1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
//===- LoopVersioning.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// \file
/// This pass looks for loops iterating over assumed-shape arrays, that can
/// be optimized by "guessing" that the stride is element-sized.
///
/// This is done by creating two versions of the same loop: one which assumes
/// that the elements are contiguous (stride == size of element), and one that
/// is the original generic loop.
///
/// As a side-effect of the assumed element size stride, the array is also
/// flattened to make it a 1D array - this is because the internal array
/// structure must be either 1D or have known sizes in all dimensions - and at
/// least one of the dimensions here is already unknown.
///
/// There are two distinct benefits here:
/// 1. The loop that iterates over the elements is somewhat simplified by the
/// constant stride calculation.
/// 2. Since the compiler can understand the size of the stride, it can use
/// vector instructions, where an unknown (at compile time) stride does often
/// prevent vector operations from being used.
///
/// A known drawback is that the code-size is increased, in some cases that can
/// be quite substantial - 3-4x is quite plausible (this includes that the loop
/// gets vectorized, which in itself often more than doubles the size of the
/// code, because unless the loop size is known, there will be a modulo
/// vector-size remainder to deal with.
///
/// TODO: Do we need some size limit where loops no longer get duplicated?
// Maybe some sort of cost analysis.
/// TODO: Should some loop content - for example calls to functions and
/// subroutines inhibit the versioning of the loops. Plausibly, this
/// could be part of the cost analysis above.
//===----------------------------------------------------------------------===//
#include "flang/ISO_Fortran_binding_wrapper.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Runtime/Inquiry.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
namespace fir {
#define GEN_PASS_DEF_LOOPVERSIONING
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-loop-versioning"
namespace {
class LoopVersioningPass
: public fir::impl::LoopVersioningBase<LoopVersioningPass> {
public:
void runOnOperation() override;
};
/// @struct ArgInfo
/// A structure to hold an argument, the size of the argument and dimension
/// information.
struct ArgInfo {
mlir::Value arg;
size_t size;
unsigned rank;
fir::BoxDimsOp dims[CFI_MAX_RANK];
};
/// @struct ArgsUsageInLoop
/// A structure providing information about the function arguments
/// usage by the instructions immediately nested in a loop.
struct ArgsUsageInLoop {
/// Mapping between the memref operand of an array indexing
/// operation (e.g. fir.coordinate_of) and the argument information.
llvm::DenseMap<mlir::Value, ArgInfo> usageInfo;
/// Some array indexing operations inside a loop cannot be transformed.
/// This vector holds the memref operands of such operations.
/// The vector is used to make sure that we do not try to transform
/// any outer loop, since this will imply the operation rewrite
/// in this loop.
llvm::SetVector<mlir::Value> cannotTransform;
// Debug dump of the structure members assuming that
// the information has been collected for the given loop.
void dump(fir::DoLoopOp loop) const {
LLVM_DEBUG({
mlir::OpPrintingFlags printFlags;
printFlags.skipRegions();
llvm::dbgs() << "Arguments usage info for loop:\n";
loop.print(llvm::dbgs(), printFlags);
llvm::dbgs() << "\nUsed args:\n";
for (auto &use : usageInfo) {
mlir::Value v = use.first;
v.print(llvm::dbgs(), printFlags);
llvm::dbgs() << "\n";
}
llvm::dbgs() << "\nCannot transform args:\n";
for (mlir::Value arg : cannotTransform) {
arg.print(llvm::dbgs(), printFlags);
llvm::dbgs() << "\n";
}
llvm::dbgs() << "====\n";
});
}
// Erase usageInfo and cannotTransform entries for a set
// of given arguments.
void eraseUsage(const llvm::SetVector<mlir::Value> &args) {
for (auto &arg : args)
usageInfo.erase(arg);
cannotTransform.set_subtract(args);
}
// Erase usageInfo and cannotTransform entries for a set
// of given arguments provided in the form of usageInfo map.
void eraseUsage(const llvm::DenseMap<mlir::Value, ArgInfo> &args) {
for (auto &arg : args) {
usageInfo.erase(arg.first);
cannotTransform.remove(arg.first);
}
}
};
} // namespace
static fir::SequenceType getAsSequenceType(mlir::Value *v) {
mlir::Type argTy = fir::unwrapPassByRefType(fir::unwrapRefType(v->getType()));
return argTy.dyn_cast<fir::SequenceType>();
}
/// if a value comes from a fir.declare, follow it to the original source,
/// otherwise return the value
static mlir::Value unwrapFirDeclare(mlir::Value val) {
// fir.declare is for source code variables. We don't have declares of
// declares
if (fir::DeclareOp declare = val.getDefiningOp<fir::DeclareOp>())
return declare.getMemref();
return val;
}
/// if a value comes from a fir.rebox, follow the rebox to the original source,
/// of the value, otherwise return the value
static mlir::Value unwrapReboxOp(mlir::Value val) {
// don't support reboxes of reboxes
if (fir::ReboxOp rebox = val.getDefiningOp<fir::ReboxOp>())
val = rebox.getBox();
return val;
}
/// normalize a value (removing fir.declare and fir.rebox) so that we can
/// more conveniently spot values which came from function arguments
static mlir::Value normaliseVal(mlir::Value val) {
return unwrapFirDeclare(unwrapReboxOp(val));
}
/// some FIR operations accept a fir.shape, a fir.shift or a fir.shapeshift.
/// fir.shift and fir.shapeshift allow us to extract lower bounds
/// if lowerbounds cannot be found, return nullptr
static mlir::Value tryGetLowerBoundsFromShapeLike(mlir::Value shapeLike,
unsigned dim) {
mlir::Value lowerBound{nullptr};
if (auto shift = shapeLike.getDefiningOp<fir::ShiftOp>())
lowerBound = shift.getOrigins()[dim];
if (auto shapeShift = shapeLike.getDefiningOp<fir::ShapeShiftOp>())
lowerBound = shapeShift.getOrigins()[dim];
return lowerBound;
}
/// attempt to get the array lower bounds of dimension dim of the memref
/// argument to a fir.array_coor op
/// 0 <= dim < rank
/// May return nullptr if no lower bounds can be determined
static mlir::Value getLowerBound(fir::ArrayCoorOp coop, unsigned dim) {
// 1) try to get from the shape argument to fir.array_coor
if (mlir::Value shapeLike = coop.getShape())
if (mlir::Value lb = tryGetLowerBoundsFromShapeLike(shapeLike, dim))
return lb;
// It is important not to try to read the lower bound from the box, because
// in the FIR lowering, boxes will sometimes contain incorrect lower bound
// information
// out of ideas
return {};
}
/// gets the i'th index from array coordinate operation op
/// dim should range between 0 and rank - 1
static mlir::Value getIndex(fir::FirOpBuilder &builder, mlir::Operation *op,
unsigned dim) {
if (fir::CoordinateOp coop = mlir::dyn_cast<fir::CoordinateOp>(op))
return coop.getCoor()[dim];
fir::ArrayCoorOp coop = mlir::dyn_cast<fir::ArrayCoorOp>(op);
assert(coop &&
"operation must be either fir.coordiante_of or fir.array_coor");
// fir.coordinate_of indices start at 0: adjust these indices to match by
// subtracting the lower bound
mlir::Value index = coop.getIndices()[dim];
mlir::Value lb = getLowerBound(coop, dim);
if (!lb)
// assume a default lower bound of one
lb = builder.createIntegerConstant(coop.getLoc(), index.getType(), 1);
// index_0 = index - lb;
if (lb.getType() != index.getType())
lb = builder.createConvert(coop.getLoc(), index.getType(), lb);
return builder.create<mlir::arith::SubIOp>(coop.getLoc(), index, lb);
}
void LoopVersioningPass::runOnOperation() {
LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n");
mlir::func::FuncOp func = getOperation();
// First look for arguments with assumed shape = unknown extent in the lowest
// dimension.
LLVM_DEBUG(llvm::dbgs() << "Func-name:" << func.getSymName() << "\n");
mlir::Block::BlockArgListType args = func.getArguments();
mlir::ModuleOp module = func->getParentOfType<mlir::ModuleOp>();
fir::KindMapping kindMap = fir::getKindMapping(module);
mlir::SmallVector<ArgInfo, 4> argsOfInterest;
for (auto &arg : args) {
// Optional arguments must be checked for IsPresent before
// looking for the bounds. They are unsupported for the time being.
if (func.getArgAttrOfType<mlir::UnitAttr>(arg.getArgNumber(),
fir::getOptionalAttrName())) {
LLVM_DEBUG(llvm::dbgs() << "OPTIONAL is not supported\n");
continue;
}
if (auto seqTy = getAsSequenceType(&arg)) {
unsigned rank = seqTy.getDimension();
if (rank > 0 &&
seqTy.getShape()[0] == fir::SequenceType::getUnknownExtent()) {
size_t typeSize = 0;
mlir::Type elementType = fir::unwrapSeqOrBoxedSeqType(arg.getType());
if (elementType.isa<mlir::FloatType>() ||
elementType.isa<mlir::IntegerType>())
typeSize = elementType.getIntOrFloatBitWidth() / 8;
else if (auto cty = elementType.dyn_cast<fir::ComplexType>())
typeSize = 2 * cty.getEleType(kindMap).getIntOrFloatBitWidth() / 8;
if (typeSize)
argsOfInterest.push_back({arg, typeSize, rank, {}});
else
LLVM_DEBUG(llvm::dbgs() << "Type not supported\n");
}
}
}
if (argsOfInterest.empty()) {
LLVM_DEBUG(llvm::dbgs()
<< "No suitable arguments.\n=== End " DEBUG_TYPE " ===\n");
return;
}
// A list of all loops in the function in post-order.
mlir::SmallVector<fir::DoLoopOp> originalLoops;
// Information about the arguments usage by the instructions
// immediately nested in a loop.
llvm::DenseMap<fir::DoLoopOp, ArgsUsageInLoop> argsInLoops;
auto &domInfo = getAnalysis<mlir::DominanceInfo>();
// Traverse the loops in post-order and see
// if those arguments are used inside any loop.
func.walk([&](fir::DoLoopOp loop) {
mlir::Block &body = *loop.getBody();
auto &argsInLoop = argsInLoops[loop];
originalLoops.push_back(loop);
body.walk([&](mlir::Operation *op) {
// Support either fir.array_coor or fir.coordinate_of.
if (!mlir::isa<fir::ArrayCoorOp, fir::CoordinateOp>(op))
return;
// Process only operations immediately nested in the current loop.
if (op->getParentOfType<fir::DoLoopOp>() != loop)
return;
mlir::Value operand = op->getOperand(0);
for (auto a : argsOfInterest) {
if (a.arg == normaliseVal(operand)) {
// Use the reboxed value, not the block arg when re-creating the loop.
a.arg = operand;
// Check that the operand dominates the loop?
// If this is the case, record such operands in argsInLoop.cannot-
// Transform, so that they disable the transformation for the parent
/// loops as well.
if (!domInfo.dominates(a.arg, loop))
argsInLoop.cannotTransform.insert(a.arg);
// No support currently for sliced arrays.
// This means that we cannot transform properly
// instructions referencing a.arg in the whole loop
// nest this loop is located in.
if (auto arrayCoor = mlir::dyn_cast<fir::ArrayCoorOp>(op))
if (arrayCoor.getSlice())
argsInLoop.cannotTransform.insert(a.arg);
if (argsInLoop.cannotTransform.contains(a.arg)) {
// Remove any previously recorded usage, if any.
argsInLoop.usageInfo.erase(a.arg);
break;
}
// Record the a.arg usage, if not recorded yet.
argsInLoop.usageInfo.try_emplace(a.arg, a);
break;
}
}
});
});
// Dump loops info after initial collection.
LLVM_DEBUG({
llvm::dbgs() << "Initial usage info:\n";
for (fir::DoLoopOp loop : originalLoops) {
auto &argsInLoop = argsInLoops[loop];
argsInLoop.dump(loop);
}
});
// Clear argument usage for parent loops if an inner loop
// contains a non-transformable usage.
for (fir::DoLoopOp loop : originalLoops) {
auto &argsInLoop = argsInLoops[loop];
if (argsInLoop.cannotTransform.empty())
continue;
fir::DoLoopOp parent = loop;
while ((parent = parent->getParentOfType<fir::DoLoopOp>()))
argsInLoops[parent].eraseUsage(argsInLoop.cannotTransform);
}
// If an argument access can be optimized in a loop and
// its descendant loop, then it does not make sense to
// generate the contiguity check for the descendant loop.
// The check will be produced as part of the ancestor
// loop's transformation. So we can clear the argument
// usage for all descendant loops.
for (fir::DoLoopOp loop : originalLoops) {
auto &argsInLoop = argsInLoops[loop];
if (argsInLoop.usageInfo.empty())
continue;
loop.getBody()->walk([&](fir::DoLoopOp dloop) {
argsInLoops[dloop].eraseUsage(argsInLoop.usageInfo);
});
}
LLVM_DEBUG({
llvm::dbgs() << "Final usage info:\n";
for (fir::DoLoopOp loop : originalLoops) {
auto &argsInLoop = argsInLoops[loop];
argsInLoop.dump(loop);
}
});
// Reduce the collected information to a list of loops
// with attached arguments usage information.
// The list must hold the loops in post order, so that
// the inner loops are transformed before the outer loops.
struct OpsWithArgs {
mlir::Operation *op;
mlir::SmallVector<ArgInfo, 4> argsAndDims;
};
mlir::SmallVector<OpsWithArgs, 4> loopsOfInterest;
for (fir::DoLoopOp loop : originalLoops) {
auto &argsInLoop = argsInLoops[loop];
if (argsInLoop.usageInfo.empty())
continue;
OpsWithArgs info;
info.op = loop;
for (auto &arg : argsInLoop.usageInfo)
info.argsAndDims.push_back(arg.second);
loopsOfInterest.emplace_back(std::move(info));
}
if (loopsOfInterest.empty()) {
LLVM_DEBUG(llvm::dbgs()
<< "No loops to transform.\n=== End " DEBUG_TYPE " ===\n");
return;
}
// If we get here, there are loops to process.
fir::FirOpBuilder builder{module, std::move(kindMap)};
mlir::Location loc = builder.getUnknownLoc();
mlir::IndexType idxTy = builder.getIndexType();
LLVM_DEBUG(llvm::dbgs() << "Module Before transformation:");
LLVM_DEBUG(module->dump());
LLVM_DEBUG(llvm::dbgs() << "loopsOfInterest: " << loopsOfInterest.size()
<< "\n");
for (auto op : loopsOfInterest) {
LLVM_DEBUG(op.op->dump());
builder.setInsertionPoint(op.op);
mlir::Value allCompares = nullptr;
// Ensure all of the arrays are unit-stride.
for (auto &arg : op.argsAndDims) {
// Fetch all the dimensions of the array, except the last dimension.
// Always fetch the first dimension, however, so set ndims = 1 if
// we have one dim
unsigned ndims = arg.rank;
for (unsigned i = 0; i < ndims; i++) {
mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
arg.dims[i] = builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy,
arg.arg, dimIdx);
}
// We only care about lowest order dimension, here.
mlir::Value elemSize =
builder.createIntegerConstant(loc, idxTy, arg.size);
mlir::Value cmp = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, arg.dims[0].getResult(2),
elemSize);
if (!allCompares) {
allCompares = cmp;
} else {
allCompares =
builder.create<mlir::arith::AndIOp>(loc, cmp, allCompares);
}
}
auto ifOp =
builder.create<fir::IfOp>(loc, op.op->getResultTypes(), allCompares,
/*withElse=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
LLVM_DEBUG(llvm::dbgs() << "Creating cloned loop\n");
mlir::Operation *clonedLoop = op.op->clone();
bool changed = false;
for (auto &arg : op.argsAndDims) {
fir::SequenceType::Shape newShape;
newShape.push_back(fir::SequenceType::getUnknownExtent());
auto elementType = fir::unwrapSeqOrBoxedSeqType(arg.arg.getType());
mlir::Type arrTy = fir::SequenceType::get(newShape, elementType);
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
mlir::Type refArrTy = builder.getRefType(arrTy);
auto carg = builder.create<fir::ConvertOp>(loc, boxArrTy, arg.arg);
auto caddr = builder.create<fir::BoxAddrOp>(loc, refArrTy, carg);
auto insPt = builder.saveInsertionPoint();
// Use caddr instead of arg.
clonedLoop->walk([&](mlir::Operation *coop) {
if (!mlir::isa<fir::CoordinateOp, fir::ArrayCoorOp>(coop))
return;
// Reduce the multi-dimensioned index to a single index.
// This is required becase fir arrays do not support multiple dimensions
// with unknown dimensions at compile time.
// We then calculate the multidimensional array like this:
// arr(x, y, z) bedcomes arr(z * stride(2) + y * stride(1) + x)
// where stride is the distance between elements in the dimensions
// 0, 1 and 2 or x, y and z.
if (coop->getOperand(0) == arg.arg && coop->getOperands().size() >= 2) {
builder.setInsertionPoint(coop);
mlir::Value totalIndex;
for (unsigned i = arg.rank - 1; i > 0; i--) {
mlir::Value curIndex =
builder.createConvert(loc, idxTy, getIndex(builder, coop, i));
// Multiply by the stride of this array. Later we'll divide by the
// element size.
mlir::Value scale =
builder.createConvert(loc, idxTy, arg.dims[i].getResult(2));
curIndex =
builder.create<mlir::arith::MulIOp>(loc, scale, curIndex);
totalIndex = (totalIndex) ? builder.create<mlir::arith::AddIOp>(
loc, curIndex, totalIndex)
: curIndex;
}
// This is the lowest dimension - which doesn't need scaling
mlir::Value finalIndex =
builder.createConvert(loc, idxTy, getIndex(builder, coop, 0));
if (totalIndex) {
assert(llvm::isPowerOf2_32(arg.size) &&
"Expected power of two here");
unsigned bits = llvm::Log2_32(arg.size);
mlir::Value elemShift =
builder.createIntegerConstant(loc, idxTy, bits);
totalIndex = builder.create<mlir::arith::AddIOp>(
loc,
builder.create<mlir::arith::ShRSIOp>(loc, totalIndex,
elemShift),
finalIndex);
} else {
totalIndex = finalIndex;
}
auto newOp = builder.create<fir::CoordinateOp>(
loc, builder.getRefType(elementType), caddr,
mlir::ValueRange{totalIndex});
LLVM_DEBUG(newOp->dump());
coop->getResult(0).replaceAllUsesWith(newOp->getResult(0));
coop->erase();
changed = true;
}
});
builder.restoreInsertionPoint(insPt);
}
assert(changed && "Expected operations to have changed");
builder.insert(clonedLoop);
// Forward the result(s), if any, from the loop operation to the
//
mlir::ResultRange results = clonedLoop->getResults();
bool hasResults = (results.size() > 0);
if (hasResults)
builder.create<fir::ResultOp>(loc, results);
// Add the original loop in the else-side of the if operation.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
op.op->replaceAllUsesWith(ifOp);
op.op->remove();
builder.insert(op.op);
// Rely on "cloned loop has results, so original loop also has results".
if (hasResults) {
builder.create<fir::ResultOp>(loc, op.op->getResults());
} else {
// Use an assert to check this.
assert(op.op->getResults().size() == 0 &&
"Weird, the cloned loop doesn't have results, but the original "
"does?");
}
}
LLVM_DEBUG(llvm::dbgs() << "After transform:\n");
LLVM_DEBUG(module->dump());
LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n");
}
std::unique_ptr<mlir::Pass> fir::createLoopVersioningPass() {
return std::make_unique<LoopVersioningPass>();
}
|