File: OptimizedBufferization.cpp

package info (click to toggle)
llvm-toolchain-18 1%3A18.1.8-18
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,908,340 kB
  • sloc: cpp: 6,667,937; ansic: 1,440,452; asm: 883,619; python: 230,549; objc: 76,880; f90: 74,238; lisp: 35,989; pascal: 16,571; sh: 10,229; perl: 7,459; ml: 5,047; awk: 3,523; makefile: 2,987; javascript: 2,149; xml: 892; fortran: 649; cs: 573
file content (848 lines) | stat: -rw-r--r-- 34,740 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
//===- OptimizedBufferization.cpp - special cases for bufferization -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// In some special cases we can bufferize hlfir expressions in a more optimal
// way so as to avoid creating temporaries. This pass handles these. It should
// be run before the catch-all bufferization pass.
//
// This requires constant subexpression elimination to have already been run.
//===----------------------------------------------------------------------===//

#include "flang/Optimizer/Analysis/AliasAnalysis.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "flang/Optimizer/HLFIR/Passes.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/TypeSwitch.h"
#include <iterator>
#include <memory>
#include <mlir/Analysis/AliasAnalysis.h>
#include <optional>

namespace hlfir {
#define GEN_PASS_DEF_OPTIMIZEDBUFFERIZATION
#include "flang/Optimizer/HLFIR/Passes.h.inc"
} // namespace hlfir

#define DEBUG_TYPE "opt-bufferization"

namespace {

/// This transformation should match in place modification of arrays.
/// It should match code of the form
/// %array = some.operation // array has shape %shape
/// %expr = hlfir.elemental %shape : [...] {
/// bb0(%arg0: index)
///   %0 = hlfir.designate %array(%arg0)
///   [...] // no other reads or writes to %array
///   hlfir.yield_element %element
/// }
/// hlfir.assign %expr to %array
/// hlfir.destroy %expr
///
/// Or
///
/// %read_array = some.operation // shape %shape
/// %expr = hlfir.elemental %shape : [...] {
/// bb0(%arg0: index)
///   %0 = hlfir.designate %read_array(%arg0)
///   [...]
///   hlfir.yield_element %element
/// }
/// %write_array = some.operation // with shape %shape
/// [...] // operations which don't effect write_array
/// hlfir.assign %expr to %write_array
/// hlfir.destroy %expr
///
/// In these cases, it is safe to turn the elemental into a do loop and modify
/// elements of %array in place without creating an extra temporary for the
/// elemental. We must check that there are no reads from the array at indexes
/// which might conflict with the assignment or any writes. For now we will keep
/// that strict and say that all reads must be at the elemental index (it is
/// probably safe to read from higher indices if lowering to an ordered loop).
class ElementalAssignBufferization
    : public mlir::OpRewritePattern<hlfir::ElementalOp> {
private:
  struct MatchInfo {
    mlir::Value array;
    hlfir::AssignOp assign;
    hlfir::DestroyOp destroy;
  };
  /// determines if the transformation can be applied to this elemental
  static std::optional<MatchInfo> findMatch(hlfir::ElementalOp elemental);

public:
  using mlir::OpRewritePattern<hlfir::ElementalOp>::OpRewritePattern;

  mlir::LogicalResult
  matchAndRewrite(hlfir::ElementalOp elemental,
                  mlir::PatternRewriter &rewriter) const override;
};

/// recursively collect all effects between start and end (including start, not
/// including end) start must properly dominate end, start and end must be in
/// the same block. If any operations with unknown effects are found,
/// std::nullopt is returned
static std::optional<mlir::SmallVector<mlir::MemoryEffects::EffectInstance>>
getEffectsBetween(mlir::Operation *start, mlir::Operation *end) {
  mlir::SmallVector<mlir::MemoryEffects::EffectInstance> ret;
  if (start == end)
    return ret;
  assert(start->getBlock() && end->getBlock() && "TODO: block arguments");
  assert(start->getBlock() == end->getBlock());
  assert(mlir::DominanceInfo{}.properlyDominates(start, end));

  mlir::Operation *nextOp = start;
  while (nextOp && nextOp != end) {
    std::optional<mlir::SmallVector<mlir::MemoryEffects::EffectInstance>>
        effects = mlir::getEffectsRecursively(nextOp);
    if (!effects)
      return std::nullopt;
    ret.append(*effects);
    nextOp = nextOp->getNextNode();
  }
  return ret;
}

/// If effect is a read or write on val, return whether it aliases.
/// Otherwise return mlir::AliasResult::NoAlias
static mlir::AliasResult
containsReadOrWriteEffectOn(const mlir::MemoryEffects::EffectInstance &effect,
                            mlir::Value val) {
  fir::AliasAnalysis aliasAnalysis;

  if (mlir::isa<mlir::MemoryEffects::Read, mlir::MemoryEffects::Write>(
          effect.getEffect())) {
    mlir::Value accessedVal = effect.getValue();
    if (mlir::isa<fir::DebuggingResource>(effect.getResource()))
      return mlir::AliasResult::NoAlias;
    if (!accessedVal)
      return mlir::AliasResult::MayAlias;
    if (accessedVal == val)
      return mlir::AliasResult::MustAlias;

    // if the accessed value might alias val
    mlir::AliasResult res = aliasAnalysis.alias(val, accessedVal);
    if (!res.isNo())
      return res;

    // FIXME: alias analysis of fir.load
    // follow this common pattern:
    // %ref = hlfir.designate %array(%index)
    // %val = fir.load $ref
    if (auto designate = accessedVal.getDefiningOp<hlfir::DesignateOp>()) {
      if (designate.getMemref() == val)
        return mlir::AliasResult::MustAlias;

      // if the designate is into an array that might alias val
      res = aliasAnalysis.alias(val, designate.getMemref());
      if (!res.isNo())
        return res;
    }
  }
  return mlir::AliasResult::NoAlias;
}

// Returns true if the given array references represent identical
// or completely disjoint array slices. The callers may use this
// method when the alias analysis reports an alias of some kind,
// so that we can run Fortran specific analysis on the array slices
// to see if they are identical or disjoint. Note that the alias
// analysis are not able to give such an answer about the references.
static bool areIdenticalOrDisjointSlices(mlir::Value ref1, mlir::Value ref2) {
  if (ref1 == ref2)
    return true;

  auto des1 = ref1.getDefiningOp<hlfir::DesignateOp>();
  auto des2 = ref2.getDefiningOp<hlfir::DesignateOp>();
  // We only support a pair of designators right now.
  if (!des1 || !des2)
    return false;

  if (des1.getMemref() != des2.getMemref()) {
    // If the bases are different, then there is unknown overlap.
    LLVM_DEBUG(llvm::dbgs() << "No identical base for:\n"
                            << des1 << "and:\n"
                            << des2 << "\n");
    return false;
  }

  // Require all components of the designators to be the same.
  // It might be too strict, e.g. we may probably allow for
  // different type parameters.
  if (des1.getComponent() != des2.getComponent() ||
      des1.getComponentShape() != des2.getComponentShape() ||
      des1.getSubstring() != des2.getSubstring() ||
      des1.getComplexPart() != des2.getComplexPart() ||
      des1.getTypeparams() != des2.getTypeparams()) {
    LLVM_DEBUG(llvm::dbgs() << "Different designator specs for:\n"
                            << des1 << "and:\n"
                            << des2 << "\n");
    return false;
  }

  if (des1.getIsTriplet() != des2.getIsTriplet()) {
    LLVM_DEBUG(llvm::dbgs() << "Different sections for:\n"
                            << des1 << "and:\n"
                            << des2 << "\n");
    return false;
  }

  // Analyze the subscripts.
  // For example:
  //   hlfir.designate %6#0 (%c2:%c7999:%c1, %c1:%c120:%c1, %0)  shape %9
  //   hlfir.designate %6#0 (%c2:%c7999:%c1, %c1:%c120:%c1, %1)  shape %9
  //
  // If all the triplets (section speficiers) are the same, then
  // we do not care if %0 is equal to %1 - the slices are either
  // identical or completely disjoint.
  auto des1It = des1.getIndices().begin();
  auto des2It = des2.getIndices().begin();
  bool identicalTriplets = true;
  for (bool isTriplet : des1.getIsTriplet()) {
    if (isTriplet) {
      for (int i = 0; i < 3; ++i)
        if (*des1It++ != *des2It++) {
          LLVM_DEBUG(llvm::dbgs() << "Triplet mismatch for:\n"
                                  << des1 << "and:\n"
                                  << des2 << "\n");
          identicalTriplets = false;
          break;
        }
    } else {
      ++des1It;
      ++des2It;
    }
  }
  if (identicalTriplets)
    return true;

  // See if we can prove that any of the triplets do not overlap.
  // This is mostly a Polyhedron/nf performance hack that looks for
  // particular relations between the lower and upper bounds
  // of the array sections, e.g. for any positive constant C:
  //   X:Y does not overlap with (Y+C):Z
  //   X:Y does not overlap with Z:(X-C)
  auto displacedByConstant = [](mlir::Value v1, mlir::Value v2) {
    auto removeConvert = [](mlir::Value v) -> mlir::Operation * {
      auto *op = v.getDefiningOp();
      while (auto conv = mlir::dyn_cast_or_null<fir::ConvertOp>(op))
        op = conv.getValue().getDefiningOp();
      return op;
    };

    auto isPositiveConstant = [](mlir::Value v) -> bool {
      if (auto conOp =
              mlir::dyn_cast<mlir::arith::ConstantOp>(v.getDefiningOp()))
        if (auto iattr = conOp.getValue().dyn_cast<mlir::IntegerAttr>())
          return iattr.getInt() > 0;
      return false;
    };

    auto *op1 = removeConvert(v1);
    auto *op2 = removeConvert(v2);
    if (!op1 || !op2)
      return false;
    if (auto addi = mlir::dyn_cast<mlir::arith::AddIOp>(op2))
      if ((addi.getLhs().getDefiningOp() == op1 &&
           isPositiveConstant(addi.getRhs())) ||
          (addi.getRhs().getDefiningOp() == op1 &&
           isPositiveConstant(addi.getLhs())))
        return true;
    if (auto subi = mlir::dyn_cast<mlir::arith::SubIOp>(op1))
      if (subi.getLhs().getDefiningOp() == op2 &&
          isPositiveConstant(subi.getRhs()))
        return true;
    return false;
  };

  des1It = des1.getIndices().begin();
  des2It = des2.getIndices().begin();
  for (bool isTriplet : des1.getIsTriplet()) {
    if (isTriplet) {
      mlir::Value des1Lb = *des1It++;
      mlir::Value des1Ub = *des1It++;
      mlir::Value des2Lb = *des2It++;
      mlir::Value des2Ub = *des2It++;
      // Ignore strides.
      ++des1It;
      ++des2It;
      if (displacedByConstant(des1Ub, des2Lb) ||
          displacedByConstant(des2Ub, des1Lb))
        return true;
    } else {
      ++des1It;
      ++des2It;
    }
  }

  return false;
}

std::optional<ElementalAssignBufferization::MatchInfo>
ElementalAssignBufferization::findMatch(hlfir::ElementalOp elemental) {
  mlir::Operation::user_range users = elemental->getUsers();
  // the only uses of the elemental should be the assignment and the destroy
  if (std::distance(users.begin(), users.end()) != 2) {
    LLVM_DEBUG(llvm::dbgs() << "Too many uses of the elemental\n");
    return std::nullopt;
  }

  // If the ElementalOp must produce a temporary (e.g. for
  // finalization purposes), then we cannot inline it.
  if (hlfir::elementalOpMustProduceTemp(elemental)) {
    LLVM_DEBUG(llvm::dbgs() << "ElementalOp must produce a temp\n");
    return std::nullopt;
  }

  MatchInfo match;
  for (mlir::Operation *user : users)
    mlir::TypeSwitch<mlir::Operation *, void>(user)
        .Case([&](hlfir::AssignOp op) { match.assign = op; })
        .Case([&](hlfir::DestroyOp op) { match.destroy = op; });

  if (!match.assign || !match.destroy) {
    LLVM_DEBUG(llvm::dbgs() << "Couldn't find assign or destroy\n");
    return std::nullopt;
  }

  // the array is what the elemental is assigned into
  // TODO: this could be extended to also allow hlfir.expr by first bufferizing
  // the incoming expression
  match.array = match.assign.getLhs();
  mlir::Type arrayType = mlir::dyn_cast<fir::SequenceType>(
      fir::unwrapPassByRefType(match.array.getType()));
  if (!arrayType)
    return std::nullopt;

  // require that the array elements are trivial
  // TODO: this is just to make the pass easier to think about. Not an inherent
  // limitation
  mlir::Type eleTy = hlfir::getFortranElementType(arrayType);
  if (!fir::isa_trivial(eleTy))
    return std::nullopt;

  // the array must have the same shape as the elemental. CSE should have
  // deduplicated the fir.shape operations where they are provably the same
  // so we just have to check for the same ssa value
  // TODO: add more ways of getting the shape of the array
  mlir::Value arrayShape;
  if (match.array.getDefiningOp())
    arrayShape =
        mlir::TypeSwitch<mlir::Operation *, mlir::Value>(
            match.array.getDefiningOp())
            .Case([](hlfir::DesignateOp designate) {
              return designate.getShape();
            })
            .Case([](hlfir::DeclareOp declare) { return declare.getShape(); })
            .Default([](mlir::Operation *) { return mlir::Value{}; });
  if (!arrayShape) {
    LLVM_DEBUG(llvm::dbgs() << "Can't get shape of " << match.array << " at "
                            << elemental->getLoc() << "\n");
    return std::nullopt;
  }
  if (arrayShape != elemental.getShape()) {
    // f2018 10.2.1.2 (3) requires the lhs and rhs of an assignment to be
    // conformable unless the lhs is an allocatable array. In HLFIR we can
    // see this from the presence or absence of the realloc attribute on
    // hlfir.assign. If it is not a realloc assignment, we can trust that
    // the shapes do conform
    if (match.assign.getRealloc())
      return std::nullopt;
  }

  // the transformation wants to apply the elemental in a do-loop at the
  // hlfir.assign, check there are no effects which make this unsafe

  // keep track of any values written to in the elemental, as these can't be
  // read from between the elemental and the assignment
  // likewise, values read in the elemental cannot be written to between the
  // elemental and the assign
  mlir::SmallVector<mlir::Value, 1> notToBeAccessedBeforeAssign;
  // any accesses to the array between the array and the assignment means it
  // would be unsafe to move the elemental to the assignment
  notToBeAccessedBeforeAssign.push_back(match.array);

  // 1) side effects in the elemental body - it isn't sufficient to just look
  // for ordered elementals because we also cannot support out of order reads
  std::optional<mlir::SmallVector<mlir::MemoryEffects::EffectInstance>>
      effects = getEffectsBetween(&elemental.getBody()->front(),
                                  elemental.getBody()->getTerminator());
  if (!effects) {
    LLVM_DEBUG(llvm::dbgs()
               << "operation with unknown effects inside elemental\n");
    return std::nullopt;
  }
  for (const mlir::MemoryEffects::EffectInstance &effect : *effects) {
    mlir::AliasResult res = containsReadOrWriteEffectOn(effect, match.array);
    if (res.isNo()) {
      if (mlir::isa<mlir::MemoryEffects::Write, mlir::MemoryEffects::Read>(
              effect.getEffect()))
        if (effect.getValue())
          notToBeAccessedBeforeAssign.push_back(effect.getValue());

      // this is safe in the elemental
      continue;
    }

    // don't allow any aliasing writes in the elemental
    if (mlir::isa<mlir::MemoryEffects::Write>(effect.getEffect())) {
      LLVM_DEBUG(llvm::dbgs() << "write inside the elemental body\n");
      return std::nullopt;
    }

    // allow if and only if the reads are from the elemental indices, in order
    // => each iteration doesn't read values written by other iterations
    // don't allow reads from a different value which may alias: fir alias
    // analysis isn't precise enough to tell us if two aliasing arrays overlap
    // exactly or only partially. If they overlap partially, a designate at the
    // elemental indices could be accessing different elements: e.g. we could
    // designate two slices of the same array at different start indexes. These
    // two MustAlias but index 1 of one array isn't the same element as index 1
    // of the other array.
    if (!res.isPartial()) {
      if (auto designate =
              effect.getValue().getDefiningOp<hlfir::DesignateOp>()) {
        if (!areIdenticalOrDisjointSlices(match.array, designate.getMemref())) {
          LLVM_DEBUG(llvm::dbgs() << "possible read conflict: " << designate
                                  << " at " << elemental.getLoc() << "\n");
          return std::nullopt;
        }
        auto indices = designate.getIndices();
        auto elementalIndices = elemental.getIndices();
        if (indices.size() != elementalIndices.size()) {
          LLVM_DEBUG(llvm::dbgs() << "possible read conflict: " << designate
                                  << " at " << elemental.getLoc() << "\n");
          return std::nullopt;
        }
        if (std::equal(indices.begin(), indices.end(), elementalIndices.begin(),
                       elementalIndices.end()))
          continue;
      }
    }
    LLVM_DEBUG(llvm::dbgs() << "disallowed side-effect: " << effect.getValue()
                            << " for " << elemental.getLoc() << "\n");
    return std::nullopt;
  }

  // 2) look for conflicting effects between the elemental and the assignment
  effects = getEffectsBetween(elemental->getNextNode(), match.assign);
  if (!effects) {
    LLVM_DEBUG(
        llvm::dbgs()
        << "operation with unknown effects between elemental and assign\n");
    return std::nullopt;
  }
  for (const mlir::MemoryEffects::EffectInstance &effect : *effects) {
    // not safe to access anything written in the elemental as this write
    // will be moved to the assignment
    for (mlir::Value val : notToBeAccessedBeforeAssign) {
      mlir::AliasResult res = containsReadOrWriteEffectOn(effect, val);
      if (!res.isNo()) {
        LLVM_DEBUG(llvm::dbgs()
                   << "diasllowed side-effect: " << effect.getValue() << " for "
                   << elemental.getLoc() << "\n");
        return std::nullopt;
      }
    }
  }

  return match;
}

mlir::LogicalResult ElementalAssignBufferization::matchAndRewrite(
    hlfir::ElementalOp elemental, mlir::PatternRewriter &rewriter) const {
  std::optional<MatchInfo> match = findMatch(elemental);
  if (!match)
    return rewriter.notifyMatchFailure(
        elemental, "cannot prove safety of ElementalAssignBufferization");

  mlir::Location loc = elemental->getLoc();
  fir::FirOpBuilder builder(rewriter, elemental.getOperation());
  auto extents = hlfir::getIndexExtents(loc, builder, elemental.getShape());

  // create the loop at the assignment
  builder.setInsertionPoint(match->assign);

  // Generate a loop nest looping around the hlfir.elemental shape and clone
  // hlfir.elemental region inside the inner loop
  hlfir::LoopNest loopNest =
      hlfir::genLoopNest(loc, builder, extents, !elemental.isOrdered());
  builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
  auto yield = hlfir::inlineElementalOp(loc, builder, elemental,
                                        loopNest.oneBasedIndices);
  hlfir::Entity elementValue{yield.getElementValue()};
  rewriter.eraseOp(yield);

  // Assign the element value to the array element for this iteration.
  auto arrayElement = hlfir::getElementAt(
      loc, builder, hlfir::Entity{match->array}, loopNest.oneBasedIndices);
  builder.create<hlfir::AssignOp>(
      loc, elementValue, arrayElement, /*realloc=*/false,
      /*keep_lhs_length_if_realloc=*/false, match->assign.getTemporaryLhs());

  rewriter.eraseOp(match->assign);
  rewriter.eraseOp(match->destroy);
  rewriter.eraseOp(elemental);
  return mlir::success();
}

/// Expand hlfir.assign of a scalar RHS to array LHS into a loop nest
/// of element-by-element assignments:
///   hlfir.assign %cst to %0 : f32, !fir.ref<!fir.array<6x6xf32>>
/// into:
///   fir.do_loop %arg0 = %c1 to %c6 step %c1 unordered {
///     fir.do_loop %arg1 = %c1 to %c6 step %c1 unordered {
///       %1 = hlfir.designate %0 (%arg1, %arg0)  :
///       (!fir.ref<!fir.array<6x6xf32>>, index, index) -> !fir.ref<f32>
///       hlfir.assign %cst to %1 : f32, !fir.ref<f32>
///     }
///   }
class BroadcastAssignBufferization
    : public mlir::OpRewritePattern<hlfir::AssignOp> {
private:
public:
  using mlir::OpRewritePattern<hlfir::AssignOp>::OpRewritePattern;

  mlir::LogicalResult
  matchAndRewrite(hlfir::AssignOp assign,
                  mlir::PatternRewriter &rewriter) const override;
};

mlir::LogicalResult BroadcastAssignBufferization::matchAndRewrite(
    hlfir::AssignOp assign, mlir::PatternRewriter &rewriter) const {
  // Since RHS is a scalar and LHS is an array, LHS must be allocated
  // in a conforming Fortran program, and LHS cannot be reallocated
  // as a result of the assignment. So we can ignore isAllocatableAssignment
  // and do the transformation always.
  mlir::Value rhs = assign.getRhs();
  if (!fir::isa_trivial(rhs.getType()))
    return rewriter.notifyMatchFailure(
        assign, "AssignOp's RHS is not a trivial scalar");

  hlfir::Entity lhs{assign.getLhs()};
  if (!lhs.isArray())
    return rewriter.notifyMatchFailure(assign,
                                       "AssignOp's LHS is not an array");

  mlir::Type eleTy = lhs.getFortranElementType();
  if (!fir::isa_trivial(eleTy))
    return rewriter.notifyMatchFailure(
        assign, "AssignOp's LHS data type is not trivial");

  mlir::Location loc = assign->getLoc();
  fir::FirOpBuilder builder(rewriter, assign.getOperation());
  builder.setInsertionPoint(assign);
  lhs = hlfir::derefPointersAndAllocatables(loc, builder, lhs);
  mlir::Value shape = hlfir::genShape(loc, builder, lhs);
  llvm::SmallVector<mlir::Value> extents =
      hlfir::getIndexExtents(loc, builder, shape);
  hlfir::LoopNest loopNest =
      hlfir::genLoopNest(loc, builder, extents, /*isUnordered=*/true);
  builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
  auto arrayElement =
      hlfir::getElementAt(loc, builder, lhs, loopNest.oneBasedIndices);
  builder.create<hlfir::AssignOp>(loc, rhs, arrayElement);
  rewriter.eraseOp(assign);
  return mlir::success();
}

/// Expand hlfir.assign of array RHS to array LHS into a loop nest
/// of element-by-element assignments:
///   hlfir.assign %4 to %5 : !fir.ref<!fir.array<3x3xf32>>,
///                           !fir.ref<!fir.array<3x3xf32>>
/// into:
///   fir.do_loop %arg1 = %c1 to %c3 step %c1 unordered {
///     fir.do_loop %arg2 = %c1 to %c3 step %c1 unordered {
///       %6 = hlfir.designate %4 (%arg2, %arg1)  :
///           (!fir.ref<!fir.array<3x3xf32>>, index, index) -> !fir.ref<f32>
///       %7 = fir.load %6 : !fir.ref<f32>
///       %8 = hlfir.designate %5 (%arg2, %arg1)  :
///           (!fir.ref<!fir.array<3x3xf32>>, index, index) -> !fir.ref<f32>
///       hlfir.assign %7 to %8 : f32, !fir.ref<f32>
///     }
///   }
///
/// The transformation is correct only when LHS and RHS do not alias.
/// This transformation does not support runtime checking for
/// non-conforming LHS/RHS arrays' shapes currently.
class VariableAssignBufferization
    : public mlir::OpRewritePattern<hlfir::AssignOp> {
private:
public:
  using mlir::OpRewritePattern<hlfir::AssignOp>::OpRewritePattern;

  mlir::LogicalResult
  matchAndRewrite(hlfir::AssignOp assign,
                  mlir::PatternRewriter &rewriter) const override;
};

mlir::LogicalResult VariableAssignBufferization::matchAndRewrite(
    hlfir::AssignOp assign, mlir::PatternRewriter &rewriter) const {
  if (assign.isAllocatableAssignment())
    return rewriter.notifyMatchFailure(assign, "AssignOp may imply allocation");

  hlfir::Entity rhs{assign.getRhs()};
  // TODO: ExprType check is here to avoid conflicts with
  // ElementalAssignBufferization pattern. We need to combine
  // these matchers into a single one that applies to AssignOp.
  if (rhs.getType().isa<hlfir::ExprType>())
    return rewriter.notifyMatchFailure(assign, "RHS is not in memory");

  if (!rhs.isArray())
    return rewriter.notifyMatchFailure(assign,
                                       "AssignOp's RHS is not an array");

  mlir::Type rhsEleTy = rhs.getFortranElementType();
  if (!fir::isa_trivial(rhsEleTy))
    return rewriter.notifyMatchFailure(
        assign, "AssignOp's RHS data type is not trivial");

  hlfir::Entity lhs{assign.getLhs()};
  if (!lhs.isArray())
    return rewriter.notifyMatchFailure(assign,
                                       "AssignOp's LHS is not an array");

  mlir::Type lhsEleTy = lhs.getFortranElementType();
  if (!fir::isa_trivial(lhsEleTy))
    return rewriter.notifyMatchFailure(
        assign, "AssignOp's LHS data type is not trivial");

  if (lhsEleTy != rhsEleTy)
    return rewriter.notifyMatchFailure(assign,
                                       "RHS/LHS element types mismatch");

  fir::AliasAnalysis aliasAnalysis;
  mlir::AliasResult aliasRes = aliasAnalysis.alias(lhs, rhs);
  // TODO: use areIdenticalOrDisjointSlices() to check if
  // we can still do the expansion.
  if (!aliasRes.isNo()) {
    LLVM_DEBUG(llvm::dbgs() << "VariableAssignBufferization:\n"
                            << "\tLHS: " << lhs << "\n"
                            << "\tRHS: " << rhs << "\n"
                            << "\tALIAS: " << aliasRes << "\n");
    return rewriter.notifyMatchFailure(assign, "RHS/LHS may alias");
  }

  mlir::Location loc = assign->getLoc();
  fir::FirOpBuilder builder(rewriter, assign.getOperation());
  builder.setInsertionPoint(assign);
  rhs = hlfir::derefPointersAndAllocatables(loc, builder, rhs);
  lhs = hlfir::derefPointersAndAllocatables(loc, builder, lhs);
  mlir::Value shape = hlfir::genShape(loc, builder, lhs);
  llvm::SmallVector<mlir::Value> extents =
      hlfir::getIndexExtents(loc, builder, shape);
  hlfir::LoopNest loopNest =
      hlfir::genLoopNest(loc, builder, extents, /*isUnordered=*/true);
  builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
  auto rhsArrayElement =
      hlfir::getElementAt(loc, builder, rhs, loopNest.oneBasedIndices);
  rhsArrayElement = hlfir::loadTrivialScalar(loc, builder, rhsArrayElement);
  auto lhsArrayElement =
      hlfir::getElementAt(loc, builder, lhs, loopNest.oneBasedIndices);
  builder.create<hlfir::AssignOp>(loc, rhsArrayElement, lhsArrayElement);
  rewriter.eraseOp(assign);
  return mlir::success();
}

using GenBodyFn =
    std::function<mlir::Value(fir::FirOpBuilder &, mlir::Location, mlir::Value,
                              const llvm::SmallVectorImpl<mlir::Value> &)>;
static mlir::Value generateReductionLoop(fir::FirOpBuilder &builder,
                                         mlir::Location loc, mlir::Value init,
                                         mlir::Value shape, GenBodyFn genBody) {
  auto extents = hlfir::getIndexExtents(loc, builder, shape);
  mlir::Value reduction = init;
  mlir::IndexType idxTy = builder.getIndexType();
  mlir::Value oneIdx = builder.createIntegerConstant(loc, idxTy, 1);

  // Create a reduction loop nest. We use one-based indices so that they can be
  // passed to the elemental, and reverse the order so that they can be
  // generated in column-major order for better performance.
  llvm::SmallVector<mlir::Value> indices(extents.size(), mlir::Value{});
  for (unsigned i = 0; i < extents.size(); ++i) {
    auto loop = builder.create<fir::DoLoopOp>(
        loc, oneIdx, extents[extents.size() - i - 1], oneIdx, false,
        /*finalCountValue=*/false, reduction);
    reduction = loop.getRegionIterArgs()[0];
    indices[extents.size() - i - 1] = loop.getInductionVar();
    // Set insertion point to the loop body so that the next loop
    // is inserted inside the current one.
    builder.setInsertionPointToStart(loop.getBody());
  }

  // Generate the body
  reduction = genBody(builder, loc, reduction, indices);

  // Unwind the loop nest.
  for (unsigned i = 0; i < extents.size(); ++i) {
    auto result = builder.create<fir::ResultOp>(loc, reduction);
    auto loop = mlir::cast<fir::DoLoopOp>(result->getParentOp());
    reduction = loop.getResult(0);
    // Set insertion point after the loop operation that we have
    // just processed.
    builder.setInsertionPointAfter(loop.getOperation());
  }

  return reduction;
}

/// Given a reduction operation with an elemental mask, attempt to generate a
/// do-loop to perform the operation inline.
///   %e = hlfir.elemental %shape unordered
///   %r = hlfir.count %e
/// =>
///   %r = for.do_loop %arg = 1 to bound(%shape) step 1 iter_args(%arg2 = init)
///     %i = <inline elemental>
///     %c = <reduce count> %i
///     fir.result %c
template <typename Op>
class ReductionElementalConversion : public mlir::OpRewritePattern<Op> {
public:
  using mlir::OpRewritePattern<Op>::OpRewritePattern;

  mlir::LogicalResult
  matchAndRewrite(Op op, mlir::PatternRewriter &rewriter) const override {
    mlir::Location loc = op.getLoc();
    hlfir::ElementalOp elemental =
        op.getMask().template getDefiningOp<hlfir::ElementalOp>();
    if (!elemental || op.getDim())
      return rewriter.notifyMatchFailure(op, "Did not find valid elemental");

    fir::KindMapping kindMap =
        fir::getKindMapping(op->template getParentOfType<mlir::ModuleOp>());
    fir::FirOpBuilder builder{op, kindMap};

    mlir::Value init;
    GenBodyFn genBodyFn;
    if constexpr (std::is_same_v<Op, hlfir::AnyOp>) {
      init = builder.createIntegerConstant(loc, builder.getI1Type(), 0);
      genBodyFn = [elemental](fir::FirOpBuilder builder, mlir::Location loc,
                              mlir::Value reduction,
                              const llvm::SmallVectorImpl<mlir::Value> &indices)
          -> mlir::Value {
        // Inline the elemental and get the condition from it.
        auto yield = inlineElementalOp(loc, builder, elemental, indices);
        mlir::Value cond = builder.create<fir::ConvertOp>(
            loc, builder.getI1Type(), yield.getElementValue());
        yield->erase();

        // Conditionally set the reduction variable.
        return builder.create<mlir::arith::OrIOp>(loc, reduction, cond);
      };
    } else if constexpr (std::is_same_v<Op, hlfir::AllOp>) {
      init = builder.createIntegerConstant(loc, builder.getI1Type(), 1);
      genBodyFn = [elemental](fir::FirOpBuilder builder, mlir::Location loc,
                              mlir::Value reduction,
                              const llvm::SmallVectorImpl<mlir::Value> &indices)
          -> mlir::Value {
        // Inline the elemental and get the condition from it.
        auto yield = inlineElementalOp(loc, builder, elemental, indices);
        mlir::Value cond = builder.create<fir::ConvertOp>(
            loc, builder.getI1Type(), yield.getElementValue());
        yield->erase();

        // Conditionally set the reduction variable.
        return builder.create<mlir::arith::AndIOp>(loc, reduction, cond);
      };
    } else if constexpr (std::is_same_v<Op, hlfir::CountOp>) {
      init = builder.createIntegerConstant(loc, op.getType(), 0);
      genBodyFn = [elemental](fir::FirOpBuilder builder, mlir::Location loc,
                              mlir::Value reduction,
                              const llvm::SmallVectorImpl<mlir::Value> &indices)
          -> mlir::Value {
        // Inline the elemental and get the condition from it.
        auto yield = inlineElementalOp(loc, builder, elemental, indices);
        mlir::Value cond = builder.create<fir::ConvertOp>(
            loc, builder.getI1Type(), yield.getElementValue());
        yield->erase();

        // Conditionally add one to the current value
        mlir::Value one =
            builder.createIntegerConstant(loc, reduction.getType(), 1);
        mlir::Value add1 =
            builder.create<mlir::arith::AddIOp>(loc, reduction, one);
        return builder.create<mlir::arith::SelectOp>(loc, cond, add1,
                                                     reduction);
      };
    } else {
      return mlir::failure();
    }

    mlir::Value res = generateReductionLoop(builder, loc, init,
                                            elemental.getOperand(0), genBodyFn);
    if (res.getType() != op.getType())
      res = builder.create<fir::ConvertOp>(loc, op.getType(), res);

    // Check if the op was the only user of the elemental (apart from a
    // destroy), and remove it if so.
    mlir::Operation::user_range elemUsers = elemental->getUsers();
    hlfir::DestroyOp elemDestroy;
    if (std::distance(elemUsers.begin(), elemUsers.end()) == 2) {
      elemDestroy = mlir::dyn_cast<hlfir::DestroyOp>(*elemUsers.begin());
      if (!elemDestroy)
        elemDestroy = mlir::dyn_cast<hlfir::DestroyOp>(*++elemUsers.begin());
    }

    rewriter.replaceOp(op, res);
    if (elemDestroy) {
      rewriter.eraseOp(elemDestroy);
      rewriter.eraseOp(elemental);
    }
    return mlir::success();
  }
};

class OptimizedBufferizationPass
    : public hlfir::impl::OptimizedBufferizationBase<
          OptimizedBufferizationPass> {
public:
  void runOnOperation() override {
    mlir::func::FuncOp func = getOperation();
    mlir::MLIRContext *context = &getContext();

    mlir::GreedyRewriteConfig config;
    // Prevent the pattern driver from merging blocks
    config.enableRegionSimplification = false;

    mlir::RewritePatternSet patterns(context);
    // TODO: right now the patterns are non-conflicting,
    // but it might be better to run this pass on hlfir.assign
    // operations and decide which transformation to apply
    // at one place (e.g. we may use some heuristics and
    // choose different optimization strategies).
    // This requires small code reordering in ElementalAssignBufferization.
    patterns.insert<ElementalAssignBufferization>(context);
    patterns.insert<BroadcastAssignBufferization>(context);
    patterns.insert<VariableAssignBufferization>(context);
    patterns.insert<ReductionElementalConversion<hlfir::CountOp>>(context);
    patterns.insert<ReductionElementalConversion<hlfir::AnyOp>>(context);
    patterns.insert<ReductionElementalConversion<hlfir::AllOp>>(context);

    if (mlir::failed(mlir::applyPatternsAndFoldGreedily(
            func, std::move(patterns), config))) {
      mlir::emitError(func.getLoc(),
                      "failure in HLFIR optimized bufferization");
      signalPassFailure();
    }
  }
};
} // namespace

std::unique_ptr<mlir::Pass> hlfir::createOptimizedBufferizationPass() {
  return std::make_unique<OptimizedBufferizationPass>();
}