1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
|
//===- OptimizedBufferization.cpp - special cases for bufferization -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// In some special cases we can bufferize hlfir expressions in a more optimal
// way so as to avoid creating temporaries. This pass handles these. It should
// be run before the catch-all bufferization pass.
//
// This requires constant subexpression elimination to have already been run.
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Analysis/AliasAnalysis.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "flang/Optimizer/HLFIR/Passes.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/TypeSwitch.h"
#include <iterator>
#include <memory>
#include <mlir/Analysis/AliasAnalysis.h>
#include <optional>
namespace hlfir {
#define GEN_PASS_DEF_OPTIMIZEDBUFFERIZATION
#include "flang/Optimizer/HLFIR/Passes.h.inc"
} // namespace hlfir
#define DEBUG_TYPE "opt-bufferization"
namespace {
/// This transformation should match in place modification of arrays.
/// It should match code of the form
/// %array = some.operation // array has shape %shape
/// %expr = hlfir.elemental %shape : [...] {
/// bb0(%arg0: index)
/// %0 = hlfir.designate %array(%arg0)
/// [...] // no other reads or writes to %array
/// hlfir.yield_element %element
/// }
/// hlfir.assign %expr to %array
/// hlfir.destroy %expr
///
/// Or
///
/// %read_array = some.operation // shape %shape
/// %expr = hlfir.elemental %shape : [...] {
/// bb0(%arg0: index)
/// %0 = hlfir.designate %read_array(%arg0)
/// [...]
/// hlfir.yield_element %element
/// }
/// %write_array = some.operation // with shape %shape
/// [...] // operations which don't effect write_array
/// hlfir.assign %expr to %write_array
/// hlfir.destroy %expr
///
/// In these cases, it is safe to turn the elemental into a do loop and modify
/// elements of %array in place without creating an extra temporary for the
/// elemental. We must check that there are no reads from the array at indexes
/// which might conflict with the assignment or any writes. For now we will keep
/// that strict and say that all reads must be at the elemental index (it is
/// probably safe to read from higher indices if lowering to an ordered loop).
class ElementalAssignBufferization
: public mlir::OpRewritePattern<hlfir::ElementalOp> {
private:
struct MatchInfo {
mlir::Value array;
hlfir::AssignOp assign;
hlfir::DestroyOp destroy;
};
/// determines if the transformation can be applied to this elemental
static std::optional<MatchInfo> findMatch(hlfir::ElementalOp elemental);
public:
using mlir::OpRewritePattern<hlfir::ElementalOp>::OpRewritePattern;
mlir::LogicalResult
matchAndRewrite(hlfir::ElementalOp elemental,
mlir::PatternRewriter &rewriter) const override;
};
/// recursively collect all effects between start and end (including start, not
/// including end) start must properly dominate end, start and end must be in
/// the same block. If any operations with unknown effects are found,
/// std::nullopt is returned
static std::optional<mlir::SmallVector<mlir::MemoryEffects::EffectInstance>>
getEffectsBetween(mlir::Operation *start, mlir::Operation *end) {
mlir::SmallVector<mlir::MemoryEffects::EffectInstance> ret;
if (start == end)
return ret;
assert(start->getBlock() && end->getBlock() && "TODO: block arguments");
assert(start->getBlock() == end->getBlock());
assert(mlir::DominanceInfo{}.properlyDominates(start, end));
mlir::Operation *nextOp = start;
while (nextOp && nextOp != end) {
std::optional<mlir::SmallVector<mlir::MemoryEffects::EffectInstance>>
effects = mlir::getEffectsRecursively(nextOp);
if (!effects)
return std::nullopt;
ret.append(*effects);
nextOp = nextOp->getNextNode();
}
return ret;
}
/// If effect is a read or write on val, return whether it aliases.
/// Otherwise return mlir::AliasResult::NoAlias
static mlir::AliasResult
containsReadOrWriteEffectOn(const mlir::MemoryEffects::EffectInstance &effect,
mlir::Value val) {
fir::AliasAnalysis aliasAnalysis;
if (mlir::isa<mlir::MemoryEffects::Read, mlir::MemoryEffects::Write>(
effect.getEffect())) {
mlir::Value accessedVal = effect.getValue();
if (mlir::isa<fir::DebuggingResource>(effect.getResource()))
return mlir::AliasResult::NoAlias;
if (!accessedVal)
return mlir::AliasResult::MayAlias;
if (accessedVal == val)
return mlir::AliasResult::MustAlias;
// if the accessed value might alias val
mlir::AliasResult res = aliasAnalysis.alias(val, accessedVal);
if (!res.isNo())
return res;
// FIXME: alias analysis of fir.load
// follow this common pattern:
// %ref = hlfir.designate %array(%index)
// %val = fir.load $ref
if (auto designate = accessedVal.getDefiningOp<hlfir::DesignateOp>()) {
if (designate.getMemref() == val)
return mlir::AliasResult::MustAlias;
// if the designate is into an array that might alias val
res = aliasAnalysis.alias(val, designate.getMemref());
if (!res.isNo())
return res;
}
}
return mlir::AliasResult::NoAlias;
}
// Returns true if the given array references represent identical
// or completely disjoint array slices. The callers may use this
// method when the alias analysis reports an alias of some kind,
// so that we can run Fortran specific analysis on the array slices
// to see if they are identical or disjoint. Note that the alias
// analysis are not able to give such an answer about the references.
static bool areIdenticalOrDisjointSlices(mlir::Value ref1, mlir::Value ref2) {
if (ref1 == ref2)
return true;
auto des1 = ref1.getDefiningOp<hlfir::DesignateOp>();
auto des2 = ref2.getDefiningOp<hlfir::DesignateOp>();
// We only support a pair of designators right now.
if (!des1 || !des2)
return false;
if (des1.getMemref() != des2.getMemref()) {
// If the bases are different, then there is unknown overlap.
LLVM_DEBUG(llvm::dbgs() << "No identical base for:\n"
<< des1 << "and:\n"
<< des2 << "\n");
return false;
}
// Require all components of the designators to be the same.
// It might be too strict, e.g. we may probably allow for
// different type parameters.
if (des1.getComponent() != des2.getComponent() ||
des1.getComponentShape() != des2.getComponentShape() ||
des1.getSubstring() != des2.getSubstring() ||
des1.getComplexPart() != des2.getComplexPart() ||
des1.getTypeparams() != des2.getTypeparams()) {
LLVM_DEBUG(llvm::dbgs() << "Different designator specs for:\n"
<< des1 << "and:\n"
<< des2 << "\n");
return false;
}
if (des1.getIsTriplet() != des2.getIsTriplet()) {
LLVM_DEBUG(llvm::dbgs() << "Different sections for:\n"
<< des1 << "and:\n"
<< des2 << "\n");
return false;
}
// Analyze the subscripts.
// For example:
// hlfir.designate %6#0 (%c2:%c7999:%c1, %c1:%c120:%c1, %0) shape %9
// hlfir.designate %6#0 (%c2:%c7999:%c1, %c1:%c120:%c1, %1) shape %9
//
// If all the triplets (section speficiers) are the same, then
// we do not care if %0 is equal to %1 - the slices are either
// identical or completely disjoint.
auto des1It = des1.getIndices().begin();
auto des2It = des2.getIndices().begin();
bool identicalTriplets = true;
for (bool isTriplet : des1.getIsTriplet()) {
if (isTriplet) {
for (int i = 0; i < 3; ++i)
if (*des1It++ != *des2It++) {
LLVM_DEBUG(llvm::dbgs() << "Triplet mismatch for:\n"
<< des1 << "and:\n"
<< des2 << "\n");
identicalTriplets = false;
break;
}
} else {
++des1It;
++des2It;
}
}
if (identicalTriplets)
return true;
// See if we can prove that any of the triplets do not overlap.
// This is mostly a Polyhedron/nf performance hack that looks for
// particular relations between the lower and upper bounds
// of the array sections, e.g. for any positive constant C:
// X:Y does not overlap with (Y+C):Z
// X:Y does not overlap with Z:(X-C)
auto displacedByConstant = [](mlir::Value v1, mlir::Value v2) {
auto removeConvert = [](mlir::Value v) -> mlir::Operation * {
auto *op = v.getDefiningOp();
while (auto conv = mlir::dyn_cast_or_null<fir::ConvertOp>(op))
op = conv.getValue().getDefiningOp();
return op;
};
auto isPositiveConstant = [](mlir::Value v) -> bool {
if (auto conOp =
mlir::dyn_cast<mlir::arith::ConstantOp>(v.getDefiningOp()))
if (auto iattr = conOp.getValue().dyn_cast<mlir::IntegerAttr>())
return iattr.getInt() > 0;
return false;
};
auto *op1 = removeConvert(v1);
auto *op2 = removeConvert(v2);
if (!op1 || !op2)
return false;
if (auto addi = mlir::dyn_cast<mlir::arith::AddIOp>(op2))
if ((addi.getLhs().getDefiningOp() == op1 &&
isPositiveConstant(addi.getRhs())) ||
(addi.getRhs().getDefiningOp() == op1 &&
isPositiveConstant(addi.getLhs())))
return true;
if (auto subi = mlir::dyn_cast<mlir::arith::SubIOp>(op1))
if (subi.getLhs().getDefiningOp() == op2 &&
isPositiveConstant(subi.getRhs()))
return true;
return false;
};
des1It = des1.getIndices().begin();
des2It = des2.getIndices().begin();
for (bool isTriplet : des1.getIsTriplet()) {
if (isTriplet) {
mlir::Value des1Lb = *des1It++;
mlir::Value des1Ub = *des1It++;
mlir::Value des2Lb = *des2It++;
mlir::Value des2Ub = *des2It++;
// Ignore strides.
++des1It;
++des2It;
if (displacedByConstant(des1Ub, des2Lb) ||
displacedByConstant(des2Ub, des1Lb))
return true;
} else {
++des1It;
++des2It;
}
}
return false;
}
std::optional<ElementalAssignBufferization::MatchInfo>
ElementalAssignBufferization::findMatch(hlfir::ElementalOp elemental) {
mlir::Operation::user_range users = elemental->getUsers();
// the only uses of the elemental should be the assignment and the destroy
if (std::distance(users.begin(), users.end()) != 2) {
LLVM_DEBUG(llvm::dbgs() << "Too many uses of the elemental\n");
return std::nullopt;
}
// If the ElementalOp must produce a temporary (e.g. for
// finalization purposes), then we cannot inline it.
if (hlfir::elementalOpMustProduceTemp(elemental)) {
LLVM_DEBUG(llvm::dbgs() << "ElementalOp must produce a temp\n");
return std::nullopt;
}
MatchInfo match;
for (mlir::Operation *user : users)
mlir::TypeSwitch<mlir::Operation *, void>(user)
.Case([&](hlfir::AssignOp op) { match.assign = op; })
.Case([&](hlfir::DestroyOp op) { match.destroy = op; });
if (!match.assign || !match.destroy) {
LLVM_DEBUG(llvm::dbgs() << "Couldn't find assign or destroy\n");
return std::nullopt;
}
// the array is what the elemental is assigned into
// TODO: this could be extended to also allow hlfir.expr by first bufferizing
// the incoming expression
match.array = match.assign.getLhs();
mlir::Type arrayType = mlir::dyn_cast<fir::SequenceType>(
fir::unwrapPassByRefType(match.array.getType()));
if (!arrayType)
return std::nullopt;
// require that the array elements are trivial
// TODO: this is just to make the pass easier to think about. Not an inherent
// limitation
mlir::Type eleTy = hlfir::getFortranElementType(arrayType);
if (!fir::isa_trivial(eleTy))
return std::nullopt;
// the array must have the same shape as the elemental. CSE should have
// deduplicated the fir.shape operations where they are provably the same
// so we just have to check for the same ssa value
// TODO: add more ways of getting the shape of the array
mlir::Value arrayShape;
if (match.array.getDefiningOp())
arrayShape =
mlir::TypeSwitch<mlir::Operation *, mlir::Value>(
match.array.getDefiningOp())
.Case([](hlfir::DesignateOp designate) {
return designate.getShape();
})
.Case([](hlfir::DeclareOp declare) { return declare.getShape(); })
.Default([](mlir::Operation *) { return mlir::Value{}; });
if (!arrayShape) {
LLVM_DEBUG(llvm::dbgs() << "Can't get shape of " << match.array << " at "
<< elemental->getLoc() << "\n");
return std::nullopt;
}
if (arrayShape != elemental.getShape()) {
// f2018 10.2.1.2 (3) requires the lhs and rhs of an assignment to be
// conformable unless the lhs is an allocatable array. In HLFIR we can
// see this from the presence or absence of the realloc attribute on
// hlfir.assign. If it is not a realloc assignment, we can trust that
// the shapes do conform
if (match.assign.getRealloc())
return std::nullopt;
}
// the transformation wants to apply the elemental in a do-loop at the
// hlfir.assign, check there are no effects which make this unsafe
// keep track of any values written to in the elemental, as these can't be
// read from between the elemental and the assignment
// likewise, values read in the elemental cannot be written to between the
// elemental and the assign
mlir::SmallVector<mlir::Value, 1> notToBeAccessedBeforeAssign;
// any accesses to the array between the array and the assignment means it
// would be unsafe to move the elemental to the assignment
notToBeAccessedBeforeAssign.push_back(match.array);
// 1) side effects in the elemental body - it isn't sufficient to just look
// for ordered elementals because we also cannot support out of order reads
std::optional<mlir::SmallVector<mlir::MemoryEffects::EffectInstance>>
effects = getEffectsBetween(&elemental.getBody()->front(),
elemental.getBody()->getTerminator());
if (!effects) {
LLVM_DEBUG(llvm::dbgs()
<< "operation with unknown effects inside elemental\n");
return std::nullopt;
}
for (const mlir::MemoryEffects::EffectInstance &effect : *effects) {
mlir::AliasResult res = containsReadOrWriteEffectOn(effect, match.array);
if (res.isNo()) {
if (mlir::isa<mlir::MemoryEffects::Write, mlir::MemoryEffects::Read>(
effect.getEffect()))
if (effect.getValue())
notToBeAccessedBeforeAssign.push_back(effect.getValue());
// this is safe in the elemental
continue;
}
// don't allow any aliasing writes in the elemental
if (mlir::isa<mlir::MemoryEffects::Write>(effect.getEffect())) {
LLVM_DEBUG(llvm::dbgs() << "write inside the elemental body\n");
return std::nullopt;
}
// allow if and only if the reads are from the elemental indices, in order
// => each iteration doesn't read values written by other iterations
// don't allow reads from a different value which may alias: fir alias
// analysis isn't precise enough to tell us if two aliasing arrays overlap
// exactly or only partially. If they overlap partially, a designate at the
// elemental indices could be accessing different elements: e.g. we could
// designate two slices of the same array at different start indexes. These
// two MustAlias but index 1 of one array isn't the same element as index 1
// of the other array.
if (!res.isPartial()) {
if (auto designate =
effect.getValue().getDefiningOp<hlfir::DesignateOp>()) {
if (!areIdenticalOrDisjointSlices(match.array, designate.getMemref())) {
LLVM_DEBUG(llvm::dbgs() << "possible read conflict: " << designate
<< " at " << elemental.getLoc() << "\n");
return std::nullopt;
}
auto indices = designate.getIndices();
auto elementalIndices = elemental.getIndices();
if (indices.size() != elementalIndices.size()) {
LLVM_DEBUG(llvm::dbgs() << "possible read conflict: " << designate
<< " at " << elemental.getLoc() << "\n");
return std::nullopt;
}
if (std::equal(indices.begin(), indices.end(), elementalIndices.begin(),
elementalIndices.end()))
continue;
}
}
LLVM_DEBUG(llvm::dbgs() << "disallowed side-effect: " << effect.getValue()
<< " for " << elemental.getLoc() << "\n");
return std::nullopt;
}
// 2) look for conflicting effects between the elemental and the assignment
effects = getEffectsBetween(elemental->getNextNode(), match.assign);
if (!effects) {
LLVM_DEBUG(
llvm::dbgs()
<< "operation with unknown effects between elemental and assign\n");
return std::nullopt;
}
for (const mlir::MemoryEffects::EffectInstance &effect : *effects) {
// not safe to access anything written in the elemental as this write
// will be moved to the assignment
for (mlir::Value val : notToBeAccessedBeforeAssign) {
mlir::AliasResult res = containsReadOrWriteEffectOn(effect, val);
if (!res.isNo()) {
LLVM_DEBUG(llvm::dbgs()
<< "diasllowed side-effect: " << effect.getValue() << " for "
<< elemental.getLoc() << "\n");
return std::nullopt;
}
}
}
return match;
}
mlir::LogicalResult ElementalAssignBufferization::matchAndRewrite(
hlfir::ElementalOp elemental, mlir::PatternRewriter &rewriter) const {
std::optional<MatchInfo> match = findMatch(elemental);
if (!match)
return rewriter.notifyMatchFailure(
elemental, "cannot prove safety of ElementalAssignBufferization");
mlir::Location loc = elemental->getLoc();
fir::FirOpBuilder builder(rewriter, elemental.getOperation());
auto extents = hlfir::getIndexExtents(loc, builder, elemental.getShape());
// create the loop at the assignment
builder.setInsertionPoint(match->assign);
// Generate a loop nest looping around the hlfir.elemental shape and clone
// hlfir.elemental region inside the inner loop
hlfir::LoopNest loopNest =
hlfir::genLoopNest(loc, builder, extents, !elemental.isOrdered());
builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
auto yield = hlfir::inlineElementalOp(loc, builder, elemental,
loopNest.oneBasedIndices);
hlfir::Entity elementValue{yield.getElementValue()};
rewriter.eraseOp(yield);
// Assign the element value to the array element for this iteration.
auto arrayElement = hlfir::getElementAt(
loc, builder, hlfir::Entity{match->array}, loopNest.oneBasedIndices);
builder.create<hlfir::AssignOp>(
loc, elementValue, arrayElement, /*realloc=*/false,
/*keep_lhs_length_if_realloc=*/false, match->assign.getTemporaryLhs());
rewriter.eraseOp(match->assign);
rewriter.eraseOp(match->destroy);
rewriter.eraseOp(elemental);
return mlir::success();
}
/// Expand hlfir.assign of a scalar RHS to array LHS into a loop nest
/// of element-by-element assignments:
/// hlfir.assign %cst to %0 : f32, !fir.ref<!fir.array<6x6xf32>>
/// into:
/// fir.do_loop %arg0 = %c1 to %c6 step %c1 unordered {
/// fir.do_loop %arg1 = %c1 to %c6 step %c1 unordered {
/// %1 = hlfir.designate %0 (%arg1, %arg0) :
/// (!fir.ref<!fir.array<6x6xf32>>, index, index) -> !fir.ref<f32>
/// hlfir.assign %cst to %1 : f32, !fir.ref<f32>
/// }
/// }
class BroadcastAssignBufferization
: public mlir::OpRewritePattern<hlfir::AssignOp> {
private:
public:
using mlir::OpRewritePattern<hlfir::AssignOp>::OpRewritePattern;
mlir::LogicalResult
matchAndRewrite(hlfir::AssignOp assign,
mlir::PatternRewriter &rewriter) const override;
};
mlir::LogicalResult BroadcastAssignBufferization::matchAndRewrite(
hlfir::AssignOp assign, mlir::PatternRewriter &rewriter) const {
// Since RHS is a scalar and LHS is an array, LHS must be allocated
// in a conforming Fortran program, and LHS cannot be reallocated
// as a result of the assignment. So we can ignore isAllocatableAssignment
// and do the transformation always.
mlir::Value rhs = assign.getRhs();
if (!fir::isa_trivial(rhs.getType()))
return rewriter.notifyMatchFailure(
assign, "AssignOp's RHS is not a trivial scalar");
hlfir::Entity lhs{assign.getLhs()};
if (!lhs.isArray())
return rewriter.notifyMatchFailure(assign,
"AssignOp's LHS is not an array");
mlir::Type eleTy = lhs.getFortranElementType();
if (!fir::isa_trivial(eleTy))
return rewriter.notifyMatchFailure(
assign, "AssignOp's LHS data type is not trivial");
mlir::Location loc = assign->getLoc();
fir::FirOpBuilder builder(rewriter, assign.getOperation());
builder.setInsertionPoint(assign);
lhs = hlfir::derefPointersAndAllocatables(loc, builder, lhs);
mlir::Value shape = hlfir::genShape(loc, builder, lhs);
llvm::SmallVector<mlir::Value> extents =
hlfir::getIndexExtents(loc, builder, shape);
hlfir::LoopNest loopNest =
hlfir::genLoopNest(loc, builder, extents, /*isUnordered=*/true);
builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
auto arrayElement =
hlfir::getElementAt(loc, builder, lhs, loopNest.oneBasedIndices);
builder.create<hlfir::AssignOp>(loc, rhs, arrayElement);
rewriter.eraseOp(assign);
return mlir::success();
}
/// Expand hlfir.assign of array RHS to array LHS into a loop nest
/// of element-by-element assignments:
/// hlfir.assign %4 to %5 : !fir.ref<!fir.array<3x3xf32>>,
/// !fir.ref<!fir.array<3x3xf32>>
/// into:
/// fir.do_loop %arg1 = %c1 to %c3 step %c1 unordered {
/// fir.do_loop %arg2 = %c1 to %c3 step %c1 unordered {
/// %6 = hlfir.designate %4 (%arg2, %arg1) :
/// (!fir.ref<!fir.array<3x3xf32>>, index, index) -> !fir.ref<f32>
/// %7 = fir.load %6 : !fir.ref<f32>
/// %8 = hlfir.designate %5 (%arg2, %arg1) :
/// (!fir.ref<!fir.array<3x3xf32>>, index, index) -> !fir.ref<f32>
/// hlfir.assign %7 to %8 : f32, !fir.ref<f32>
/// }
/// }
///
/// The transformation is correct only when LHS and RHS do not alias.
/// This transformation does not support runtime checking for
/// non-conforming LHS/RHS arrays' shapes currently.
class VariableAssignBufferization
: public mlir::OpRewritePattern<hlfir::AssignOp> {
private:
public:
using mlir::OpRewritePattern<hlfir::AssignOp>::OpRewritePattern;
mlir::LogicalResult
matchAndRewrite(hlfir::AssignOp assign,
mlir::PatternRewriter &rewriter) const override;
};
mlir::LogicalResult VariableAssignBufferization::matchAndRewrite(
hlfir::AssignOp assign, mlir::PatternRewriter &rewriter) const {
if (assign.isAllocatableAssignment())
return rewriter.notifyMatchFailure(assign, "AssignOp may imply allocation");
hlfir::Entity rhs{assign.getRhs()};
// TODO: ExprType check is here to avoid conflicts with
// ElementalAssignBufferization pattern. We need to combine
// these matchers into a single one that applies to AssignOp.
if (rhs.getType().isa<hlfir::ExprType>())
return rewriter.notifyMatchFailure(assign, "RHS is not in memory");
if (!rhs.isArray())
return rewriter.notifyMatchFailure(assign,
"AssignOp's RHS is not an array");
mlir::Type rhsEleTy = rhs.getFortranElementType();
if (!fir::isa_trivial(rhsEleTy))
return rewriter.notifyMatchFailure(
assign, "AssignOp's RHS data type is not trivial");
hlfir::Entity lhs{assign.getLhs()};
if (!lhs.isArray())
return rewriter.notifyMatchFailure(assign,
"AssignOp's LHS is not an array");
mlir::Type lhsEleTy = lhs.getFortranElementType();
if (!fir::isa_trivial(lhsEleTy))
return rewriter.notifyMatchFailure(
assign, "AssignOp's LHS data type is not trivial");
if (lhsEleTy != rhsEleTy)
return rewriter.notifyMatchFailure(assign,
"RHS/LHS element types mismatch");
fir::AliasAnalysis aliasAnalysis;
mlir::AliasResult aliasRes = aliasAnalysis.alias(lhs, rhs);
// TODO: use areIdenticalOrDisjointSlices() to check if
// we can still do the expansion.
if (!aliasRes.isNo()) {
LLVM_DEBUG(llvm::dbgs() << "VariableAssignBufferization:\n"
<< "\tLHS: " << lhs << "\n"
<< "\tRHS: " << rhs << "\n"
<< "\tALIAS: " << aliasRes << "\n");
return rewriter.notifyMatchFailure(assign, "RHS/LHS may alias");
}
mlir::Location loc = assign->getLoc();
fir::FirOpBuilder builder(rewriter, assign.getOperation());
builder.setInsertionPoint(assign);
rhs = hlfir::derefPointersAndAllocatables(loc, builder, rhs);
lhs = hlfir::derefPointersAndAllocatables(loc, builder, lhs);
mlir::Value shape = hlfir::genShape(loc, builder, lhs);
llvm::SmallVector<mlir::Value> extents =
hlfir::getIndexExtents(loc, builder, shape);
hlfir::LoopNest loopNest =
hlfir::genLoopNest(loc, builder, extents, /*isUnordered=*/true);
builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
auto rhsArrayElement =
hlfir::getElementAt(loc, builder, rhs, loopNest.oneBasedIndices);
rhsArrayElement = hlfir::loadTrivialScalar(loc, builder, rhsArrayElement);
auto lhsArrayElement =
hlfir::getElementAt(loc, builder, lhs, loopNest.oneBasedIndices);
builder.create<hlfir::AssignOp>(loc, rhsArrayElement, lhsArrayElement);
rewriter.eraseOp(assign);
return mlir::success();
}
using GenBodyFn =
std::function<mlir::Value(fir::FirOpBuilder &, mlir::Location, mlir::Value,
const llvm::SmallVectorImpl<mlir::Value> &)>;
static mlir::Value generateReductionLoop(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value init,
mlir::Value shape, GenBodyFn genBody) {
auto extents = hlfir::getIndexExtents(loc, builder, shape);
mlir::Value reduction = init;
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value oneIdx = builder.createIntegerConstant(loc, idxTy, 1);
// Create a reduction loop nest. We use one-based indices so that they can be
// passed to the elemental, and reverse the order so that they can be
// generated in column-major order for better performance.
llvm::SmallVector<mlir::Value> indices(extents.size(), mlir::Value{});
for (unsigned i = 0; i < extents.size(); ++i) {
auto loop = builder.create<fir::DoLoopOp>(
loc, oneIdx, extents[extents.size() - i - 1], oneIdx, false,
/*finalCountValue=*/false, reduction);
reduction = loop.getRegionIterArgs()[0];
indices[extents.size() - i - 1] = loop.getInductionVar();
// Set insertion point to the loop body so that the next loop
// is inserted inside the current one.
builder.setInsertionPointToStart(loop.getBody());
}
// Generate the body
reduction = genBody(builder, loc, reduction, indices);
// Unwind the loop nest.
for (unsigned i = 0; i < extents.size(); ++i) {
auto result = builder.create<fir::ResultOp>(loc, reduction);
auto loop = mlir::cast<fir::DoLoopOp>(result->getParentOp());
reduction = loop.getResult(0);
// Set insertion point after the loop operation that we have
// just processed.
builder.setInsertionPointAfter(loop.getOperation());
}
return reduction;
}
/// Given a reduction operation with an elemental mask, attempt to generate a
/// do-loop to perform the operation inline.
/// %e = hlfir.elemental %shape unordered
/// %r = hlfir.count %e
/// =>
/// %r = for.do_loop %arg = 1 to bound(%shape) step 1 iter_args(%arg2 = init)
/// %i = <inline elemental>
/// %c = <reduce count> %i
/// fir.result %c
template <typename Op>
class ReductionElementalConversion : public mlir::OpRewritePattern<Op> {
public:
using mlir::OpRewritePattern<Op>::OpRewritePattern;
mlir::LogicalResult
matchAndRewrite(Op op, mlir::PatternRewriter &rewriter) const override {
mlir::Location loc = op.getLoc();
hlfir::ElementalOp elemental =
op.getMask().template getDefiningOp<hlfir::ElementalOp>();
if (!elemental || op.getDim())
return rewriter.notifyMatchFailure(op, "Did not find valid elemental");
fir::KindMapping kindMap =
fir::getKindMapping(op->template getParentOfType<mlir::ModuleOp>());
fir::FirOpBuilder builder{op, kindMap};
mlir::Value init;
GenBodyFn genBodyFn;
if constexpr (std::is_same_v<Op, hlfir::AnyOp>) {
init = builder.createIntegerConstant(loc, builder.getI1Type(), 0);
genBodyFn = [elemental](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Value reduction,
const llvm::SmallVectorImpl<mlir::Value> &indices)
-> mlir::Value {
// Inline the elemental and get the condition from it.
auto yield = inlineElementalOp(loc, builder, elemental, indices);
mlir::Value cond = builder.create<fir::ConvertOp>(
loc, builder.getI1Type(), yield.getElementValue());
yield->erase();
// Conditionally set the reduction variable.
return builder.create<mlir::arith::OrIOp>(loc, reduction, cond);
};
} else if constexpr (std::is_same_v<Op, hlfir::AllOp>) {
init = builder.createIntegerConstant(loc, builder.getI1Type(), 1);
genBodyFn = [elemental](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Value reduction,
const llvm::SmallVectorImpl<mlir::Value> &indices)
-> mlir::Value {
// Inline the elemental and get the condition from it.
auto yield = inlineElementalOp(loc, builder, elemental, indices);
mlir::Value cond = builder.create<fir::ConvertOp>(
loc, builder.getI1Type(), yield.getElementValue());
yield->erase();
// Conditionally set the reduction variable.
return builder.create<mlir::arith::AndIOp>(loc, reduction, cond);
};
} else if constexpr (std::is_same_v<Op, hlfir::CountOp>) {
init = builder.createIntegerConstant(loc, op.getType(), 0);
genBodyFn = [elemental](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Value reduction,
const llvm::SmallVectorImpl<mlir::Value> &indices)
-> mlir::Value {
// Inline the elemental and get the condition from it.
auto yield = inlineElementalOp(loc, builder, elemental, indices);
mlir::Value cond = builder.create<fir::ConvertOp>(
loc, builder.getI1Type(), yield.getElementValue());
yield->erase();
// Conditionally add one to the current value
mlir::Value one =
builder.createIntegerConstant(loc, reduction.getType(), 1);
mlir::Value add1 =
builder.create<mlir::arith::AddIOp>(loc, reduction, one);
return builder.create<mlir::arith::SelectOp>(loc, cond, add1,
reduction);
};
} else {
return mlir::failure();
}
mlir::Value res = generateReductionLoop(builder, loc, init,
elemental.getOperand(0), genBodyFn);
if (res.getType() != op.getType())
res = builder.create<fir::ConvertOp>(loc, op.getType(), res);
// Check if the op was the only user of the elemental (apart from a
// destroy), and remove it if so.
mlir::Operation::user_range elemUsers = elemental->getUsers();
hlfir::DestroyOp elemDestroy;
if (std::distance(elemUsers.begin(), elemUsers.end()) == 2) {
elemDestroy = mlir::dyn_cast<hlfir::DestroyOp>(*elemUsers.begin());
if (!elemDestroy)
elemDestroy = mlir::dyn_cast<hlfir::DestroyOp>(*++elemUsers.begin());
}
rewriter.replaceOp(op, res);
if (elemDestroy) {
rewriter.eraseOp(elemDestroy);
rewriter.eraseOp(elemental);
}
return mlir::success();
}
};
class OptimizedBufferizationPass
: public hlfir::impl::OptimizedBufferizationBase<
OptimizedBufferizationPass> {
public:
void runOnOperation() override {
mlir::func::FuncOp func = getOperation();
mlir::MLIRContext *context = &getContext();
mlir::GreedyRewriteConfig config;
// Prevent the pattern driver from merging blocks
config.enableRegionSimplification = false;
mlir::RewritePatternSet patterns(context);
// TODO: right now the patterns are non-conflicting,
// but it might be better to run this pass on hlfir.assign
// operations and decide which transformation to apply
// at one place (e.g. we may use some heuristics and
// choose different optimization strategies).
// This requires small code reordering in ElementalAssignBufferization.
patterns.insert<ElementalAssignBufferization>(context);
patterns.insert<BroadcastAssignBufferization>(context);
patterns.insert<VariableAssignBufferization>(context);
patterns.insert<ReductionElementalConversion<hlfir::CountOp>>(context);
patterns.insert<ReductionElementalConversion<hlfir::AnyOp>>(context);
patterns.insert<ReductionElementalConversion<hlfir::AllOp>>(context);
if (mlir::failed(mlir::applyPatternsAndFoldGreedily(
func, std::move(patterns), config))) {
mlir::emitError(func.getLoc(),
"failure in HLFIR optimized bufferization");
signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<mlir::Pass> hlfir::createOptimizedBufferizationPass() {
return std::make_unique<OptimizedBufferizationPass>();
}
|