File: LoongArchAsmBackend.cpp

package info (click to toggle)
llvm-toolchain-18 1%3A18.1.8-18
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,908,340 kB
  • sloc: cpp: 6,667,937; ansic: 1,440,452; asm: 883,619; python: 230,549; objc: 76,880; f90: 74,238; lisp: 35,989; pascal: 16,571; sh: 10,229; perl: 7,459; ml: 5,047; awk: 3,523; makefile: 2,987; javascript: 2,149; xml: 892; fortran: 649; cs: 573
file content (520 lines) | stat: -rw-r--r-- 19,637 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
//===-- LoongArchAsmBackend.cpp - LoongArch Assembler Backend -*- C++ -*---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the LoongArchAsmBackend class.
//
//===----------------------------------------------------------------------===//

#include "LoongArchAsmBackend.h"
#include "LoongArchFixupKinds.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"

#define DEBUG_TYPE "loongarch-asmbackend"

using namespace llvm;

std::optional<MCFixupKind>
LoongArchAsmBackend::getFixupKind(StringRef Name) const {
  if (STI.getTargetTriple().isOSBinFormatELF()) {
    auto Type = llvm::StringSwitch<unsigned>(Name)
#define ELF_RELOC(X, Y) .Case(#X, Y)
#include "llvm/BinaryFormat/ELFRelocs/LoongArch.def"
#undef ELF_RELOC
                    .Case("BFD_RELOC_NONE", ELF::R_LARCH_NONE)
                    .Case("BFD_RELOC_32", ELF::R_LARCH_32)
                    .Case("BFD_RELOC_64", ELF::R_LARCH_64)
                    .Default(-1u);
    if (Type != -1u)
      return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
  }
  return std::nullopt;
}

const MCFixupKindInfo &
LoongArchAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
  const static MCFixupKindInfo Infos[] = {
      // This table *must* be in the order that the fixup_* kinds are defined in
      // LoongArchFixupKinds.h.
      //
      // {name, offset, bits, flags}
      {"fixup_loongarch_b16", 10, 16, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_loongarch_b21", 0, 26, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_loongarch_b26", 0, 26, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_loongarch_abs_hi20", 5, 20, 0},
      {"fixup_loongarch_abs_lo12", 10, 12, 0},
      {"fixup_loongarch_abs64_lo20", 5, 20, 0},
      {"fixup_loongarch_abs64_hi12", 10, 12, 0},
      {"fixup_loongarch_tls_le_hi20", 5, 20, 0},
      {"fixup_loongarch_tls_le_lo12", 10, 12, 0},
      {"fixup_loongarch_tls_le64_lo20", 5, 20, 0},
      {"fixup_loongarch_tls_le64_hi12", 10, 12, 0},
      // TODO: Add more fixup kinds.
  };

  static_assert((std::size(Infos)) == LoongArch::NumTargetFixupKinds,
                "Not all fixup kinds added to Infos array");

  // Fixup kinds from .reloc directive are like R_LARCH_NONE. They
  // do not require any extra processing.
  if (Kind >= FirstLiteralRelocationKind)
    return MCAsmBackend::getFixupKindInfo(FK_NONE);

  if (Kind < FirstTargetFixupKind)
    return MCAsmBackend::getFixupKindInfo(Kind);

  assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
         "Invalid kind!");
  return Infos[Kind - FirstTargetFixupKind];
}

static void reportOutOfRangeError(MCContext &Ctx, SMLoc Loc, unsigned N) {
  Ctx.reportError(Loc, "fixup value out of range [" + Twine(llvm::minIntN(N)) +
                           ", " + Twine(llvm::maxIntN(N)) + "]");
}

static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
                                 MCContext &Ctx) {
  switch (Fixup.getTargetKind()) {
  default:
    llvm_unreachable("Unknown fixup kind");
  case FK_Data_1:
  case FK_Data_2:
  case FK_Data_4:
  case FK_Data_8:
  case FK_Data_leb128:
    return Value;
  case LoongArch::fixup_loongarch_b16: {
    if (!isInt<18>(Value))
      reportOutOfRangeError(Ctx, Fixup.getLoc(), 18);
    if (Value % 4)
      Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
    return (Value >> 2) & 0xffff;
  }
  case LoongArch::fixup_loongarch_b21: {
    if (!isInt<23>(Value))
      reportOutOfRangeError(Ctx, Fixup.getLoc(), 23);
    if (Value % 4)
      Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
    return ((Value & 0x3fffc) << 8) | ((Value >> 18) & 0x1f);
  }
  case LoongArch::fixup_loongarch_b26: {
    if (!isInt<28>(Value))
      reportOutOfRangeError(Ctx, Fixup.getLoc(), 28);
    if (Value % 4)
      Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
    return ((Value & 0x3fffc) << 8) | ((Value >> 18) & 0x3ff);
  }
  case LoongArch::fixup_loongarch_abs_hi20:
  case LoongArch::fixup_loongarch_tls_le_hi20:
    return (Value >> 12) & 0xfffff;
  case LoongArch::fixup_loongarch_abs_lo12:
  case LoongArch::fixup_loongarch_tls_le_lo12:
    return Value & 0xfff;
  case LoongArch::fixup_loongarch_abs64_lo20:
  case LoongArch::fixup_loongarch_tls_le64_lo20:
    return (Value >> 32) & 0xfffff;
  case LoongArch::fixup_loongarch_abs64_hi12:
  case LoongArch::fixup_loongarch_tls_le64_hi12:
    return (Value >> 52) & 0xfff;
  }
}

static void fixupLeb128(MCContext &Ctx, const MCFixup &Fixup,
                        MutableArrayRef<char> Data, uint64_t Value) {
  unsigned I;
  for (I = 0; I != Data.size() && Value; ++I, Value >>= 7)
    Data[I] |= uint8_t(Value & 0x7f);
  if (Value)
    Ctx.reportError(Fixup.getLoc(), "Invalid uleb128 value!");
}

void LoongArchAsmBackend::applyFixup(const MCAssembler &Asm,
                                     const MCFixup &Fixup,
                                     const MCValue &Target,
                                     MutableArrayRef<char> Data, uint64_t Value,
                                     bool IsResolved,
                                     const MCSubtargetInfo *STI) const {
  if (!Value)
    return; // Doesn't change encoding.

  MCFixupKind Kind = Fixup.getKind();
  if (Kind >= FirstLiteralRelocationKind)
    return;
  MCFixupKindInfo Info = getFixupKindInfo(Kind);
  MCContext &Ctx = Asm.getContext();

  // Fixup leb128 separately.
  if (Fixup.getTargetKind() == FK_Data_leb128)
    return fixupLeb128(Ctx, Fixup, Data, Value);

  // Apply any target-specific value adjustments.
  Value = adjustFixupValue(Fixup, Value, Ctx);

  // Shift the value into position.
  Value <<= Info.TargetOffset;

  unsigned Offset = Fixup.getOffset();
  unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8;

  assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
  // For each byte of the fragment that the fixup touches, mask in the
  // bits from the fixup value.
  for (unsigned I = 0; I != NumBytes; ++I) {
    Data[Offset + I] |= uint8_t((Value >> (I * 8)) & 0xff);
  }
}

// Linker relaxation may change code size. We have to insert Nops
// for .align directive when linker relaxation enabled. So then Linker
// could satisfy alignment by removing Nops.
// The function returns the total Nops Size we need to insert.
bool LoongArchAsmBackend::shouldInsertExtraNopBytesForCodeAlign(
    const MCAlignFragment &AF, unsigned &Size) {
  // Calculate Nops Size only when linker relaxation enabled.
  if (!AF.getSubtargetInfo()->hasFeature(LoongArch::FeatureRelax))
    return false;

  // Ignore alignment if MaxBytesToEmit is less than the minimum Nop size.
  const unsigned MinNopLen = 4;
  if (AF.getMaxBytesToEmit() < MinNopLen)
    return false;
  Size = AF.getAlignment().value() - MinNopLen;
  return AF.getAlignment() > MinNopLen;
}

// We need to insert R_LARCH_ALIGN relocation type to indicate the
// position of Nops and the total bytes of the Nops have been inserted
// when linker relaxation enabled.
// The function inserts fixup_loongarch_align fixup which eventually will
// transfer to R_LARCH_ALIGN relocation type.
// The improved R_LARCH_ALIGN requires symbol index. The lowest 8 bits of
// addend represent alignment and the other bits of addend represent the
// maximum number of bytes to emit. The maximum number of bytes is zero
// means ignore the emit limit.
bool LoongArchAsmBackend::shouldInsertFixupForCodeAlign(
    MCAssembler &Asm, const MCAsmLayout &Layout, MCAlignFragment &AF) {
  // Insert the fixup only when linker relaxation enabled.
  if (!AF.getSubtargetInfo()->hasFeature(LoongArch::FeatureRelax))
    return false;

  // Calculate total Nops we need to insert. If there are none to insert
  // then simply return.
  unsigned Count;
  if (!shouldInsertExtraNopBytesForCodeAlign(AF, Count))
    return false;

  MCSection *Sec = AF.getParent();
  MCContext &Ctx = Asm.getContext();
  const MCExpr *Dummy = MCConstantExpr::create(0, Ctx);
  // Create fixup_loongarch_align fixup.
  MCFixup Fixup =
      MCFixup::create(0, Dummy, MCFixupKind(LoongArch::fixup_loongarch_align));
  const MCSymbolRefExpr *MCSym = getSecToAlignSym()[Sec];
  if (MCSym == nullptr) {
    // Create a symbol and make the value of symbol is zero.
    MCSymbol *Sym = Ctx.createNamedTempSymbol("la-relax-align");
    Sym->setFragment(&*Sec->getBeginSymbol()->getFragment());
    Asm.registerSymbol(*Sym);
    MCSym = MCSymbolRefExpr::create(Sym, Ctx);
    getSecToAlignSym()[Sec] = MCSym;
  }

  uint64_t FixedValue = 0;
  unsigned Lo = Log2_64(Count) + 1;
  unsigned Hi = AF.getMaxBytesToEmit() >= Count ? 0 : AF.getMaxBytesToEmit();
  MCValue Value = MCValue::get(MCSym, nullptr, Hi << 8 | Lo);
  Asm.getWriter().recordRelocation(Asm, Layout, &AF, Fixup, Value, FixedValue);

  return true;
}

bool LoongArchAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
                                                const MCFixup &Fixup,
                                                const MCValue &Target,
                                                const MCSubtargetInfo *STI) {
  if (Fixup.getKind() >= FirstLiteralRelocationKind)
    return true;
  switch (Fixup.getTargetKind()) {
  default:
    return STI->hasFeature(LoongArch::FeatureRelax);
  case FK_Data_1:
  case FK_Data_2:
  case FK_Data_4:
  case FK_Data_8:
  case FK_Data_leb128:
    return !Target.isAbsolute();
  }
}

static inline std::pair<MCFixupKind, MCFixupKind>
getRelocPairForSize(unsigned Size) {
  switch (Size) {
  default:
    llvm_unreachable("unsupported fixup size");
  case 6:
    return std::make_pair(
        MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD6),
        MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB6));
  case 8:
    return std::make_pair(
        MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD8),
        MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB8));
  case 16:
    return std::make_pair(
        MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD16),
        MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB16));
  case 32:
    return std::make_pair(
        MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD32),
        MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB32));
  case 64:
    return std::make_pair(
        MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD64),
        MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB64));
  case 128:
    return std::make_pair(
        MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD_ULEB128),
        MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB_ULEB128));
  }
}

std::pair<bool, bool> LoongArchAsmBackend::relaxLEB128(MCLEBFragment &LF,
                                                       MCAsmLayout &Layout,
                                                       int64_t &Value) const {
  const MCExpr &Expr = LF.getValue();
  if (LF.isSigned() || !Expr.evaluateKnownAbsolute(Value, Layout))
    return std::make_pair(false, false);
  LF.getFixups().push_back(
      MCFixup::create(0, &Expr, FK_Data_leb128, Expr.getLoc()));
  return std::make_pair(true, true);
}

bool LoongArchAsmBackend::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF,
                                             MCAsmLayout &Layout,
                                             bool &WasRelaxed) const {
  MCContext &C = Layout.getAssembler().getContext();

  int64_t LineDelta = DF.getLineDelta();
  const MCExpr &AddrDelta = DF.getAddrDelta();
  SmallVectorImpl<char> &Data = DF.getContents();
  SmallVectorImpl<MCFixup> &Fixups = DF.getFixups();
  size_t OldSize = Data.size();

  int64_t Value;
  if (AddrDelta.evaluateAsAbsolute(Value, Layout))
    return false;
  bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, Layout);
  assert(IsAbsolute && "CFA with invalid expression");
  (void)IsAbsolute;

  Data.clear();
  Fixups.clear();
  raw_svector_ostream OS(Data);

  // INT64_MAX is a signal that this is actually a DW_LNE_end_sequence.
  if (LineDelta != INT64_MAX) {
    OS << uint8_t(dwarf::DW_LNS_advance_line);
    encodeSLEB128(LineDelta, OS);
  }

  unsigned Offset;
  std::pair<MCFixupKind, MCFixupKind> FK;

  // According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode
  // takes a single unsigned half (unencoded) operand. The maximum encodable
  // value is therefore 65535.  Set a conservative upper bound for relaxation.
  if (Value > 60000) {
    unsigned PtrSize = C.getAsmInfo()->getCodePointerSize();

    OS << uint8_t(dwarf::DW_LNS_extended_op);
    encodeULEB128(PtrSize + 1, OS);

    OS << uint8_t(dwarf::DW_LNE_set_address);
    Offset = OS.tell();
    assert((PtrSize == 4 || PtrSize == 8) && "Unexpected pointer size");
    FK = getRelocPairForSize(PtrSize == 4 ? 32 : 64);
    OS.write_zeros(PtrSize);
  } else {
    OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc);
    Offset = OS.tell();
    FK = getRelocPairForSize(16);
    support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
  }

  const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
  Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(FK)));
  Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(FK)));

  if (LineDelta == INT64_MAX) {
    OS << uint8_t(dwarf::DW_LNS_extended_op);
    OS << uint8_t(1);
    OS << uint8_t(dwarf::DW_LNE_end_sequence);
  } else {
    OS << uint8_t(dwarf::DW_LNS_copy);
  }

  WasRelaxed = OldSize != Data.size();
  return true;
}

bool LoongArchAsmBackend::relaxDwarfCFA(MCDwarfCallFrameFragment &DF,
                                        MCAsmLayout &Layout,
                                        bool &WasRelaxed) const {
  const MCExpr &AddrDelta = DF.getAddrDelta();
  SmallVectorImpl<char> &Data = DF.getContents();
  SmallVectorImpl<MCFixup> &Fixups = DF.getFixups();
  size_t OldSize = Data.size();

  int64_t Value;
  if (AddrDelta.evaluateAsAbsolute(Value, Layout))
    return false;
  bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, Layout);
  assert(IsAbsolute && "CFA with invalid expression");
  (void)IsAbsolute;

  Data.clear();
  Fixups.clear();
  raw_svector_ostream OS(Data);

  assert(
      Layout.getAssembler().getContext().getAsmInfo()->getMinInstAlignment() ==
          1 &&
      "expected 1-byte alignment");
  if (Value == 0) {
    WasRelaxed = OldSize != Data.size();
    return true;
  }

  auto AddFixups = [&Fixups,
                    &AddrDelta](unsigned Offset,
                                std::pair<MCFixupKind, MCFixupKind> FK) {
    const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
    Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(FK)));
    Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(FK)));
  };

  if (isUIntN(6, Value)) {
    OS << uint8_t(dwarf::DW_CFA_advance_loc);
    AddFixups(0, getRelocPairForSize(6));
  } else if (isUInt<8>(Value)) {
    OS << uint8_t(dwarf::DW_CFA_advance_loc1);
    support::endian::write<uint8_t>(OS, 0, llvm::endianness::little);
    AddFixups(1, getRelocPairForSize(8));
  } else if (isUInt<16>(Value)) {
    OS << uint8_t(dwarf::DW_CFA_advance_loc2);
    support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
    AddFixups(1, getRelocPairForSize(16));
  } else if (isUInt<32>(Value)) {
    OS << uint8_t(dwarf::DW_CFA_advance_loc4);
    support::endian::write<uint32_t>(OS, 0, llvm::endianness::little);
    AddFixups(1, getRelocPairForSize(32));
  } else {
    llvm_unreachable("unsupported CFA encoding");
  }

  WasRelaxed = OldSize != Data.size();
  return true;
}

bool LoongArchAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
                                       const MCSubtargetInfo *STI) const {
  // We mostly follow binutils' convention here: align to 4-byte boundary with a
  // 0-fill padding.
  OS.write_zeros(Count % 4);

  // The remainder is now padded with 4-byte nops.
  // nop: andi r0, r0, 0
  for (; Count >= 4; Count -= 4)
    OS.write("\0\0\x40\x03", 4);

  return true;
}

bool LoongArchAsmBackend::handleAddSubRelocations(const MCAsmLayout &Layout,
                                                  const MCFragment &F,
                                                  const MCFixup &Fixup,
                                                  const MCValue &Target,
                                                  uint64_t &FixedValue) const {
  std::pair<MCFixupKind, MCFixupKind> FK;
  uint64_t FixedValueA, FixedValueB;
  const MCSymbol &SA = Target.getSymA()->getSymbol();
  const MCSymbol &SB = Target.getSymB()->getSymbol();

  bool force = !SA.isInSection() || !SB.isInSection();
  if (!force) {
    const MCSection &SecA = SA.getSection();
    const MCSection &SecB = SB.getSection();

    // We need record relocation if SecA != SecB. Usually SecB is same as the
    // section of Fixup, which will be record the relocation as PCRel. If SecB
    // is not same as the section of Fixup, it will report error. Just return
    // false and then this work can be finished by handleFixup.
    if (&SecA != &SecB)
      return false;

    // In SecA == SecB case. If the linker relaxation is enabled, we need record
    // the ADD, SUB relocations. Otherwise the FixedValue has already been calc-
    // ulated out in evaluateFixup, return true and avoid record relocations.
    if (!STI.hasFeature(LoongArch::FeatureRelax))
      return true;
  }

  switch (Fixup.getKind()) {
  case llvm::FK_Data_1:
    FK = getRelocPairForSize(8);
    break;
  case llvm::FK_Data_2:
    FK = getRelocPairForSize(16);
    break;
  case llvm::FK_Data_4:
    FK = getRelocPairForSize(32);
    break;
  case llvm::FK_Data_8:
    FK = getRelocPairForSize(64);
    break;
  case llvm::FK_Data_leb128:
    FK = getRelocPairForSize(128);
    break;
  default:
    llvm_unreachable("unsupported fixup size");
  }
  MCValue A = MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
  MCValue B = MCValue::get(Target.getSymB());
  auto FA = MCFixup::create(Fixup.getOffset(), nullptr, std::get<0>(FK));
  auto FB = MCFixup::create(Fixup.getOffset(), nullptr, std::get<1>(FK));
  auto &Asm = Layout.getAssembler();
  Asm.getWriter().recordRelocation(Asm, Layout, &F, FA, A, FixedValueA);
  Asm.getWriter().recordRelocation(Asm, Layout, &F, FB, B, FixedValueB);
  FixedValue = FixedValueA - FixedValueB;
  return true;
}

std::unique_ptr<MCObjectTargetWriter>
LoongArchAsmBackend::createObjectTargetWriter() const {
  return createLoongArchELFObjectWriter(
      OSABI, Is64Bit, STI.hasFeature(LoongArch::FeatureRelax));
}

MCAsmBackend *llvm::createLoongArchAsmBackend(const Target &T,
                                              const MCSubtargetInfo &STI,
                                              const MCRegisterInfo &MRI,
                                              const MCTargetOptions &Options) {
  const Triple &TT = STI.getTargetTriple();
  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
  return new LoongArchAsmBackend(STI, OSABI, TT.isArch64Bit(), Options);
}