1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
//=- AArch64MachineFunctionInfo.cpp - AArch64 Machine Function Info ---------=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements AArch64-specific per-machine-function
/// information.
///
//===----------------------------------------------------------------------===//
#include "AArch64MachineFunctionInfo.h"
#include "AArch64InstrInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
using namespace llvm;
yaml::AArch64FunctionInfo::AArch64FunctionInfo(
const llvm::AArch64FunctionInfo &MFI)
: HasRedZone(MFI.hasRedZone()) {}
void yaml::AArch64FunctionInfo::mappingImpl(yaml::IO &YamlIO) {
MappingTraits<AArch64FunctionInfo>::mapping(YamlIO, *this);
}
void AArch64FunctionInfo::initializeBaseYamlFields(
const yaml::AArch64FunctionInfo &YamlMFI) {
if (YamlMFI.HasRedZone)
HasRedZone = YamlMFI.HasRedZone;
}
static std::pair<bool, bool> GetSignReturnAddress(const Function &F) {
// The function should be signed in the following situations:
// - sign-return-address=all
// - sign-return-address=non-leaf and the functions spills the LR
if (!F.hasFnAttribute("sign-return-address")) {
const Module &M = *F.getParent();
if (const auto *Sign = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("sign-return-address"))) {
if (Sign->getZExtValue()) {
if (const auto *All = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("sign-return-address-all")))
return {true, All->getZExtValue()};
return {true, false};
}
}
return {false, false};
}
StringRef Scope = F.getFnAttribute("sign-return-address").getValueAsString();
if (Scope.equals("none"))
return {false, false};
if (Scope.equals("all"))
return {true, true};
assert(Scope.equals("non-leaf"));
return {true, false};
}
static bool ShouldSignWithBKey(const Function &F, const AArch64Subtarget &STI) {
if (!F.hasFnAttribute("sign-return-address-key")) {
if (const auto *BKey = mdconst::extract_or_null<ConstantInt>(
F.getParent()->getModuleFlag("sign-return-address-with-bkey")))
return BKey->getZExtValue();
if (STI.getTargetTriple().isOSWindows())
return true;
return false;
}
const StringRef Key =
F.getFnAttribute("sign-return-address-key").getValueAsString();
assert(Key == "a_key" || Key == "b_key");
return Key == "b_key";
}
AArch64FunctionInfo::AArch64FunctionInfo(const Function &F,
const AArch64Subtarget *STI) {
// If we already know that the function doesn't have a redzone, set
// HasRedZone here.
if (F.hasFnAttribute(Attribute::NoRedZone))
HasRedZone = false;
std::tie(SignReturnAddress, SignReturnAddressAll) = GetSignReturnAddress(F);
SignWithBKey = ShouldSignWithBKey(F, *STI);
// TODO: skip functions that have no instrumented allocas for optimization
IsMTETagged = F.hasFnAttribute(Attribute::SanitizeMemTag);
// BTI/PAuthLR may be set either on the function or the module. Set Bool from
// either the function attribute or module attribute, depending on what is
// set.
// Note: the module attributed is numeric (0 or 1) but the function attribute
// is stringy ("true" or "false").
auto TryFnThenModule = [&](StringRef AttrName, bool &Bool) {
if (F.hasFnAttribute(AttrName)) {
const StringRef V = F.getFnAttribute(AttrName).getValueAsString();
assert(V.equals_insensitive("true") || V.equals_insensitive("false"));
Bool = V.equals_insensitive("true");
} else if (const auto *ModVal = mdconst::extract_or_null<ConstantInt>(
F.getParent()->getModuleFlag(AttrName))) {
Bool = ModVal->getZExtValue();
}
};
TryFnThenModule("branch-target-enforcement", BranchTargetEnforcement);
TryFnThenModule("branch-protection-pauth-lr", BranchProtectionPAuthLR);
// The default stack probe size is 4096 if the function has no
// stack-probe-size attribute. This is a safe default because it is the
// smallest possible guard page size.
uint64_t ProbeSize = 4096;
if (F.hasFnAttribute("stack-probe-size"))
ProbeSize = F.getFnAttributeAsParsedInteger("stack-probe-size");
else if (const auto *PS = mdconst::extract_or_null<ConstantInt>(
F.getParent()->getModuleFlag("stack-probe-size")))
ProbeSize = PS->getZExtValue();
assert(int64_t(ProbeSize) > 0 && "Invalid stack probe size");
if (STI->isTargetWindows()) {
if (!F.hasFnAttribute("no-stack-arg-probe"))
StackProbeSize = ProbeSize;
} else {
// Round down to the stack alignment.
uint64_t StackAlign =
STI->getFrameLowering()->getTransientStackAlign().value();
ProbeSize = std::max(StackAlign, ProbeSize & ~(StackAlign - 1U));
StringRef ProbeKind;
if (F.hasFnAttribute("probe-stack"))
ProbeKind = F.getFnAttribute("probe-stack").getValueAsString();
else if (const auto *PS = dyn_cast_or_null<MDString>(
F.getParent()->getModuleFlag("probe-stack")))
ProbeKind = PS->getString();
if (ProbeKind.size()) {
if (ProbeKind != "inline-asm")
report_fatal_error("Unsupported stack probing method");
StackProbeSize = ProbeSize;
}
}
}
MachineFunctionInfo *AArch64FunctionInfo::clone(
BumpPtrAllocator &Allocator, MachineFunction &DestMF,
const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB)
const {
return DestMF.cloneInfo<AArch64FunctionInfo>(*this);
}
bool AArch64FunctionInfo::shouldSignReturnAddress(bool SpillsLR) const {
if (!SignReturnAddress)
return false;
if (SignReturnAddressAll)
return true;
return SpillsLR;
}
static bool isLRSpilled(const MachineFunction &MF) {
return llvm::any_of(
MF.getFrameInfo().getCalleeSavedInfo(),
[](const auto &Info) { return Info.getReg() == AArch64::LR; });
}
bool AArch64FunctionInfo::shouldSignReturnAddress(
const MachineFunction &MF) const {
return shouldSignReturnAddress(isLRSpilled(MF));
}
bool AArch64FunctionInfo::needsShadowCallStackPrologueEpilogue(
MachineFunction &MF) const {
if (!(isLRSpilled(MF) &&
MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)))
return false;
if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18))
report_fatal_error("Must reserve x18 to use shadow call stack");
return true;
}
bool AArch64FunctionInfo::needsDwarfUnwindInfo(
const MachineFunction &MF) const {
if (!NeedsDwarfUnwindInfo)
NeedsDwarfUnwindInfo = MF.needsFrameMoves() &&
!MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
return *NeedsDwarfUnwindInfo;
}
bool AArch64FunctionInfo::needsAsyncDwarfUnwindInfo(
const MachineFunction &MF) const {
if (!NeedsAsyncDwarfUnwindInfo) {
const Function &F = MF.getFunction();
// The check got "minsize" is because epilogue unwind info is not emitted
// (yet) for homogeneous epilogues, outlined functions, and functions
// outlined from.
NeedsAsyncDwarfUnwindInfo = needsDwarfUnwindInfo(MF) &&
F.getUWTableKind() == UWTableKind::Async &&
!F.hasMinSize();
}
return *NeedsAsyncDwarfUnwindInfo;
}
|