File: rpc.rst

package info (click to toggle)
llvm-toolchain-18 1%3A18.1.8-18
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,908,340 kB
  • sloc: cpp: 6,667,937; ansic: 1,440,452; asm: 883,619; python: 230,549; objc: 76,880; f90: 74,238; lisp: 35,989; pascal: 16,571; sh: 10,229; perl: 7,459; ml: 5,047; awk: 3,523; makefile: 2,987; javascript: 2,149; xml: 892; fortran: 649; cs: 573
file content (312 lines) | stat: -rw-r--r-- 12,906 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
.. _libc_gpu_rpc:

======================
Remote Procedure Calls
======================

.. contents:: Table of Contents
  :depth: 4
  :local:

Remote Procedure Call Implementation
====================================

Traditionally, the C library abstracts over several functions that interface 
with the platform's operating system through system calls. The GPU however does 
not provide an operating system that can handle target dependent operations.
Instead, we implemented remote procedure calls to interface with the host's 
operating system while executing on a GPU.

We implemented remote procedure calls using unified virtual memory to create a 
shared communicate channel between the two processes. This memory is often 
pinned memory that can be accessed asynchronously and atomically by multiple 
processes simultaneously. This supports means that we can simply provide mutual 
exclusion on a shared better to swap work back and forth between the host system 
and the GPU. We can then use this to create a simple client-server protocol 
using this shared memory.

This work treats the GPU as a client and the host as a server. The client 
initiates a communication while the server listens for them. In order to 
communicate between the host and the device, we simply maintain a buffer of 
memory and two mailboxes. One mailbox is write-only while the other is 
read-only. This exposes three primitive operations: using the buffer, giving 
away ownership, and waiting for ownership. This is implemented as a half-duplex 
transmission channel between the two sides. We decided to assign ownership of 
the buffer to the client when the inbox and outbox bits are equal and to the 
server when they are not.

In order to make this transmission channel thread-safe, we abstract ownership of 
the given mailbox pair and buffer around a port, effectively acting as a lock 
and an index into the allocated buffer slice. The server and device have 
independent locks around the given port. In this scheme, the buffer can be used 
to communicate intent and data generically with the server. We them simply 
provide multiple copies of this protocol and expose them as multiple ports.

If this were simply a standard CPU system, this would be sufficient. However, 
GPUs have my unique architectural challenges. First, GPU threads execute in 
lock-step with each other in groups typically called warps or wavefronts. We 
need to target the smallest unit of independent parallelism, so the RPC 
interface needs to handle an entire group of threads at once. This is done by 
increasing the size of the buffer and adding a thread mask argument so the 
server knows which threads are active when it handles the communication. Second, 
GPUs generally have no forward progress guarantees. In order to guarantee we do 
not encounter deadlocks while executing it is required that the number of ports 
matches the maximum amount of hardware parallelism on the device. It is also 
very important that the thread mask remains consistent while interfacing with 
the port.

.. image:: ./rpc-diagram.svg
   :width: 75%
   :align: center

The above diagram outlines the architecture of the RPC interface. For clarity 
the following list will explain the operations done by the client and server 
respectively when initiating a communication.

First, a communication from the perspective of the client:

* The client searches for an available port and claims the lock.
* The client checks that the port is still available to the current device and 
  continues if so.
* The client writes its data to the fixed-size packet and toggles its outbox.
* The client waits until its inbox matches its outbox.
* The client reads the data from the fixed-size packet.
* The client closes the port and continues executing.

Now, the same communication from the perspective of the server:

* The server searches for an available port with pending work and claims the 
  lock.
* The server checks that the port is still available to the current device.
* The server reads the opcode to perform the expected operation, in this 
  case a receive and then send.
* The server reads the data from the fixed-size packet.
* The server writes its data to the fixed-size packet and toggles its outbox.
* The server closes the port and continues searching for ports that need to be 
  serviced

This architecture currently requires that the host periodically checks the RPC 
server's buffer for ports with pending work. Note that a port can be closed 
without waiting for its submitted work to be completed. This allows us to model 
asynchronous operations that do not need to wait until the server has completed 
them. If an operation requires more data than the fixed size buffer, we simply 
send multiple packets back and forth in a streaming fashion.

Server Library
--------------

The RPC server's basic functionality is provided by the LLVM C library. A static 
library called ``libllvmlibc_rpc_server.a`` includes handling for the basic 
operations, such as printing or exiting. This has a small API that handles 
setting up the unified buffer and an interface to check the opcodes.

Some operations are too divergent to provide generic implementations for, such 
as allocating device accessible memory. For these cases, we provide a callback 
registration scheme to add a custom handler for any given opcode through the 
port API. More information can be found in the installed header 
``<install>/include/gpu-none-llvm/rpc_server.h``.

Client Example
--------------

The Client API is not currently exported by the LLVM C library. This is 
primarily due to being written in C++ and relying on internal data structures. 
It uses a simple send and receive interface with a fixed-size packet. The 
following example uses the RPC interface to call a function pointer on the 
server.

This code first opens a port with the given opcode to facilitate the 
communication. It then copies over the argument struct to the server using the 
``send_n`` interface to stream arbitrary bytes. The next send operation provides 
the server with the function pointer that will be executed. The final receive 
operation is a no-op and simply forces the client to wait until the server is 
done. It can be omitted if asynchronous execution is desired.

.. code-block:: c++

  void rpc_host_call(void *fn, void *data, size_t size) {
    rpc::Client::Port port = rpc::client.open<RPC_HOST_CALL>();
    port.send_n(data, size);
    port.send([=](rpc::Buffer *buffer) {
      buffer->data[0] = reinterpret_cast<uintptr_t>(fn);
    });
    port.recv([](rpc::Buffer *) {});
    port.close();
  }

Server Example
--------------

This example shows the server-side handling of the previous client example. When 
the server is checked, if there are any ports with pending work it will check 
the opcode and perform the appropriate action. In this case, the action is to 
call a function pointer provided by the client.

In this example, the server simply runs forever in a separate thread for 
brevity's sake. Because the client is a GPU potentially handling several threads 
at once, the server needs to loop over all the active threads on the GPU. We 
abstract this into the ``lane_size`` variable, which is simply the device's warp 
or wavefront size. The identifier is simply the threads index into the current 
warp or wavefront. We allocate memory to copy the struct data into, and then 
call the given function pointer with that copied data. The final send simply 
signals completion and uses the implicit thread mask to delete the temporary 
data.

.. code-block:: c++
  
  for(;;) {
    auto port = server.try_open(index);
    if (!port)
      return continue;

    switch(port->get_opcode()) {
    case RPC_HOST_CALL: {
      uint64_t sizes[LANE_SIZE];
      void *args[LANE_SIZE];
      port->recv_n(args, sizes, [&](uint64_t size) { return new char[size]; });
      port->recv([&](rpc::Buffer *buffer, uint32_t id) {
        reinterpret_cast<void (*)(void *)>(buffer->data[0])(args[id]);
      });
      port->send([&](rpc::Buffer *, uint32_t id) {
        delete[] reinterpret_cast<uint8_t *>(args[id]);
      });
      break;
    }
    default:
      port->recv([](rpc::Buffer *) {});
      break;
    }
  }

CUDA Server Example
-------------------

The following code shows an example of using the exported RPC interface along 
with the C library to manually configure a working server using the CUDA 
language. Other runtimes can use the presence of the ``__llvm_libc_rpc_client`` 
in the GPU executable as an indicator for whether or not the server can be 
checked. These details should ideally be handled by the GPU language runtime, 
but the following example shows how it can be used by a standard user.

.. code-block:: cuda

  #include <cstdio>
  #include <cstdlib>
  #include <cuda_runtime.h>
  
  #include <gpu-none-llvm/rpc_server.h>
  
  [[noreturn]] void handle_error(cudaError_t err) {
    fprintf(stderr, "CUDA error: %s\n", cudaGetErrorString(err));
    exit(EXIT_FAILURE);
  }
  
  [[noreturn]] void handle_error(rpc_status_t err) {
    fprintf(stderr, "RPC error: %d\n", err);
    exit(EXIT_FAILURE);
  }
  
  // The handle to the RPC client provided by the C library.
  extern "C" __device__ void *__llvm_libc_rpc_client;
  
  __global__ void get_client_ptr(void **ptr) { *ptr = __llvm_libc_rpc_client; }
  
  // Obtain the RPC client's handle from the device. The CUDA language cannot look
  // up the symbol directly like the driver API, so we launch a kernel to read it.
  void *get_rpc_client() {
    void *rpc_client = nullptr;
    void **rpc_client_d = nullptr;
  
    if (cudaError_t err = cudaMalloc(&rpc_client_d, sizeof(void *)))
      handle_error(err);
    get_client_ptr<<<1, 1>>>(rpc_client_d);
    if (cudaError_t err = cudaDeviceSynchronize())
      handle_error(err);
    if (cudaError_t err = cudaMemcpy(&rpc_client, rpc_client_d, sizeof(void *),
                                     cudaMemcpyDeviceToHost))
      handle_error(err);
    return rpc_client;
  }
  
  // Routines to allocate mapped memory that both the host and the device can
  // access asychonrously to communicate with eachother.
  void *alloc_host(size_t size, void *) {
    void *sharable_ptr;
    if (cudaError_t err = cudaMallocHost(&sharable_ptr, sizeof(void *)))
      handle_error(err);
    return sharable_ptr;
  };
  
  void free_host(void *ptr, void *) {
    if (cudaError_t err = cudaFreeHost(ptr))
      handle_error(err);
  }
  
  // The device-side overload of the standard C function to call.
  extern "C" __device__ int puts(const char *);
  
  // Calls the C library function from the GPU C library.
  __global__ void hello() { puts("Hello world!"); }
  
  int main() {
    int device = 0;
    // Initialize the RPC server to run on a single device.
    if (rpc_status_t err = rpc_init(/*num_device=*/1))
      handle_error(err);
  
    // Initialize the RPC server to run on the given device.
    if (rpc_status_t err =
            rpc_server_init(device, RPC_MAXIMUM_PORT_COUNT,
                            /*warp_size=*/32, alloc_host, /*data=*/nullptr))
      handle_error(err);
  
    // Initialize the RPC client by copying the buffer to the device's handle.
    void *rpc_client = get_rpc_client();
    if (cudaError_t err =
            cudaMemcpy(rpc_client, rpc_get_client_buffer(device),
                       rpc_get_client_size(), cudaMemcpyHostToDevice))
      handle_error(err);
  
    cudaStream_t stream;
    if (cudaError_t err = cudaStreamCreate(&stream))
      handle_error(err);
  
    // Execute the kernel.
    hello<<<1, 1, 0, stream>>>();
  
    // While the kernel is executing, check the RPC server for work to do.
    while (cudaStreamQuery(stream) == cudaErrorNotReady)
      if (rpc_status_t err = rpc_handle_server(device))
        handle_error(err);
  
    // Shut down the server running on the given device.
    if (rpc_status_t err =
            rpc_server_shutdown(device, free_host, /*data=*/nullptr))
      handle_error(err);
  
    // Shut down the entire RPC server interface.
    if (rpc_status_t err = rpc_shutdown())
      handle_error(err);
  
    return EXIT_SUCCESS;
  }

The above code must be compiled in CUDA's relocatable device code mode and with 
the advanced offloading driver to link in the library. Currently this can be 
done with the following invocation. Using LTO avoids the overhead normally 
associated with relocatable device code linking.

.. code-block:: sh

  $> clang++ -x cuda rpc.cpp --offload-arch=native -fgpu-rdc -lcudart -lcgpu \
       -I<install-path>include -L<install-path>/lib -lllvmlibc_rpc_server \
       -O3 -foffload-lto -o hello
  $> ./hello
  Hello world!

Extensions
----------

We describe which operation the RPC server should take with a 16-bit opcode. We 
consider the first 32768 numbers to be reserved while the others are free to 
use.