1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
//===-- Shared memory RPC server instantiation ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "rpc_server.h"
#include "src/__support/RPC/rpc.h"
#include "src/stdio/gpu/file.h"
#include <atomic>
#include <cstdio>
#include <cstring>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <variant>
#include <vector>
using namespace LIBC_NAMESPACE;
static_assert(sizeof(rpc_buffer_t) == sizeof(rpc::Buffer),
"Buffer size mismatch");
static_assert(RPC_MAXIMUM_PORT_COUNT == rpc::MAX_PORT_COUNT,
"Incorrect maximum port count");
// The client needs to support different lane sizes for the SIMT model. Because
// of this we need to select between the possible sizes that the client can use.
struct Server {
template <uint32_t lane_size>
Server(std::unique_ptr<rpc::Server<lane_size>> &&server)
: server(std::move(server)) {}
rpc_status_t handle_server(
const std::unordered_map<rpc_opcode_t, rpc_opcode_callback_ty> &callbacks,
const std::unordered_map<rpc_opcode_t, void *> &callback_data,
uint32_t &index) {
rpc_status_t ret = RPC_STATUS_SUCCESS;
std::visit(
[&](auto &server) {
ret = handle_server(*server, callbacks, callback_data, index);
},
server);
return ret;
}
private:
template <uint32_t lane_size>
rpc_status_t handle_server(
rpc::Server<lane_size> &server,
const std::unordered_map<rpc_opcode_t, rpc_opcode_callback_ty> &callbacks,
const std::unordered_map<rpc_opcode_t, void *> &callback_data,
uint32_t &index) {
auto port = server.try_open(index);
if (!port)
return RPC_STATUS_SUCCESS;
switch (port->get_opcode()) {
case RPC_WRITE_TO_STREAM:
case RPC_WRITE_TO_STDERR:
case RPC_WRITE_TO_STDOUT:
case RPC_WRITE_TO_STDOUT_NEWLINE: {
uint64_t sizes[lane_size] = {0};
void *strs[lane_size] = {nullptr};
FILE *files[lane_size] = {nullptr};
if (port->get_opcode() == RPC_WRITE_TO_STREAM) {
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
files[id] = reinterpret_cast<FILE *>(buffer->data[0]);
});
} else if (port->get_opcode() == RPC_WRITE_TO_STDERR) {
std::fill(files, files + lane_size, stderr);
} else {
std::fill(files, files + lane_size, stdout);
}
port->recv_n(strs, sizes, [&](uint64_t size) { return new char[size]; });
port->send([&](rpc::Buffer *buffer, uint32_t id) {
flockfile(files[id]);
buffer->data[0] = fwrite_unlocked(strs[id], 1, sizes[id], files[id]);
if (port->get_opcode() == RPC_WRITE_TO_STDOUT_NEWLINE &&
buffer->data[0] == sizes[id])
buffer->data[0] += fwrite_unlocked("\n", 1, 1, files[id]);
funlockfile(files[id]);
delete[] reinterpret_cast<uint8_t *>(strs[id]);
});
break;
}
case RPC_READ_FROM_STREAM: {
uint64_t sizes[lane_size] = {0};
void *data[lane_size] = {nullptr};
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
data[id] = new char[buffer->data[0]];
sizes[id] = fread(data[id], 1, buffer->data[0],
file::to_stream(buffer->data[1]));
});
port->send_n(data, sizes);
port->send([&](rpc::Buffer *buffer, uint32_t id) {
delete[] reinterpret_cast<uint8_t *>(data[id]);
std::memcpy(buffer->data, &sizes[id], sizeof(uint64_t));
});
break;
}
case RPC_READ_FGETS: {
uint64_t sizes[lane_size] = {0};
void *data[lane_size] = {nullptr};
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
data[id] = new char[buffer->data[0]];
const char *str =
fgets(reinterpret_cast<char *>(data[id]), buffer->data[0],
file::to_stream(buffer->data[1]));
sizes[id] = !str ? 0 : std::strlen(str) + 1;
});
port->send_n(data, sizes);
for (uint32_t id = 0; id < lane_size; ++id)
if (data[id])
delete[] reinterpret_cast<uint8_t *>(data[id]);
break;
}
case RPC_OPEN_FILE: {
uint64_t sizes[lane_size] = {0};
void *paths[lane_size] = {nullptr};
port->recv_n(paths, sizes, [&](uint64_t size) { return new char[size]; });
port->recv_and_send([&](rpc::Buffer *buffer, uint32_t id) {
FILE *file = fopen(reinterpret_cast<char *>(paths[id]),
reinterpret_cast<char *>(buffer->data));
buffer->data[0] = reinterpret_cast<uintptr_t>(file);
});
break;
}
case RPC_CLOSE_FILE: {
port->recv_and_send([&](rpc::Buffer *buffer, uint32_t id) {
FILE *file = reinterpret_cast<FILE *>(buffer->data[0]);
buffer->data[0] = fclose(file);
});
break;
}
case RPC_EXIT: {
// Send a response to the client to signal that we are ready to exit.
port->recv_and_send([](rpc::Buffer *) {});
port->recv([](rpc::Buffer *buffer) {
int status = 0;
std::memcpy(&status, buffer->data, sizeof(int));
exit(status);
});
break;
}
case RPC_ABORT: {
// Send a response to the client to signal that we are ready to abort.
port->recv_and_send([](rpc::Buffer *) {});
port->recv([](rpc::Buffer *) {});
abort();
break;
}
case RPC_HOST_CALL: {
uint64_t sizes[lane_size] = {0};
void *args[lane_size] = {nullptr};
port->recv_n(args, sizes, [&](uint64_t size) { return new char[size]; });
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
reinterpret_cast<void (*)(void *)>(buffer->data[0])(args[id]);
});
port->send([&](rpc::Buffer *, uint32_t id) {
delete[] reinterpret_cast<uint8_t *>(args[id]);
});
break;
}
case RPC_FEOF: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = feof(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_FERROR: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = ferror(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_CLEARERR: {
port->recv_and_send([](rpc::Buffer *buffer) {
clearerr(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_FSEEK: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = fseek(file::to_stream(buffer->data[0]),
static_cast<long>(buffer->data[1]),
static_cast<int>(buffer->data[2]));
});
break;
}
case RPC_FTELL: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = ftell(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_FFLUSH: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = fflush(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_UNGETC: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = ungetc(static_cast<int>(buffer->data[0]),
file::to_stream(buffer->data[1]));
});
break;
}
case RPC_NOOP: {
port->recv([](rpc::Buffer *) {});
break;
}
default: {
auto handler =
callbacks.find(static_cast<rpc_opcode_t>(port->get_opcode()));
// We error out on an unhandled opcode.
if (handler == callbacks.end())
return RPC_STATUS_UNHANDLED_OPCODE;
// Invoke the registered callback with a reference to the port.
void *data =
callback_data.at(static_cast<rpc_opcode_t>(port->get_opcode()));
rpc_port_t port_ref{reinterpret_cast<uint64_t>(&*port), lane_size};
(handler->second)(port_ref, data);
}
}
// Increment the index so we start the scan after this port.
index = port->get_index() + 1;
port->close();
return RPC_STATUS_CONTINUE;
}
std::variant<std::unique_ptr<rpc::Server<1>>,
std::unique_ptr<rpc::Server<32>>,
std::unique_ptr<rpc::Server<64>>>
server;
};
struct Device {
template <typename T>
Device(uint32_t num_ports, void *buffer, std::unique_ptr<T> &&server)
: buffer(buffer), server(std::move(server)), client(num_ports, buffer) {}
void *buffer;
Server server;
rpc::Client client;
std::unordered_map<rpc_opcode_t, rpc_opcode_callback_ty> callbacks;
std::unordered_map<rpc_opcode_t, void *> callback_data;
};
// A struct containing all the runtime state required to run the RPC server.
struct State {
State(uint32_t num_devices)
: num_devices(num_devices), devices(num_devices), reference_count(0u) {}
uint32_t num_devices;
std::vector<std::unique_ptr<Device>> devices;
std::atomic_uint32_t reference_count;
};
static std::mutex startup_mutex;
static State *state;
rpc_status_t rpc_init(uint32_t num_devices) {
std::scoped_lock<decltype(startup_mutex)> lock(startup_mutex);
if (!state)
state = new State(num_devices);
if (state->reference_count == std::numeric_limits<uint32_t>::max())
return RPC_STATUS_ERROR;
state->reference_count++;
return RPC_STATUS_SUCCESS;
}
rpc_status_t rpc_shutdown(void) {
if (state && state->reference_count-- == 1)
delete state;
return RPC_STATUS_SUCCESS;
}
template <uint32_t lane_size>
rpc_status_t server_init_impl(uint32_t device_id, uint64_t num_ports,
rpc_alloc_ty alloc, void *data) {
uint64_t size = rpc::Server<lane_size>::allocation_size(num_ports);
void *buffer = alloc(size, data);
if (!buffer)
return RPC_STATUS_ERROR;
state->devices[device_id] = std::make_unique<Device>(
num_ports, buffer,
std::make_unique<rpc::Server<lane_size>>(num_ports, buffer));
if (!state->devices[device_id])
return RPC_STATUS_ERROR;
return RPC_STATUS_SUCCESS;
}
rpc_status_t rpc_server_init(uint32_t device_id, uint64_t num_ports,
uint32_t lane_size, rpc_alloc_ty alloc,
void *data) {
if (!state)
return RPC_STATUS_NOT_INITIALIZED;
if (device_id >= state->num_devices)
return RPC_STATUS_OUT_OF_RANGE;
if (!state->devices[device_id]) {
switch (lane_size) {
case 1:
if (rpc_status_t err =
server_init_impl<1>(device_id, num_ports, alloc, data))
return err;
break;
case 32: {
if (rpc_status_t err =
server_init_impl<32>(device_id, num_ports, alloc, data))
return err;
break;
}
case 64:
if (rpc_status_t err =
server_init_impl<64>(device_id, num_ports, alloc, data))
return err;
break;
default:
return RPC_STATUS_INVALID_LANE_SIZE;
}
}
return RPC_STATUS_SUCCESS;
}
rpc_status_t rpc_server_shutdown(uint32_t device_id, rpc_free_ty dealloc,
void *data) {
if (!state)
return RPC_STATUS_NOT_INITIALIZED;
if (device_id >= state->num_devices)
return RPC_STATUS_OUT_OF_RANGE;
if (!state->devices[device_id])
return RPC_STATUS_ERROR;
dealloc(state->devices[device_id]->buffer, data);
if (state->devices[device_id])
state->devices[device_id].release();
return RPC_STATUS_SUCCESS;
}
rpc_status_t rpc_handle_server(uint32_t device_id) {
if (!state)
return RPC_STATUS_NOT_INITIALIZED;
if (device_id >= state->num_devices)
return RPC_STATUS_OUT_OF_RANGE;
if (!state->devices[device_id])
return RPC_STATUS_ERROR;
uint32_t index = 0;
for (;;) {
auto &device = *state->devices[device_id];
rpc_status_t status = device.server.handle_server(
device.callbacks, device.callback_data, index);
if (status != RPC_STATUS_CONTINUE)
return status;
}
}
rpc_status_t rpc_register_callback(uint32_t device_id, rpc_opcode_t opcode,
rpc_opcode_callback_ty callback,
void *data) {
if (!state)
return RPC_STATUS_NOT_INITIALIZED;
if (device_id >= state->num_devices)
return RPC_STATUS_OUT_OF_RANGE;
if (!state->devices[device_id])
return RPC_STATUS_ERROR;
state->devices[device_id]->callbacks[opcode] = callback;
state->devices[device_id]->callback_data[opcode] = data;
return RPC_STATUS_SUCCESS;
}
const void *rpc_get_client_buffer(uint32_t device_id) {
if (!state || device_id >= state->num_devices || !state->devices[device_id])
return nullptr;
return &state->devices[device_id]->client;
}
uint64_t rpc_get_client_size() { return sizeof(rpc::Client); }
using ServerPort = std::variant<rpc::Server<1>::Port *, rpc::Server<32>::Port *,
rpc::Server<64>::Port *>;
ServerPort get_port(rpc_port_t ref) {
if (ref.lane_size == 1)
return reinterpret_cast<rpc::Server<1>::Port *>(ref.handle);
else if (ref.lane_size == 32)
return reinterpret_cast<rpc::Server<32>::Port *>(ref.handle);
else if (ref.lane_size == 64)
return reinterpret_cast<rpc::Server<64>::Port *>(ref.handle);
else
__builtin_unreachable();
}
void rpc_send(rpc_port_t ref, rpc_port_callback_ty callback, void *data) {
auto port = get_port(ref);
std::visit(
[=](auto &port) {
port->send([=](rpc::Buffer *buffer) {
callback(reinterpret_cast<rpc_buffer_t *>(buffer), data);
});
},
port);
}
void rpc_send_n(rpc_port_t ref, const void *const *src, uint64_t *size) {
auto port = get_port(ref);
std::visit([=](auto &port) { port->send_n(src, size); }, port);
}
void rpc_recv(rpc_port_t ref, rpc_port_callback_ty callback, void *data) {
auto port = get_port(ref);
std::visit(
[=](auto &port) {
port->recv([=](rpc::Buffer *buffer) {
callback(reinterpret_cast<rpc_buffer_t *>(buffer), data);
});
},
port);
}
void rpc_recv_n(rpc_port_t ref, void **dst, uint64_t *size, rpc_alloc_ty alloc,
void *data) {
auto port = get_port(ref);
auto alloc_fn = [=](uint64_t size) { return alloc(size, data); };
std::visit([=](auto &port) { port->recv_n(dst, size, alloc_fn); }, port);
}
void rpc_recv_and_send(rpc_port_t ref, rpc_port_callback_ty callback,
void *data) {
auto port = get_port(ref);
std::visit(
[=](auto &port) {
port->recv_and_send([=](rpc::Buffer *buffer) {
callback(reinterpret_cast<rpc_buffer_t *>(buffer), data);
});
},
port);
}
|