasedIndices);
rhsEntity = hlfir::getElementAt(loc, builder, rhsEntity,
elementalLoopNest->oneBasedIndices);
}
llvm::SmallVector<hlfir::CleanupFunction, 2> argConversionCleanups;
lhsEntity = convertToMoldType(loc, builder, lhsEntity, userAssignLhs,
argConversionCleanups);
rhsEntity = convertToMoldType(loc, builder, rhsEntity, userAssignRhs,
argConversionCleanups);
mapper.map(userAssignLhs, lhsEntity);
mapper.map(userAssignRhs, rhsEntity);
for (auto &op :
regionAssignOp.getUserDefinedAssignment().front().without_terminator())
(void)builder.clone(op, mapper);
for (auto &cleanupConversion : argConversionCleanups)
cleanupConversion();
if (elementalLoopNest)
builder.setInsertionPointAfter(elementalLoopNest->outerLoop);
} else {
// TODO: preserve allocatable assignment aspects for forall once
// they are conveyed in hlfir.region_assign.
builder.create<hlfir::AssignOp>(loc, rhsEntity, lhsEntity);
}
generateCleanupIfAny(loweredLhs.elementalCleanup);
if (loweredLhs.vectorSubscriptLoopNest)
builder.setInsertionPointAfter(
loweredLhs.vectorSubscriptLoopNest->outerLoop);
generateCleanupIfAny(oldRhsYield);
generateCleanupIfAny(loweredLhs.nonElementalCleanup);
}
void OrderedAssignmentRewriter::generateMaskIfOp(mlir::Value cdt) {
mlir::Location loc = cdt.getLoc();
cdt = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{cdt});
cdt = builder.createConvert(loc, builder.getI1Type(), cdt);
auto ifOp = builder.create<fir::IfOp>(cdt.getLoc(), std::nullopt, cdt,
/*withElseRegion=*/false);
constructStack.push_back(ifOp.getOperation());
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
void OrderedAssignmentRewriter::pre(hlfir::WhereOp whereOp) {
mlir::Location loc = whereOp.getLoc();
if (!whereLoopNest) {
// This is the top-level WHERE. Start a loop nest iterating on the shape of
// the where mask.
if (auto maybeSaved = getIfSaved(whereOp.getMaskRegion())) {
// Use the saved value to get the shape and condition element.
hlfir::Entity savedMask{maybeSaved->first};
mlir::Value shape = hlfir::genShape(loc, builder, savedMask);
whereLoopNest = hlfir::genLoopNest(loc, builder, shape);
constructStack.push_back(whereLoopNest->outerLoop.getOperation());
builder.setInsertionPointToStart(whereLoopNest->innerLoop.getBody());
mlir::Value cdt = hlfir::getElementAt(loc, builder, savedMask,
whereLoopNest->oneBasedIndices);
generateMaskIfOp(cdt);
if (maybeSaved->second) {
// If this is the same run as the one that saved the value, the clean-up
// was left-over to be done now.
auto insertionPoint = builder.saveInsertionPoint();
builder.setInsertionPointAfter(whereLoopNest->outerLoop);
generateCleanupIfAny(maybeSaved->second);
builder.restoreInsertionPoint(insertionPoint);
}
return;
}
// The mask was not evaluated yet or can be safely re-evaluated.
MaskedArrayExpr mask(loc, whereOp.getMaskRegion());
mask.generateNoneElementalPart(builder, mapper);
mlir::Value shape = mask.generateShape(builder, mapper);
whereLoopNest = hlfir::genLoopNest(loc, builder, shape);
constructStack.push_back(whereLoopNest->outerLoop.getOperation());
builder.setInsertionPointToStart(whereLoopNest->innerLoop.getBody());
mlir::Value cdt = generateMaskedEntity(mask);
generateMaskIfOp(cdt);
return;
}
// Where Loops have been already created by a parent WHERE.
// Generate a fir.if with the value of the current element of the mask
// inside the loops. The case where the mask was saved is handled in the
// generateYieldedScalarValue call.
mlir::Value cdt = generateYieldedScalarValue(whereOp.getMaskRegion());
generateMaskIfOp(cdt);
}
void OrderedAssignmentRewriter::post(hlfir::WhereOp whereOp) {
assert(!constructStack.empty() && "must contain a fir.if");
builder.setInsertionPointAfter(constructStack.pop_back_val());
// If all where/elsewhere fir.if have been popped, this is the outer whereOp,
// and the where loop must be exited.
assert(!constructStack.empty() && "must contain a fir.do_loop or fir.if");
if (mlir::isa<fir::DoLoopOp>(constructStack.back())) {
builder.setInsertionPointAfter(constructStack.pop_back_val());
whereLoopNest.reset();
}
}
void OrderedAssignmentRewriter::enterElsewhere(hlfir::ElseWhereOp elseWhereOp) {
// Create an "else" region for the current where/elsewhere fir.if.
auto ifOp = mlir::dyn_cast<fir::IfOp>(constructStack.back());
assert(ifOp && "must be an if");
if (ifOp.getElseRegion().empty()) {
mlir::Location loc = elseWhereOp.getLoc();
builder.createBlock(&ifOp.getElseRegion());
auto end = builder.create<fir::ResultOp>(loc);
builder.setInsertionPoint(end);
} else {
builder.setInsertionPoint(&ifOp.getElseRegion().back().back());
}
}
void OrderedAssignmentRewriter::pre(hlfir::ElseWhereOp elseWhereOp) {
enterElsewhere(elseWhereOp);
if (elseWhereOp.getMaskRegion().empty())
return;
// Create new nested fir.if with elsewhere mask if any.
mlir::Value cdt = generateYieldedScalarValue(elseWhereOp.getMaskRegion());
generateMaskIfOp(cdt);
}
void OrderedAssignmentRewriter::post(hlfir::ElseWhereOp elseWhereOp) {
// Exit ifOp that was created for the elseWhereOp mask, if any.
if (elseWhereOp.getMaskRegion().empty())
return;
assert(!constructStack.empty() && "must contain a fir.if");
builder.setInsertionPointAfter(constructStack.pop_back_val());
}
/// Is this value a Forall index?
/// Forall index are block arguments of hlfir.forall body, or the result
/// of hlfir.forall_index.
static bool isForallIndex(mlir::Value value) {
if (auto blockArg = mlir::dyn_cast<mlir::BlockArgument>(value)) {
if (mlir::Block *block = blockArg.getOwner())
return block->isEntryBlock() &&
mlir::isa_and_nonnull<hlfir::ForallOp>(block->getParentOp());
return false;
}
return value.getDefiningOp<hlfir::ForallIndexOp>();
}
static OrderedAssignmentRewriter::ValueAndCleanUp
castIfNeeded(mlir::Location loc, fir::FirOpBuilder &builder,
OrderedAssignmentRewriter::ValueAndCleanUp valueAndCleanUp,
std::optional<mlir::Type> castToType) {
if (!castToType.has_value())
return valueAndCleanUp;
mlir::Value cast =
builder.createConvert(loc, *castToType, valueAndCleanUp.first);
return {cast, valueAndCleanUp.second};
}
std::optional<OrderedAssignmentRewriter::ValueAndCleanUp>
OrderedAssignmentRewriter::getIfSaved(mlir::Region ®ion) {
mlir::Location loc = region.getParentOp()->getLoc();
// If the region was saved in the same run, use the value that was evaluated
// instead of fetching the temp, and do clean-up, if any, that were delayed.
// This is done to avoid requiring the temporary stack to have different
// fetching and storing counters, and also because it produces slightly better
// code.
if (auto savedInSameRun = savedInCurrentRunBeforeUse.find(®ion);
savedInSameRun != savedInCurrentRunBeforeUse.end())
return savedInSameRun->second;
// If the region was saved in a previous run, fetch the saved value.
if (auto temp = savedEntities.find(®ion); temp != savedEntities.end()) {
doBeforeLoopNest([&]() { temp->second.resetFetchPosition(loc, builder); });
return ValueAndCleanUp{temp->second.fetch(loc, builder), std::nullopt};
}
return std::nullopt;
}
OrderedAssignmentRewriter::ValueAndCleanUp
OrderedAssignmentRewriter::generateYieldedEntity(
mlir::Region ®ion, std::optional<mlir::Type> castToType) {
mlir::Location loc = region.getParentOp()->getLoc();
if (auto maybeValueAndCleanUp = getIfSaved(region))
return castIfNeeded(loc, builder, *maybeValueAndCleanUp, castToType);
// Otherwise, evaluate the region now.
// Masked expression must not evaluate the elemental parts that are masked,
// they have custom code generation.
if (whereLoopNest.has_value()) {
mlir::Value maskedValue = generateMaskedEntity(loc, region);
return castIfNeeded(loc, builder, {maskedValue, std::nullopt}, castToType);
}
assert(region.hasOneBlock() && "region must contain one block");
auto oldYield = mlir::dyn_cast_or_null<hlfir::YieldOp>(
region.back().getOperations().back());
assert(oldYield && "region computing entities must end with a YieldOp");
mlir::Block::OpListType &ops = region.back().getOperations();
// Inside Forall, scalars that do not depend on forall indices can be hoisted
// here because their evaluation is required to only call pure procedures, and
// if they depend on a variable previously assigned to in a forall assignment,
// this assignment must have been scheduled in a previous run. Hoisting of
// scalars is done here to help creating simple temporary storage if needed.
// Inner forall bounds can often be hoisted, and this allows computing the
// total number of iterations to create temporary storages.
bool hoistComputation = false;
if (fir::isa_trivial(oldYield.getEntity().getType()) &&
!constructStack.empty()) {
hoistComputation = true;
for (mlir::Operation &op : ops)
if (llvm::any_of(op.getOperands(), [](mlir::Value value) {
return isForallIndex(value);
})) {
hoistComputation = false;
break;
}
}
auto insertionPoint = builder.saveInsertionPoint();
if (hoistComputation)
builder.setInsertionPoint(constructStack[0]);
// Clone all operations except the final hlfir.yield.
assert(!ops.empty() && "yield block cannot be empty");
auto end = ops.end();
for (auto opIt = ops.begin(); std::next(opIt) != end; ++opIt)
(void)builder.clone(*opIt, mapper);
// Get the value for the yielded entity, it may be the result of an operation
// that was cloned, or it may be the same as the previous value if the yield
// operand was created before the ordered assignment tree.
mlir::Value newEntity = mapper.lookupOrDefault(oldYield.getEntity());
if (castToType.has_value())
newEntity =
builder.createConvert(newEntity.getLoc(), *castToType, newEntity);
if (hoistComputation) {
// Hoisted trivial scalars clean-up can be done right away, the value is
// in registers.
generateCleanupIfAny(oldYield);
builder.restoreInsertionPoint(insertionPoint);
return {newEntity, std::nullopt};
}
if (oldYield.getCleanup().empty())
return {newEntity, std::nullopt};
return {newEntity, oldYield};
}
mlir::Value OrderedAssignmentRewriter::generateYieldedScalarValue(
mlir::Region ®ion, std::optional<mlir::Type> castToType) {
mlir::Location loc = region.getParentOp()->getLoc();
auto [value, maybeYield] = generateYieldedEntity(region, castToType);
value = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{value});
assert(fir::isa_trivial(value.getType()) && "not a trivial scalar value");
generateCleanupIfAny(maybeYield);
return value;
}
OrderedAssignmentRewriter::LhsValueAndCleanUp
OrderedAssignmentRewriter::generateYieldedLHS(
mlir::Location loc, mlir::Region &lhsRegion,
std::optional<hlfir::Entity> loweredRhs) {
LhsValueAndCleanUp loweredLhs;
hlfir::ElementalAddrOp elementalAddrLhs =
mlir::dyn_cast<hlfir::ElementalAddrOp>(lhsRegion.back().back());
if (auto temp = savedEntities.find(&lhsRegion); temp != savedEntities.end()) {
// The LHS address was computed and saved in a previous run. Fetch it.
doBeforeLoopNest([&]() { temp->second.resetFetchPosition(loc, builder); });
if (elementalAddrLhs && !whereLoopNest) {
// Vector subscripted designator address are saved element by element.
// If no "elemental" loops have been created yet, the shape of the
// RHS, if it is an array can be used, or the shape of the vector
// subscripted designator must be retrieved to generate the "elemental"
// loop nest.
if (loweredRhs && loweredRhs->isArray()) {
// The RHS shape can be used to create the elemental loops and avoid
// saving the LHS shape.
loweredLhs.vectorSubscriptShape =
hlfir::genShape(loc, builder, *loweredRhs);
} else {
// If the shape cannot be retrieved from the RHS, it must have been
// saved. Get it from the temporary.
auto &vectorTmp =
temp->second.cast<fir::factory::AnyVectorSubscriptStack>();
loweredLhs.vectorSubscriptShape = vectorTmp.fetchShape(loc, builder);
}
loweredLhs.vectorSubscriptLoopNest = hlfir::genLoopNest(
loc, builder, loweredLhs.vectorSubscriptShape.value());
builder.setInsertionPointToStart(
loweredLhs.vectorSubscriptLoopNest->innerLoop.getBody());
}
loweredLhs.lhs = temp->second.fetch(loc, builder);
return loweredLhs;
}
// The LHS has not yet been evaluated and saved. Evaluate it now.
if (elementalAddrLhs && !whereLoopNest) {
// This is a vector subscripted entity. The address of elements must
// be returned. If no "elemental" loops have been created for a WHERE,
// create them now based on the vector subscripted designator shape.
for (auto &op : lhsRegion.front().without_terminator())
(void)builder.clone(op, mapper);
loweredLhs.vectorSubscriptShape =
mapper.lookupOrDefault(elementalAddrLhs.getShape());
loweredLhs.vectorSubscriptLoopNest =
hlfir::genLoopNest(loc, builder, *loweredLhs.vectorSubscriptShape,
!elementalAddrLhs.isOrdered());
builder.setInsertionPointToStart(
loweredLhs.vectorSubscriptLoopNest->innerLoop.getBody());
mapper.map(elementalAddrLhs.getIndices(),
loweredLhs.vectorSubscriptLoopNest->oneBasedIndices);
for (auto &op : elementalAddrLhs.getBody().front().without_terminator())
(void)builder.clone(op, mapper);
loweredLhs.elementalCleanup = elementalAddrLhs.getYieldOp();
loweredLhs.lhs =
mapper.lookupOrDefault(loweredLhs.elementalCleanup->getEntity());
} else {
// This is a designator without vector subscripts. Generate it as
// it is done for other entities.
auto [lhs, yield] = generateYieldedEntity(lhsRegion);
loweredLhs.lhs = lhs;
if (yield && !yield->getCleanup().empty())
loweredLhs.nonElementalCleanup = &yield->getCleanup();
}
return loweredLhs;
}
mlir::Value
OrderedAssignmentRewriter::generateMaskedEntity(MaskedArrayExpr &maskedExpr) {
assert(whereLoopNest.has_value() && "must be inside WHERE loop nest");
auto insertionPoint = builder.saveInsertionPoint();
if (!maskedExpr.noneElementalPartWasGenerated) {
// Generate none elemental part before the where loops (but inside the
// current forall loops if any).
builder.setInsertionPoint(whereLoopNest->outerLoop);
maskedExpr.generateNoneElementalPart(builder, mapper);
}
// Generate the none elemental part cleanup after the where loops.
builder.setInsertionPointAfter(whereLoopNest->outerLoop);
maskedExpr.generateNoneElementalCleanupIfAny(builder, mapper);
// Generate the value of the current element for the masked expression
// at the current insertion point (inside the where loops, and any fir.if
// generated for previous masks).
builder.restoreInsertionPoint(insertionPoint);
return maskedExpr.generateElementalParts(
builder, whereLoopNest->oneBasedIndices, mapper);
}
void OrderedAssignmentRewriter::generateCleanupIfAny(
std::optional<hlfir::YieldOp> maybeYield) {
if (maybeYield.has_value())
generateCleanupIfAny(&maybeYield->getCleanup());
}
void OrderedAssignmentRewriter::generateCleanupIfAny(
mlir::Region *cleanupRegion) {
if (cleanupRegion && !cleanupRegion->empty()) {
assert(cleanupRegion->hasOneBlock() && "region must contain one block");
for (auto &op : cleanupRegion->back().without_terminator())
builder.clone(op, mapper);
}
}
bool OrderedAssignmentRewriter::mustSaveRegionIn(
hlfir::OrderedAssignmentTreeOpInterface node,
llvm::SmallVectorImpl<hlfir::SaveEntity> &saveEntities) const {
for (auto &action : currentRun->actions)
if (hlfir::SaveEntity *savedEntity =
std::get_if<hlfir::SaveEntity>(&action))
if (node.getOperation() == savedEntity->yieldRegion->getParentOp())
saveEntities.push_back(*savedEntity);
return !saveEntities.empty();
}
bool OrderedAssignmentRewriter::isRequiredInCurrentRun(
hlfir::OrderedAssignmentTreeOpInterface node) const {
// hlfir.forall_index do not contain saved regions/assignments,
// but if their hlfir.forall parent was required, they are
// required (the forall indices needs to be mapped).
if (mlir::isa<hlfir::ForallIndexOp>(node))
return true;
for (auto &action : currentRun->actions)
if (hlfir::SaveEntity *savedEntity =
std::get_if<hlfir::SaveEntity>(&action)) {
// A SaveEntity action does not require evaluating the node that contains
// it, but it requires to evaluate all the parents of the nodes that
// contains it. For instance, an saving a bound in hlfir.forall B does not
// require creating the loops for B, but it requires creating the loops
// for any forall parent A of the forall B.
if (node->isProperAncestor(savedEntity->yieldRegion->getParentOp()))
return true;
} else {
auto assign = std::get<hlfir::RegionAssignOp>(action);
if (node->isAncestor(assign.getOperation()))
return true;
}
return false;
}
/// Is the apply using all the elemental indices in order?
static bool isInOrderApply(hlfir::ApplyOp apply,
hlfir::ElementalOpInterface elemental) {
mlir::Region::BlockArgListType elementalIndices = elemental.getIndices();
if (elementalIndices.size() != apply.getIndices().size())
return false;
for (auto [elementalIdx, applyIdx] :
llvm::zip(elementalIndices, apply.getIndices()))
if (elementalIdx != applyIdx)
return false;
return true;
}
/// Gather the tree of hlfir::ElementalOpInterface use-def, if any, starting
/// from \p elemental, which may be a nullptr.
static void
gatherElementalTree(hlfir::ElementalOpInterface elemental,
llvm::SmallPtrSetImpl<mlir::Operation *> &elementalOps,
bool isOutOfOrder) {
if (elemental) {
// Only inline an applied elemental that must be executed in order if the
// applying indices are in order. An hlfir::Elemental may have been created
// for a transformational like transpose, and Fortran 2018 standard
// section 10.2.3.2, point 10 imply that impure elemental sub-expression
// evaluations should not be masked if they are the arguments of
// transformational expressions.
if (isOutOfOrder && elemental.isOrdered())
return;
elementalOps.insert(elemental.getOperation());
for (mlir::Operation &op : elemental.getElementalRegion().getOps())
if (auto apply = mlir::dyn_cast<hlfir::ApplyOp>(op)) {
bool isUnorderedApply =
isOutOfOrder || !isInOrderApply(apply, elemental);
auto maybeElemental =
mlir::dyn_cast_or_null<hlfir::ElementalOpInterface>(
apply.getExpr().getDefiningOp());
gatherElementalTree(maybeElemental, elementalOps, isUnorderedApply);
}
}
}
MaskedArrayExpr::MaskedArrayExpr(mlir::Location loc, mlir::Region ®ion)
: loc{loc}, region{region} {
mlir::Operation &terminator = region.back().back();
if (auto elementalAddr =
mlir::dyn_cast<hlfir::ElementalOpInterface>(terminator)) {
// Vector subscripted designator (hlfir.elemental_addr terminator).
gatherElementalTree(elementalAddr, elementalParts, /*isOutOfOrder=*/false);
return;
}
// Try if elemental expression.
mlir::Value entity = mlir::cast<hlfir::YieldOp>(terminator).getEntity();
auto maybeElemental = mlir::dyn_cast_or_null<hlfir::ElementalOpInterface>(
entity.getDefiningOp());
gatherElementalTree(maybeElemental, elementalParts, /*isOutOfOrder=*/false);
}
void MaskedArrayExpr::generateNoneElementalPart(fir::FirOpBuilder &builder,
mlir::IRMapping &mapper) {
assert(!noneElementalPartWasGenerated &&
"none elemental parts already generated");
// Clone all operations, except the elemental and the final yield.
mlir::Block::OpListType &ops = region.back().getOperations();
assert(!ops.empty() && "yield block cannot be empty");
auto end = ops.end();
for (auto opIt = ops.begin(); std::next(opIt) != end; ++opIt)
if (!elementalParts.contains(&*opIt))
(void)builder.clone(*opIt, mapper);
noneElementalPartWasGenerated = true;
}
mlir::Value MaskedArrayExpr::generateShape(fir::FirOpBuilder &builder,
mlir::IRMapping &mapper) {
assert(noneElementalPartWasGenerated &&
"non elemental part must have been generated");
mlir::Operation &terminator = region.back().back();
// If the operation that produced the yielded entity is elemental, it was not
// cloned, but it holds a shape argument that was cloned. Return the cloned
// shape.
if (auto elementalAddrOp = mlir::dyn_cast<hlfir::ElementalAddrOp>(terminator))
return mapper.lookupOrDefault(elementalAddrOp.getShape());
mlir::Value entity = mlir::cast<hlfir::YieldOp>(terminator).getEntity();
if (auto elemental = entity.getDefiningOp<hlfir::ElementalOp>())
return mapper.lookupOrDefault(elemental.getShape());
// Otherwise, the whole entity was cloned, and the shape can be generated
// from it.
hlfir::Entity clonedEntity{mapper.lookupOrDefault(entity)};
return hlfir::genShape(loc, builder, hlfir::Entity{clonedEntity});
}
mlir::Value
MaskedArrayExpr::generateElementalParts(fir::FirOpBuilder &builder,
mlir::ValueRange oneBasedIndices,
mlir::IRMapping &mapper) {
assert(noneElementalPartWasGenerated &&
"non elemental part must have been generated");
mlir::Operation &terminator = region.back().back();
hlfir::ElementalOpInterface elemental =
mlir::dyn_cast<hlfir::ElementalAddrOp>(terminator);
if (!elemental) {
// If the terminator is not an hlfir.elemental_addr, try if the yielded
// entity was produced by an hlfir.elemental.
mlir::Value entity = mlir::cast<hlfir::YieldOp>(terminator).getEntity();
elemental = entity.getDefiningOp<hlfir::ElementalOp>();
if (!elemental) {
// The yielded entity was not produced by an elemental operation,
// get its clone in the non elemental part evaluation and address it.
hlfir::Entity clonedEntity{mapper.lookupOrDefault(entity)};
return hlfir::getElementAt(loc, builder, clonedEntity, oneBasedIndices);
}
}
auto mustRecursivelyInline =
[&](hlfir::ElementalOp appliedElemental) -> bool {
return elementalParts.contains(appliedElemental.getOperation());
};
return inlineElementalOp(loc, builder, elemental, oneBasedIndices, mapper,
mustRecursivelyInline);
}
void MaskedArrayExpr::generateNoneElementalCleanupIfAny(
fir::FirOpBuilder &builder, mlir::IRMapping &mapper) {
mlir::Operation &terminator = region.back().back();
mlir::Region *cleanupRegion = nullptr;
if (auto elementalAddr = mlir::dyn_cast<hlfir::ElementalAddrOp>(terminator)) {
cleanupRegion = &elementalAddr.getCleanup();
} else {
auto yieldOp = mlir::cast<hlfir::YieldOp>(terminator);
cleanupRegion = &yieldOp.getCleanup();
}
if (cleanupRegion->empty())
return;
for (mlir::Operation &op : cleanupRegion->front().without_terminator()) {
if (auto destroy = mlir::dyn_cast<hlfir::DestroyOp>(op))
if (elementalParts.contains(destroy.getExpr().getDefiningOp()))
continue;
(void)builder.clone(op, mapper);
}
}
static hlfir::RegionAssignOp
getAssignIfLeftHandSideRegion(mlir::Region ®ion) {
auto assign = mlir::dyn_cast<hlfir::RegionAssignOp>(region.getParentOp());
if (assign && (&assign.getLhsRegion() == ®ion))
return assign;
return nullptr;
}
bool OrderedAssignmentRewriter::currentLoopNestIterationNumberCanBeComputed(
llvm::SmallVectorImpl<fir::DoLoopOp> &loopNest) {
if (constructStack.empty())
return true;
mlir::Operation *outerLoop = constructStack[0];
mlir::Operation *currentConstruct = constructStack.back();
// Loop through the loops until the outer construct is met, and test if the
// loop operands dominate the outer construct.
while (currentConstruct) {
if (auto doLoop = mlir::dyn_cast<fir::DoLoopOp>(currentConstruct)) {
if (llvm::any_of(doLoop->getOperands(), [&](mlir::Value value) {
return !dominanceInfo.properlyDominates(value, outerLoop);
})) {
return false;
}
loopNest.push_back(doLoop);
}
if (currentConstruct == outerLoop)
currentConstruct = nullptr;
else
currentConstruct = currentConstruct->getParentOp();
}
return true;
}
static mlir::Value
computeLoopNestIterationNumber(mlir::Location loc, fir::FirOpBuilder &builder,
llvm::ArrayRef<fir::DoLoopOp> loopNest) {
mlir::Value loopExtent;
for (fir::DoLoopOp doLoop : loopNest) {
mlir::Value extent = builder.genExtentFromTriplet(
loc, doLoop.getLowerBound(), doLoop.getUpperBound(), doLoop.getStep(),
builder.getIndexType());
if (!loopExtent)
loopExtent = extent;
else
loopExtent = builder.create<mlir::arith::MulIOp>(loc, loopExtent, extent);
}
assert(loopExtent && "loopNest must not be empty");
return loopExtent;
}
/// Return a name for temporary storage that indicates in which context
/// the temporary storage was created.
static llvm::StringRef
getTempName(hlfir::OrderedAssignmentTreeOpInterface root) {
if (mlir::isa<hlfir::ForallOp>(root.getOperation()))
return ".tmp.forall";
if (mlir::isa<hlfir::WhereOp>(root.getOperation()))
return ".tmp.where";
return ".tmp.assign";
}
void OrderedAssignmentRewriter::generateSaveEntity(
hlfir::SaveEntity savedEntity, bool willUseSavedEntityInSameRun) {
mlir::Region ®ion = *savedEntity.yieldRegion;
if (hlfir::RegionAssignOp regionAssignOp =
getAssignIfLeftHandSideRegion(region)) {
// Need to save the address, not the values.
assert(!willUseSavedEntityInSameRun &&
"lhs cannot be used in the loop nest where it is saved");
return saveLeftHandSide(savedEntity, regionAssignOp);
}
mlir::Location loc = region.getParentOp()->getLoc();
// Evaluate the region inside the loop nest (if any).
auto [clonedValue, oldYield] = generateYieldedEntity(region);
hlfir::Entity entity{clonedValue};
entity = hlfir::loadTrivialScalar(loc, builder, entity);
mlir::Type entityType = entity.getType();
llvm::StringRef tempName = getTempName(root);
fir::factory::TemporaryStorage *temp = nullptr;
if (constructStack.empty()) {
// Value evaluated outside of any loops (this may be the first MASK of a
// WHERE construct, or an LHS/RHS temp of hlfir.region_assign outside of
// WHERE/FORALL).
temp = insertSavedEntity(
region, fir::factory::SimpleCopy(loc, builder, entity, tempName));
} else {
// Need to create a temporary for values computed inside loops.
// Create temporary storage outside of the loop nest given the entity
// type (and the loop context).
llvm::SmallVector<fir::DoLoopOp> loopNest;
bool loopShapeCanBePreComputed =
currentLoopNestIterationNumberCanBeComputed(loopNest);
doBeforeLoopNest([&] {
/// For simple scalars inside loops whose total iteration number can be
/// pre-computed, create a rank-1 array outside of the loops. It will be
/// assigned/fetched inside the loops like a normal Fortran array given
/// the iteration count.
if (loopShapeCanBePreComputed && fir::isa_trivial(entityType)) {
mlir::Value loopExtent =
computeLoopNestIterationNumber(loc, builder, loopNest);
auto sequenceType =
builder.getVarLenSeqTy(entityType).cast<fir::SequenceType>();
temp = insertSavedEntity(region,
fir::factory::HomogeneousScalarStack{
loc, builder, sequenceType, loopExtent,
/*lenParams=*/{}, allocateOnHeap,
/*stackThroughLoops=*/true, tempName});
} else {
// If the number of iteration is not known, or if the values at each
// iterations are values that may have different shape, type parameters
// or dynamic type, use the runtime to create and manage a stack-like
// temporary.
temp = insertSavedEntity(
region, fir::factory::AnyValueStack{loc, builder, entityType});
}
});
// Inside the loop nest (and any fir.if if there are active masks), copy
// the value to the temp and do clean-ups for the value if any.
temp->pushValue(loc, builder, entity);
}
// Delay the clean-up if the entity will be used in the same run (i.e., the
// parent construct will be visited and needs to be lowered). When possible,
// this is not done for hlfir.expr because this use would prevent the
// hlfir.expr storage from being moved when creating the temporary in
// bufferization, and that would lead to an extra copy.
if (willUseSavedEntityInSameRun &&
(!temp->canBeFetchedAfterPush() ||
!mlir::isa<hlfir::ExprType>(entity.getType()))) {
auto inserted =
savedInCurrentRunBeforeUse.try_emplace(®ion, entity, oldYield);
assert(inserted.second && "entity must have been emplaced");
(void)inserted;
} else {
if (constructStack.empty() &&
mlir::isa<hlfir::RegionAssignOp>(region.getParentOp())) {
// Here the clean-up code is inserted after the original
// RegionAssignOp, so that the assignment code happens
// before the cleanup. We do this only for standalone
// operations, because the clean-up is handled specially
// during lowering of the parent constructs if any
// (e.g. see generateNoneElementalCleanupIfAny for
// WhereOp).
auto insertionPoint = builder.saveInsertionPoint();
builder.setInsertionPointAfter(region.getParentOp());
generateCleanupIfAny(oldYield);
builder.restoreInsertionPoint(insertionPoint);
} else {
generateCleanupIfAny(oldYield);
}
}
}
static bool rhsIsArray(hlfir::RegionAssignOp regionAssignOp) {
auto yieldOp = mlir::dyn_cast<hlfir::YieldOp>(
regionAssignOp.getRhsRegion().back().back());
return yieldOp && hlfir::Entity{yieldOp.getEntity()}.isArray();
}
void OrderedAssignmentRewriter::saveLeftHandSide(
hlfir::SaveEntity savedEntity, hlfir::RegionAssignOp regionAssignOp) {
mlir::Region ®ion = *savedEntity.yieldRegion;
mlir::Location loc = region.getParentOp()->getLoc();
LhsValueAndCleanUp loweredLhs = generateYieldedLHS(loc, region);
fir::factory::TemporaryStorage *temp = nullptr;
if (loweredLhs.vectorSubscriptLoopNest)
constructStack.push_back(loweredLhs.vectorSubscriptLoopNest->outerLoop);
if (loweredLhs.vectorSubscriptLoopNest && !rhsIsArray(regionAssignOp)) {
// Vector subscripted entity for which the shape must also be saved on top
// of the element addresses (e.g. the shape may change in each forall
// iteration and is needed to create the elemental loops).
mlir::Value shape = loweredLhs.vectorSubscriptShape.value();
int rank = mlir::cast<fir::ShapeType>(shape.getType()).getRank();
const bool shapeIsInvariant =
constructStack.empty() ||
dominanceInfo.properlyDominates(shape, constructStack[0]);
doBeforeLoopNest([&] {
// Outside of any forall/where/elemental loops, create a temporary that
// will both be able to save the vector subscripted designator shape(s)
// and element addresses.
temp =
insertSavedEntity(region, fir::factory::AnyVectorSubscriptStack{
loc, builder, loweredLhs.lhs.getType(),
shapeIsInvariant, rank});
});
// Save shape before the elemental loop nest created by the vector
// subscripted LHS.
auto &vectorTmp = temp->cast<fir::factory::AnyVectorSubscriptStack>();
auto insertionPoint = builder.saveInsertionPoint();
builder.setInsertionPoint(loweredLhs.vectorSubscriptLoopNest->outerLoop);
vectorTmp.pushShape(loc, builder, shape);
builder.restoreInsertionPoint(insertionPoint);
} else {
// Otherwise, only save the LHS address.
// If the LHS address dominates the constructs, its SSA value can
// simply be tracked and there is no need to save the address in memory.
// Otherwise, the addresses are stored at each iteration in memory with
// a descriptor stack.
if (constructStack.empty() ||
dominanceInfo.properlyDominates(loweredLhs.lhs, constructStack[0]))
doBeforeLoopNest([&] {
temp = insertSavedEntity(region, fir::factory::SSARegister{});
});
else
doBeforeLoopNest([&] {
temp = insertSavedEntity(
region, fir::factory::AnyVariableStack{loc, builder,
loweredLhs.lhs.getType()});
});
}
temp->pushValue(loc, builder, loweredLhs.lhs);
generateCleanupIfAny(loweredLhs.elementalCleanup);
if (loweredLhs.vectorSubscriptLoopNest) {
constructStack.pop_back();
builder.setInsertionPointAfter(
loweredLhs.vectorSubscriptLoopNest->outerLoop);
}
}
/// Lower an ordered assignment tree to fir.do_loop and hlfir.assign given
/// a schedule.
static void lower(hlfir::OrderedAssignmentTreeOpInterface root,
mlir::PatternRewriter &rewriter, hlfir::Schedule &schedule) {
auto module = root->getParentOfType<mlir::ModuleOp>();
fir::FirOpBuilder builder(rewriter, module);
OrderedAssignmentRewriter assignmentRewriter(builder, root);
for (auto &run : schedule)
assignmentRewriter.lowerRun(run);
assignmentRewriter.cleanupSavedEntities();
}
/// Shared rewrite entry point for all the ordered assignment tree root
/// operations. It calls the scheduler and then apply the schedule.
static mlir::LogicalResult rewrite(hlfir::OrderedAssignmentTreeOpInterface root,
bool tryFusingAssignments,
mlir::PatternRewriter &rewriter) {
hlfir::Schedule schedule =
hlfir::buildEvaluationSchedule(root, tryFusingAssignments);
LLVM_DEBUG(
/// Debug option to print the scheduling debug info without doing
/// any code generation. The operations are simply erased to avoid
/// failing and calling the rewrite patterns on nested operations.
/// The only purpose of this is to help testing scheduling without
/// having to test generated code.
if (dbgScheduleOnly) {
rewriter.eraseOp(root);
return mlir::success();
});
lower(root, rewriter, schedule);
rewriter.eraseOp(root);
return mlir::success();
}
namespace {
class ForallOpConversion : public mlir::OpRewritePattern<hlfir::ForallOp> {
public:
explicit ForallOpConversion(mlir::MLIRContext *ctx, bool tryFusingAssignments)
: OpRewritePattern{ctx}, tryFusingAssignments{tryFusingAssignments} {}
mlir::LogicalResult
matchAndRewrite(hlfir::ForallOp forallOp,
mlir::PatternRewriter &rewriter) const override {
auto root = mlir::cast<hlfir::OrderedAssignmentTreeOpInterface>(
forallOp.getOperation());
if (mlir::failed(::rewrite(root, tryFusingAssignments, rewriter)))
TODO(forallOp.getLoc(), "FORALL construct or statement in HLFIR");
return mlir::success();
}
const bool tryFusingAssignments;
};
class WhereOpConversion : public mlir::OpRewritePattern<hlfir::WhereOp> {
public:
explicit WhereOpConversion(mlir::MLIRContext *ctx, bool tryFusingAssignments)
: OpRewritePattern{ctx}, tryFusingAssignments{tryFusingAssignments} {}
mlir::LogicalResult
matchAndRewrite(hlfir::WhereOp whereOp,
mlir::PatternRewriter &rewriter) const override {
auto root = mlir::cast<hlfir::OrderedAssignmentTreeOpInterface>(
whereOp.getOperation());
return ::rewrite(root, tryFusingAssignments, rewriter);
}
const bool tryFusingAssignments;
};
class RegionAssignConversion
: public mlir::OpRewritePattern<hlfir::RegionAssignOp> {
public:
explicit RegionAssignConversion(mlir::MLIRContext *ctx)
: OpRewritePattern{ctx} {}
mlir::LogicalResult
matchAndRewrite(hlfir::RegionAssignOp regionAssignOp,
mlir::PatternRewriter &rewriter) const override {
auto root = mlir::cast<hlfir::OrderedAssignmentTreeOpInterface>(
regionAssignOp.getOperation());
return ::rewrite(root, /*tryFusingAssignments=*/false, rewriter);
}
};
class LowerHLFIROrderedAssignments
: public hlfir::impl::LowerHLFIROrderedAssignmentsBase<
LowerHLFIROrderedAssignments> {
public:
void runOnOperation() override {
// Running on a ModuleOp because this pass may generate FuncOp declaration
// for runtime calls. This could be a FuncOp pass otherwise.
auto module = this->getOperation();
auto *context = &getContext();
mlir::RewritePatternSet patterns(context);
// Patterns are only defined for the OrderedAssignmentTreeOpInterface
// operations that can be the root of ordered assignments. The other
// operations will be taken care of while rewriting these trees (they
// cannot exist outside of these operations given their verifiers/traits).
patterns.insert<ForallOpConversion, WhereOpConversion>(
context, this->tryFusingAssignments.getValue());
patterns.insert<RegionAssignConversion>(context);
mlir::ConversionTarget target(*context);
target.markUnknownOpDynamicallyLegal([](mlir::Operation *op) {
return !mlir::isa<hlfir::OrderedAssignmentTreeOpInterface>(op);
});
if (mlir::failed(mlir::applyPartialConversion(module, target,
std::move(patterns)))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"failure in HLFIR ordered assignments lowering pass");
signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<mlir::Pass> hlfir::createLowerHLFIROrderedAssignmentsPass() {
return std::make_unique<LowerHLFIROrderedAssignments>();
}
|